Machine Learning and Complex Event Processing
A Review of Real-time Data Analytics for the Industrial Internet of Things
DOI:
https://doi.org/10.18417/emisa.15.1Keywords:
Machine Learning, Complex Event Processing, Real-time Data Analytics, Industrial Internetof Things, Literature ReviewAbstract
In the Industrial Internet of Things, cyber-physical systems bridge the gap between the physical and digital world by connecting advanced manufacturing systems with digital services in so-called smart factories. This interplay generates a large amount of data. By analyzing the data, manufacturers can reap many benefits and optimize their operations. Here, the value of information is at its highest with low latency to its emergence and its value decreases over time. Complex Event Processing (CEP) is a technology, which enables real-time analysis of complex events (i.e., combined data values from different sources). In this way, CEP assists in the identification and localization of anomalous process sequences in smart factories. However, CEP comes with limitations that reduce its effectiveness. Setting up CEP requires in-depth domain knowledge and is primarily declarative as well as reactive by nature. Combining CEP with machine learning (ML) is a possible extension to circumvent these technological limitations. However, there is no up-to-date overview on the integration of both paradigms in research and no review of their transferability for application in smart factories. In this article, we provide (1) a synthesis of research on the integration of CEP and ML identifying supervised learning as the predominant approach, and (2) a transfer of potentials for the use in smart factories. Here, reactive and proactive policies are used in equal frequency.
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms: Authors retain copyright and grant the journal 'Enterprise Modelling and Information Systems Architectures - International Journal of Conceptual Modeling' and the Gesellschaft für Informatik e.V. (GI) the permission of first publication, and the non-exclusive, irrevocable and non-time limited publication permission for the submitted work including the permissions to store, copy, distribute and reproduce their work in printed and electronic form for the duration of the legal copyright. This includes the right of translation. Authors grant the journal 'Enterprise Modelling and Information Systems Architectures - International Journal of Conceptual Modeling' and the Gesellschaft für Informatik e.V. (GI) the permission to license their work under a Creative Commons BY-SA 4.0 license that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book) given an acknowledgement of its initial publication in this journal.
Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access). The submitting corresponding author on behalf of all co-authors asserts that she/he is entitled to the granting of the above mentioned permissions for the submitted work.