Conceptual Development of Industrial Product-Service Systems

Tim Sadek, Matthias Köster

Conceptual Development of Industrial Product-Service Systems

A model-based Approach

The increasing competitiveness of today's globalised economies and changing customer requirements prompt manufacturers to provide integrated product and service solutions, referred to as Industrial Product-Service Systems (IPS²). An IPS² constitutes a customised solution, whereas providing performance is set above the purchase of a mere technical product. It can comprise any combination of product and service shares. Once such an offer is planned, the IPS² concept development phase generates principle solutions that meet customerspecific requirements. This article presents a model-based methodology to support an IPS² designer during the process of generating IPS² concepts in the early phase of IPS² development. This methodical framework and the modelling approach for conceptual IPS² development has been implemented as a computer-aided tool and has been evaluated by solving a typical IPS² issue.

1 Introduction

The combination of globalisation effects and technological advances has led to long-term, cooperative customer-supplier relationships and to a decline in the supplier's differentiation solely based on technical products. Today, industrial services have evolved from being peripheral add-ons for technology to become a complementary part of an integral solution.

As the importance of long-term customer-supplier relationships, especially concerning the investment goods industry is growing, the sale of pure technical products has been replaced by new business models. However, the implementation of these business models requires the integration of technical products and industrial services to form product service bundles (Oliva and Kallenberg 2003). In academia these types of solution are called 'Industrial Product-Service Systems' (IPS²).

To meet customer requirements and to properly develop solution elements as well as relations between them, it is important to consider interdependencies between products and services at an early phase of development (Welp et al. 2008a). There are currently no suitable integrated, modelbased approaches available that support IPS² designers generating IPS² concepts systematically. In order to satisfy this demand, a methodology for the development of IPS² concepts is proposed in this article. It is based on a novel modelling approach, so called 'heterogeneous IPS² concept modelling'.

To establish a common comprehension of the system to be developed, basics of Industrial Product-Service Systems are addressed in this contribution first. After that, basic aspects of the heterogeneous IPS² concept modelling approach and of the design methodology for conceptual IPS² development are explained. Furthermore, the implementation of the proposed approach as a computer-aided tool is presented. The conceptual IPS² development methodology is evaluated using an IPS² specific issue in micro manufacturing industry. The article concludes with a summary and an outlook.

2 Basic Understanding of IPS²

From a supplier's point of view an Industrial Product-Service System (IPS²) is a long-term in-

35

	Enterprise Modelling and Information Systems Architectures
	Vol. 6, No. 2, May 2011
36	Tim Sadek, Matthias Köster

dividual problem solution solving business-tobusiness market issues. During its long-term delivery and use an IPS² allows dynamic adaptation to changing restrictions or influencing factors. This specific feature of an IPS² is to be considered as 'changeability'.

An IPS² meets individual customer requirements by integrating multidisciplinary, technical product components and industrial services. Thus, mechatronic subsystems are immanent constituents of an IPS² (Welp and Sadek 2008). They don't only form the technical product needed for manufacturing processes, but are also the basis for automating industrial services.

The aspired change from selling merely technical products or industrial services to a performancebased sale of IPS² aims at increasing customer's and supplier's benefits alike. This leads to changing business models as well as to novel customersupplier relationships. To coordinate business relationships, business contracts are used. Concerning IPS², contracts that coordinate a longterm cooperation between contractual parties are particularly important. Basically two aspects of such contracts need to be considered in IPS² concept development. On the one hand, an IPS² concept is explicitly determined by the assignment of property rights. On the other hand, the choice and design of the revenue model is crucial. As a purchaser of an IPS² is no longer necessarily the owner of its material components, a wide range of different possibilities to design revenue models are conceivable.

A revenue model is an heuristic model which addresses the measurable performance parameters for pricing as well as the value proposition of a business relationship and is therefore decisive for pricing (Hünerberg and Hüttmann 2003). According to Burianek and Reichenwald (2009) traditional and innovative revenue models can be distinguished from each other. Traditional revenue models that are based on the transactional sale of technical products or the offer of pure services (e.g., cost plus or fixed price) are cost-based and

their price is measured by the expenses involved in manufacturing products or delivering services respectively. Unlike traditional revenue models, innovative revenue models are no longer characterised by incurred costs. Instead, their basis for pricing is determined by the realised customer benefit (a performance level or a performance result etc.). According to Burianek and Reichenwald (2009) three different types of innovative revenue models can be distinguished: i) usagebased, ii) performance-based and iii) value-based. These revenue models are planned to provide a more efficient risk distribution between contractual parties. This leads to new incentives for suppliers and customers alike. Thus, all this needs to be considered in the development of an IPS² concept.

2.1 Component Parts: The IPS² artefact

It is necessary to specify elementary constituents of an IPS². Rather than a standard comparison of product and service that is often inconsistent due to fuzzy distinctions between the both, a new construct is defined, the so called 'IPS² artefact'. To characterise IPS² artefacts five constitutive characteristics (specificity, dominant transformation, scale of integration, capability for partial substitution and connectivity) have been developed, whose detailed description is presented in Sadek (2009), Welp et al. (2008b), and Welp and Sadek (2008).

2.2 Basic structure of IPS²

Next to IPS² artefacts that define the primary content of an IPS², the 'IPS² basic structure' (Sadek 2009) gives an overall view of an IPS². Furthermore, it serves as a constitutive basis for modelling and developing IPS² concepts. As shown in Fig. 1, the basic structure of an IPS² contains three essential components: i) influencing factors/surrounding conditions ii) the IPS² itself and iii) a dynamic target system.

The IPS² takes centre stage. As a transformation system or a controller respectively (Tan et al.

Conceptual Development of Industrial Product-Service Systems

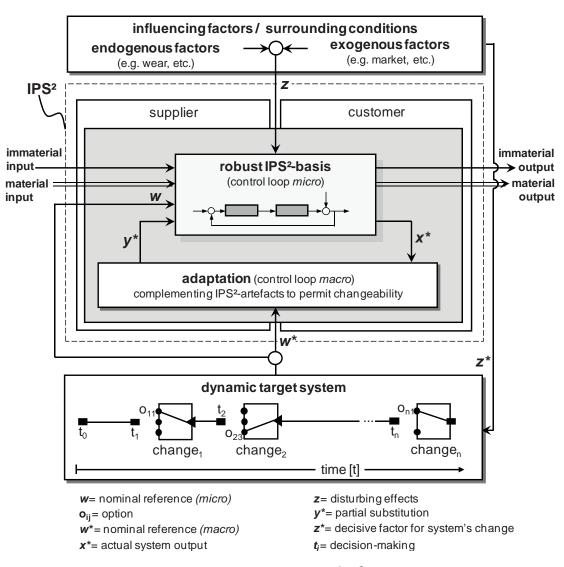


Figure 1: Basic structure of IPS²

2008) it should meet a nominal reference given by the dynamic target system (w or w^{*}). Influencing factors or surrounding conditions (z or z^{*}) cause negative effects and need to be compensated by the control system. The IPS² is separated from its system environment by a system boundary. The IPS² transforms immaterial input, such as labour or financial resources, in combination with material input, such as an unmachined part, into material output, such as a machined component. With that, an immaterial output, which equals performance in general, is also a result of this transformation process and is, therefore, part of the IPS² basic structure. A certain level of availability of a manufacturing system or a maintained machine component are examples of immaterial outputs. Supplier and customer who interact with each other during the transformation process are relevant stakeholders of an IPS². The transformation process itself is controlled by the dynamic target system. It contains different aspects of the business contract, especially all nominal references. To ensure the changeability of an IPS², a portfolio of options (o_{ij}) that can be defined in the business contract is specified in the dynamic target system. Options imply the right

	Enterprise Modelling and Information Systems Architectures
	Vol. 6, No. 2, May 2011
38	Tim Sadek, Matthias Köster

but not the obligation for the customer to decide in favour of future business decisions (Trigeorgis 1996). This implies as well discrete state changes of an IPS².

The robust IPS²-basis is the core of an IPS², which can be compared to a controller in terms of cybernetics. In view of business-to-business market solutions, the robust IPS²-basis equals a manufacturing system with its related human resources required to fulfil a certain task. The combination of IPS² artefacts, which constitute the robust IPS²basis, can be adjusted but cannot be exchanged completely. The robust IPS²-basis is regarded as a micro control loop, which reacts to disturbing effects (z) without external interference. It is also capable to stabilise or optimise an IPS² according to the nominal references (w). However, due to economic restrictions the ability to adapt the robust IPS²-basis to changes is restricted, so that it is not capable to react to all kinds of changes. To adapt an IPS² to extensive changing market conditions or customer demands an additional macro control loop, so called 'dynamic adaptation', is included. By partially substituting IPS² artefacts (y*) it is possible to implement alternative options. To take uncertain future events into account, options need to be considered already during the early phase of IPS² development. The feasibility of exchanging IPS² artefacts basically depends on their capability for partial substitution and their connectivity to related artefacts.

3 Conceptual Phase of IPS² Development

The conceptual design of an IPS² follows up the phase of strategic planning. Thus, business contracts are the basis for the development of IPS² concepts. Information about the contracted revenue model or the allocation of property rights is modelled together with specified requirements on a functional level. In this regard, using a functional description aims at reducing the complexity of the development task. Furthermore, the conceptual phase of IPS² development focuses on

the determination and selection of principle solutions. As a result, the IPS² concept includes all selected principal solutions and describes the structural interaction between them as well as their logical functionality on a medium level of abstraction. Consequently, the interaction of service and product components during the value creation and usage is predetermined in the early phase of the IPS² development. An IPS² concept serves as a qualitative or quantitative basis to evaluate the system regarding technical and economic reference criteria. In addition, an IPS² concept is the basis for the subsequent design of IPS² modules and components.

4 Review of the state of the art

In a comprehensive study (Sadek 2009) existing approaches have been analysed, which support the development of multidisciplinary systems in general and of Product-Service Systems in particular. For the subject of multidisciplinary development methodologies different evaluation criteria have been defined (see Tab. 1).

Amongst others the fulfilment degrees with regard to 'integration of product and service development', 'systematic multidisciplinary concept deployment' or 'determining product-service interdependencies in the early phase of development' have been considered. A summary and comparison of the analysed approaches is shown in Tab. 1.

Despite an existing multitude of methodologies, this study unfolds that designers are only insufficiently supported by computer aided tools in the early phase of multidisciplinary system development. In terms of conceptual IPS² development, methods are missing for i) mutually determining IPS² artefacts, ii) integrating stakeholder's preferences and iii) considering changeability of IPS². Nevertheless, some methodical approaches contain aspects that are significant for a modelbased IPS² concept development approach. But currently no comprehensive integrated approach does exist.

Conceptual Development of Industrial Product-Service Systems

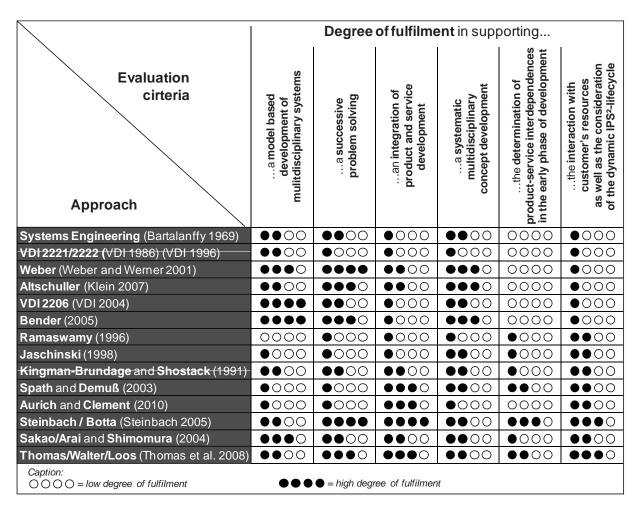


Table 1: Review of approaches of multidisciplinary development

5 Heterogeneous IPS² concept modelling

To support the development of IPS^2 concepts, a novel modelling principle has been developed, the so called 'heterogeneous IPS^2 concept modelling'. It is particularly suitable for integrated product and service modelling, but it is also transferable to other multidisciplinary development issues. The integration ranges from the combination of various types of IPS^2 artefacts to linking model elements on arbitrary levels of detailing, abstraction and formalisation to form an IPS^2 concept model. A systematic and detailed deduction of this approach is described in Sadek (2009).

5.1 Theoretical Framework

As already mentioned in Welp et al. (2008a) and Welp and Sadek (2008), the definition of a generally applicable modelling space that is defined by three modelling dimensions (detailing, formalisation and abstraction) aids to constitute a harmonised comprehension of IPS² modelling (cf. Fig. 2). It is also used as a fundamental basis to decompose the heterogeneous modelling approach of mechatronics (Jansen 2007; Jansen and Welp 2007). This is necessary to partially extend the existing approach and to combine it with a new paradigm for integrated product and service modelling which is based on the definition of the IPS² artefact (see Sect. 2.1). 39

Enterprise Modelling and Information Systems Architectures

	Vol. 6, No. 2, May 2011
40	Tim Sadek, Matthias Köster

According to Sadek (2009), an IPS² is basically composed of a combination of IPS² artefacts that fulfill the required functions. Thus, the existential origin of an IPS² artefact is a function. According to Pahl et al. (2007) such a function is defined by a combination of 'noun' and 'verb' (cf. Fig. 2). In this context a noun represents the operand and a verb the operator of a solution element. According to mathematics an operand represents the structural basis of a function which can be transformed by an operator. Hence, an operand is determined by its possible state, whereas the operator is characterised by its ability to change operator's states.

The distinction between operand and operator is generally applicable to all types of functions. To use this as a generic principle for integrating different types of elements on a medium and lower level of abstraction rather than just as a functional description, the terms 'noun' and 'verb' are extended to the terms 'IPS² object' and 'IPS² process'. Whereas 'noun' and 'verb' constitute a function, the combination of 'IPS² object' and 'IPS² process' constitute an IPS² artefact. Thus, a functional, an object-related and a process-related development perspective can be distinguished.

An IPS² object equals the material or immaterial operand of an IPS² artefact that possesses definable states. IPS² processes complement IPS² objects. On the one hand, they can be regarded as operators that effect IPS² objects and their respective states (intra). On the other hand, IPS² processes are regarded as operators able to coordinate and to control the interaction of IPS² objects (inter). However, only the combination of IPS² objects and IPS² processes can generate a functional behaviour.

5.2 System coherent modelling planes

Based on the definition of IPS² object and IPS² process, a functional, an object-related and a process-related development perspective can be

distinguished in order to fully grasp the complexity of heterogeneous IPS² concept modelling. This leads to the definition of three systemcoherent modelling planes (cf. Fig. 2). A detailed characterisation of the modelling planes as well as the description of corresponding modelling elements and relations is described in Sadek (2009).

The transfer from planning an IPS² to its systematic conceptual development is carried out on the so-called IPS² function plane. An IPS² problem solution can be modelled abstractly and solutionneutral by defining and linking IPS² functions. A graphical, 2D representation is used to support intuitive modelling. Apart from modelling IPS² functions this plane is used to specify and model the distribution of risk that needs to be shared between customer and supplier regarding a business contract (Oliva and Kallenberg 2003). Therefore, the IPS² function plane is divided into the supplier and customer modelling zone. By placing an IPS² function in one of these zones, its related risk can be clearly assigned to supplier or customer. Both modelling zones are logically connected via a supplier-customer relationship. Content of the underlying business contract with relevance for IPS² concept development is defined in this meta-relation. This includes the distribution of property rights, the definition of the underlying revenue model as well as a certain portfolio of options, for instance.

The deliberately omitted concretisation of an IPS² problem solution on that plane is transferred to adjoining modelling planes. The IPS² object plane is intended for modelling a material or immaterial operand of an IPS² artefact. To model IPS² object structures effectively the IPS² object plane is represented by a three-dimensional modelling space. 3D modelling mainly results from modelling technical IPS² objects. Visualising IPS² objects by 3D elements improves the comprehension of IPS² object structures especially for interdisciplinary design teams. Furthermore, the model transfer from heterogeneous IPS² concept modelling to 3D-CAD design has been taken into

Conceptual Development of Industrial Product-Service Systems

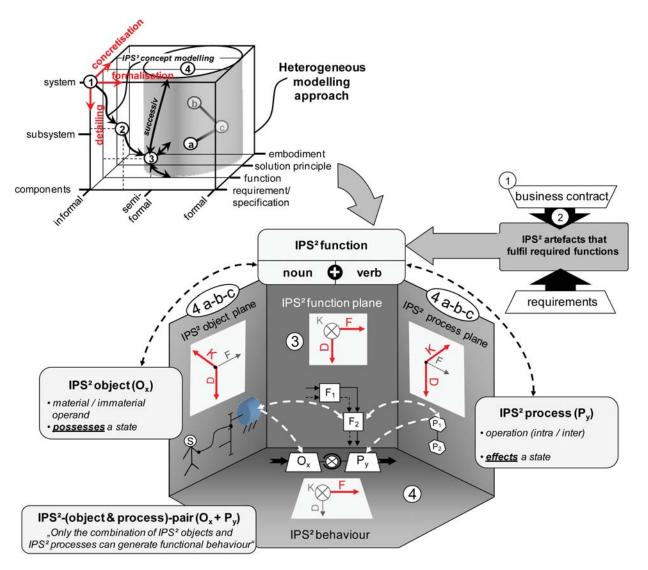
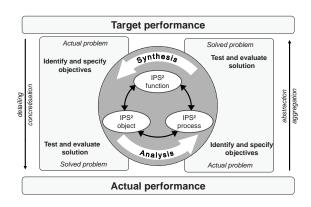


Figure 2: The theoretical framework for IPS² concept modelling

account. In contrast, the IPS^2 process plane has been defined to model intra- and inter operations that effect IPS^2 objects. IPS^2 processes are mainly graphically modelled using an IPS^2 specific activity diagram. The IPS^2 process plane is also used to model interactions between supplier and external factor (customer). Therefore, two modelling zones are defined and separated by a 'line of interaction'. In this case the line of interaction is equivalent to the correspondent line in Service Blueprints, according to Shostack (1984). The definition of these modelling planes enables an IPS^2 designer to develop IPS^2 concepts in a successive way. Step-by-step IPS² functions, IPS² objects and complementing IPS² processes can be developed. In doing so, interdependencies between IPS² artefacts can be determined in an early phase of development. The combination of all three modelling planes constitutes a heterogeneous IPS² concept model. Heterogeneous IPS² concept modelling aims at supporting IPS² designers to effectively represent different states of knowledge during the IPS² concept development.

	Enterprise Modelling and Information Systems Architectures
	Vol. 6, No. 2, May 2011
42	Tim Sadek, Matthias Köster


6 Methodology for a model based development of IPS² concepts

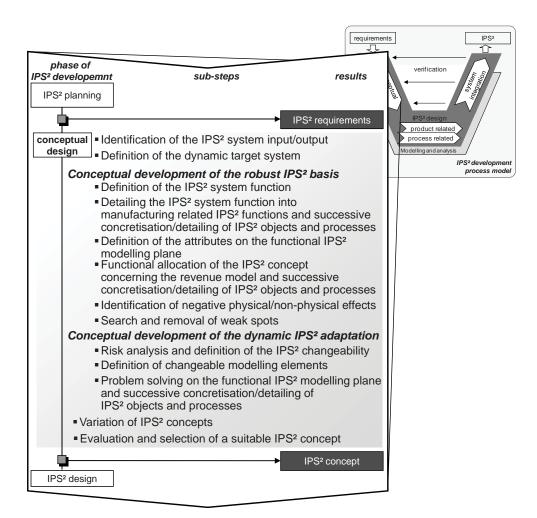
In order to develop IPS² concepts in a systematic and efficient manner, it is necessary to elaborate an appropriate development methodology, which takes particular IPS² characteristics into account. Based on heterogeneous IPS² concept modelling, which enables an integrated description of IPS² concepts, a flexible process model will be introduced in the following paragraphs. On the one hand it comprises a problem solving cycle (micro-logic). It can be applied in all sub-steps during the development of IPS² concepts due to its generic logic. On the other hand, a superior guideline (macro-logic), permitting the temporal and logical structuring of the IPS² concept development process, will be introduced. Furthermore the proposal of rules, strategies and guidelines shall support the IPS² designer to elaborate process steps of the macro-logic.

6.1 Problem solving cycle (micro-logic)

The problem solving cycle for the development of IPS² concepts, displayed in Fig. 3, is based upon elementary mechanisms for problem solving. These are especially examined in connection with research in the field of systems-engineering (Ehrlenspiel 2007) and their principal validity is widely documented.

In order to incorporate the particular characteristics of IPS^2 and to adjust the micro-logic to IPS^2 concept modelling, certain modifications regarding the general problem solving cycle known from systems engineering (Haberfellner 2002) have to be made. The centre of the modified problem solving cycle consists of the in-teraction between functions, objects and processes relating to IPS^2 concepts. The internal dependency of their respective three modelling planes serves as a basis for a successive problem solving process, in which, based on a distinct problem, elements of the solution are identified and afterwards combined to a verifiable and assessable overall solution. Due to the causality between abstract IPS² functions as well as concrete IPS² objects and IPS² processes, the modified problem solving cycle especially supports the interplay of analysis and synthesis.

Figure 3: Problem solving cycle (micro-logic)


If a problem consists of the concretisation and detailing of a targeted performance, IPS² functions serve as an introduction to the synthesis of IPS² objects and IPS² processes. Their combination leads to IPS² artefacts. In a reverse way, the problem solving cycle can also be used for the analysis of an IPS² artefact. To do so, at first the IPS² artefact will be divided into IPS² objects and IPS² processes and afterwards abstracted and aggregated to an IPS² function, in order to identify the accompanying targeted performance. In respects of a flexible conceptual IPS² development process, modified problem solving cycles referring to the synthesis and analysis can be combined with or interlaced with each other in various ways to be suited to a particular problem.

6.2 Superior guideline (macro-logic)

The superior guideline proposed by Sadek (2009) is shown in Fig. 4. The macro-logic includes generally described sub-steps, which can be executed in the presented order to develop an IPS² concept.

The guideline should not be understood as a rigid 'development-corset' needed to be fulfilled, but rather as a flexible framework, adaptable to individual problems. Consequently, it is possible

Conceptual Development of Industrial Product-Service Systems

Figure 4: Superior guideline (macro logic)

to vary the order of the process steps, shown in Fig. 4, to emphasise certain aspects of the concept development or to neglect sub-steps, depending on the problem. After all, the introduction of this guideline aims at coordinating the development process of IPS² concepts more efficiently, reducing needless iterations as well as decreasing time involved with that. The sub-steps, described in the guideline address solely the phase called 'conceptual design', which is in turn an immanent element of the entire IPS² development process. Furthermore, the structural constitution of the guideline is based on the IPS² basic structure already being presented (see Sect. 2.2). Thus, there are primarily four elements: the IPS² system input/output, the dynamic target system, the

robust IPS² basis and the dynamic adaptation.

In order to develop an IPS² concept, the system input that has to be transformed into the desired system output has to be identified at first. Moreover, the contractual terms concerning the IPS² have to be defined within the dynamic target system. At this point, not only the basic configuration of the IPS² has to be regarded, but also the portfolio of options agreed upon within the contract. Based on that, the next step of the guideline consists of the definition of the IPS² system function. It marks the beginning of the conceptual development of the robust IPS² basis. The complexity of the entire developmental task should initially be reduced and a stable situation for the

	Enterprise Modelling and Information Systems Architectures
	Vol. 6, No. 2, May 2011
44	Tim Sadek, Matthias Köster

consideration of system adaptations concerning the life cycle should be created. Especially, when developing a new IPS² concept, a 'TopDown' development strategy is to be recommended. Here, the determination of the solution is conducted from a holistic point of view, in order to propose solutions for the sub-systems and components as well as to educe sub-processes and process steps.

Consequently, the overall system's function of the IPS² has to be defined and successively detailed in manufacturing related functions. Using heterogeneous IPS² concept modelling, the developer is not restricted to extracting all of their ideas from the system's function. Rather, a mixture of generally required IPS² functions, IPS² objects and IPS² processes serves as a basis for the successive concretisation and detailing of the entire solution.

Heterogeneous IPS² concept modelling includes the possibility of characterising the supplier and customer in terms of their risk preference. Additionally, main aspects of the business contract can be modelled. Regarding the revenue model, functions are allocated to the supplier or to the customer according to their corresponding risk preference (see Sect. 5.2). The usage of the problem solving cycle allows the successive concretisation, or rather, the detailing of IPS² functions into IPS² objects and processes.

The 'robustness' of the IPS² basis is the focus in the following sub-steps of the guideline. For this, the endogenous and exogenous negative parameters affecting the IPS² have to be identified via appropriate methods. In the case of technical systems, the negative effects of human actors are often only of secondary importance and the physical effects on the system are prioritised. On the contrary, the conceptual development of the robust IPS² basis observes physical and non-physical effects equally. Thus, a close interdisciplinary cooperation is required in this sub-step in order to overcome notional obstacles. The heterogeneous IPS² concept modelling approach makes it possible to consider negative effects by using disturbance elements on all three modelling planes. They can be connected to the affected IPS² functions, objects and processes. This enables an effective search and removal of weak spots.

For economic reasons, not all changes of constraints, influencing factors and environmental conditions can be compensated by the robust basis of the IPS². Therefore, the development of a concept for the dynamic adaptation has to be conducted, which takes results of the previous process steps into account. Main restrictions are defined in the business contract. It contains references to required options defined by the customer. An option defines the possible reaction to certain changes with specified adaptations of the IPS². Depending on the information's dispersions between supplier and customer as well as the present knowledge about trends of the market and technology, options can be related to probabilities of occurrence. The probability that an option is chosen has to be determined. Therefore, risk analysis has to be conducted. Aiming at an overall maximisation of customer's and supplier's benefit, the strategic leadership of the conceptual IPS² development is faced with the decision to either fully consider the portfolio of options agreed upon in the contract or to take the risk of implementing an option in the provided IPS² during the delivery and use phase. This can result in higher costs. In order to make it possible for the IPS² to be changed, elements of the model have to be identified or defined, which are able to adapt the system.

In order to reach an overall optimum, solution elements or relations of an IPS^2 concept can be varied iteratively. Therefore, the last sub-step includes an evaluation of developed IPS^2 concepts. To introduce findings from subsequent sub-steps into the current IPS^2 development process, it may be necessary to incorporate iterations.

6.3 Rules, strategies and guidelines for the conceptual IPS² development

This paragraph proposes rules, strategies and guidelines to support the developer in generating

Conceptual Development of Industrial Product-Service Systems

and varying IPS² concepts. In addition to the exemplary elements shown in Fig. 5, Sadek gives an extensive view concerning essential rules, strategies and procedural guidelines (Sadek 2009).

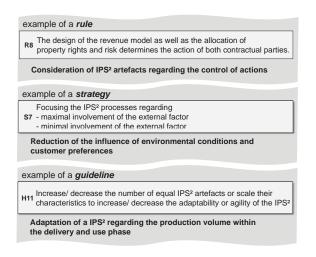


Figure 5: Examples of rules, strategies & guidelines

These rely mainly on the consideration of IPS² specific characteristics and on the special properties regarding the novel modelling approach. Due to their fundamental character, rules possess general validity during the development of IPS². In order to guarantee their general applicability, rules are described in a rather abstract way and can be interpreted by the developer depending on particular problems. In addition to rules, strategies can support the IPS² development process by defining essential targets in the heterogeneous concept modelling as well as render suggestions for the generation and variation of model relations. In this context, it is helpful to use contrary pairs of strategies, which provide extreme value parameters, due to their opposed aims. That enables an IPS² designer to solve certain development tasks systematically and to search for adequate solution compromises within the boundaries of the development scope. Furthermore, the expressed strategies should inspire the developer's creativity and present vital incentives for the development of alternative proposals. Unlike the rules and strategies, guidelines do not possess general validity. In fact, they target the stimulation of the creativity process and give the developer specific impulses for the differentiation of the dynamic target system, for the conceptual development of the robust IPS² basis and for the conceptualisation of dynamic adaptations.

7 IPS² concept development tool

Considering the IPS^2 development process, including the IPS^2 concept modelling approach with its associated development methodology and strategies, an adequate software tool is necessary to support an IPS^2 designer. Therefore, an integrated software tool has to provide functions for modelling as well as for methodical support. Both aspects are integrated in the architecture of the IPS^2 concept development tool, which is illustrated in Fig. 6.

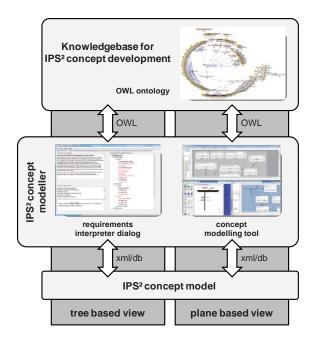


Figure 6: Architecture of the development tool

The software tool is divided into three major parts. The first part is the IPS² concept modeller, which provides a graphical user interface and a programming framework for plug-ins. The second part is the embedded methodical plug-in, which has access to the concept model data via

	Enterprise Modelling and Information Systems Architectures
	Vol. 6, No. 2, May 2011
46	Tim Sadek, Matthias Köster

an integrated database (db) and an XML interface. The plug-in also has access to an ontological knowledgebase. The knowledgebase itself is the third part of the IPS² concept development tool and is needed to describe basic knowledge for IPS² concept modelling and further knowledge for IPS² concept development.

7.1 IPS² concept modeller

The IPS² concept modelling tool offers two different types of model representations, a tree-based and a plane-based view. Figure 7 contains the so-called IPS² requirements interpreter dialog, used to derive an initial IPS² concept from informally described requirements, e.g., in the form of a text document.

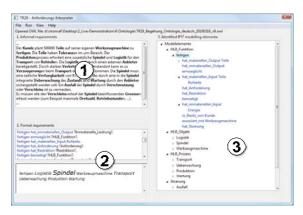


Figure 7: The IPS² requirements interpreter dialog

To derive an initial IPS² concept out of informal described requirements, the text document is loaded into the interpreter and is displayed in window 1. After assessing the document, single sentences of higher importance are displayed in window 2. By using the knowledgebase, the interpreter can automatically identify IPS² concept elements as well as their properties and relations. The results are displayed in window 3. The user can modify the initial IPS² concept by adding, removing or changing properties.

Tests with the IPS² concept modeller indicate that a tree based representation of the IPS² concept model is suitable to derive and modify single IPS² concept elements with their properties. Nevertheless, further research to improve the usability has to be conducted.

Figure 8 shows the graphical user interface for modelling on the IPS² concept modelling planes. The plane based representation of an IPS² concept is recommended for the further and more detailed development of an IPS² concept, because it allows a faster and intuitive modelling of new IPS² concept elements and relations on all three modelling planes. Therefore, the IPS² concept modelling tool provides a dedicated screen for each of the IPS² concept modelling planes.

The upper part of the IPS^2 concept modeller in Fig. 8 shows the IPS^2 function plane, with modelled IPS^2 functions as well as their relations. In the middle part, the screen represents the IPS^2 object plane. On this modelling plane a full 3D based modelling of IPS^2 objects is possible. The lower part of the screenshot shows the IPS^2 process modelling.

7.2 Knowledge-based assistance for conceptual IPS² development

In order to realise a knowledge-based assistance for conceptual IPS² development, the IPS² concept modelling tool is connected to an ontological knowledgebase. Using the knowledgebase enables the integration of the following three functions into the IPS² concept development tool:

- Identification of IPS² concept elements, properties and relations out of informally described requirements
- Suggestion of missing IPS² concept elements, properties and relations
- Verification of modelled relations between IPS² concept elements

These functions are achieved by speech recognition, which is used to incorporate different grammatical forms. The identification is performed in 2 steps. First, the interpreter dialog analyses each sentence in the text and identifies IPS² concept elements and properties through a comparison

Conceptual Development of Industrial Product-Service Systems

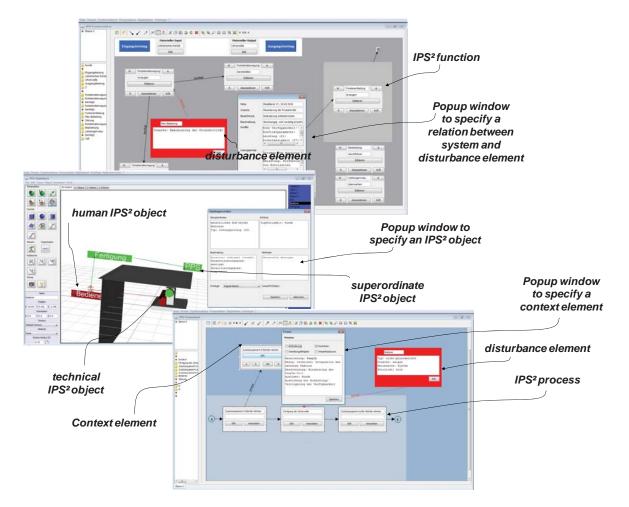


Figure 8: IPS² concept modelling tool

of the current model with the contents of the knowledgebase. In the second step the interpreter estimates all possible relations between IPS² concept elements and their properties as well as probably missing properties.

7.3 Knowledgebase for conceptual IPS² development

The ontological knowledgebase is modelled by using the Ontology Web Language (OWL) (Hitzler et al. 2008). The knowledgebase contains two major parts. The first part describes elements and relations of the IPS² concept model on a high level of abstraction. In accordance to Sect. 5 the basis for IPS² concept development is constituted by IPS² functions. For each IPS² function a certain number of requirements and restrictions as well as material and immaterial input and output can be assigned. The IPS² functions are associated with their respective IPS² objects and IPS² processes, which can be detailed and connected through appropriate relations.

The second part of the knowledgebase includes an element library. The element library is derived from this generic IPS² model description by defining subclasses of IPS² functions, objects and processes supplemented with restrictions on their relations. For example, a service technician is a subclass of the IPS² object 'human' and can only be connected to technical IPS² objects, e.g., a production system via a socio-technical relation.

	Enterprise Modelling and Information Systems Architectures
	Vol. 6, No. 2, May 2011
48	Tim Sadek, Matthias Köster

An additional restriction could be the limitation on a specific type of production system. The knowledgebase is accessed by a common reasoning interface.

8 Evaluation example

To evaluate the computer-aided IPS² concept development approach, an IPS² specific issue which targets micro manufacturing systems has been chosen. In the following paragraph a suitable conceptual solution has been developed via the IPS² concept development methodology and the software tool to meet requirements and restrictions which have been elaborated to specify the problem of performance-based manufacturing of rotationally symmetric µm-parts. A process to meet the particular requirements of manufacturing rotationally symmetric µm-parts is Wire Electrical Discharge Grinding (WEDG) with rotating workpieces. The WEDG process is based on spark erosion, using wires as electrodes. To rotate the µm-parts relatively to the electrode, a conventional EDM-machine (electrical discharge machining) has to be supplemented with an additional spindle, which is integrated into the machine's workspace. The spindle also provides a workholding device for µm-parts.

8.1 Scenario description

A customer, who tries to enter niche markets by offering rotationally symmetric μ m-parts, e.g., shafts in mechanical watches defines the following requirements:

- Req. 1: Rotationally symmetric µm-parts have to be machined on the customer's EDM-machine.
- Req. 2: Machining has to be performed by supplier's personnel.
- Req. 3: Demanded manufacturing volume can vary.
- Req. 4: Defined manufacturing time per part has to be observed (Maximising productivity).

Based on these requirements, the IPS² supplier defines the following restrictions:

- Res. 1: WEDG process is used for manufacturing rotationally symmetric μm-parts.
- Res. 2: Machine operator has got a certain qualification.
- Res. 3: Additional (material) IPS² artefacts, necessary to manufacture μm-parts, remain in IPS² supplier's ownership.
- Res. 4: Local and temporal availability is guaranteed.
- Res. 5: Technical availability is guaranteed.

Considering the abovementioned requirements and restrictions, a fictitious IPS² contract has been defined. It specifies the assignment of property rights for material IPS² artefacts as well as the revenue model. The IPS² supplier is owner of all additional IPS² artefacts, which are required for manufacturing rotationally symmetric µmparts using the WEDG process. Thus, a problem solution in terms of classical product sales is basically not applicable (Res. 3). Not being the owner of the EDM-machine (Req. 1), the IPS² supplier disclaims the acceptance of risk for manufacturing defects resulting from the EDMmachine itself. By employing his own qualified personnel, the IPS² supplier is responsible for the quality of the manufactured output. Furthermore, it can be deduced from Req. 3 that the customer's benefit can be increased by a local and temporal provision of additionally required IPS² artefacts. By guaranteeing local and temporal availability of x% the IPS² supplier takes the associated risks, e.g., costs resulting from downtime. To maximise manufacturing productivity the IPS² supplier tries to prevent downtimes of the provided technical equipment by him to the customer. To share the risk he defines a technical availability of x% for the provided means of production (see Res. 5). In consequence, a 'performance based revenue model' is defined.

8.2 Identification of IPS² system input/output

An entry to the conceptual development of the IPS² is formed by specifying the IPS² system's input and output (cf. Fig. 9). A cylindrical raw part,

Conceptual Development of Industrial Product-Service Systems

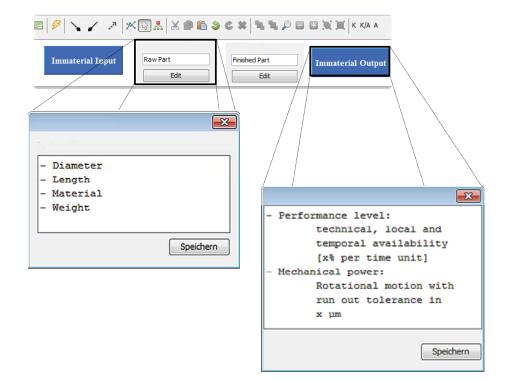
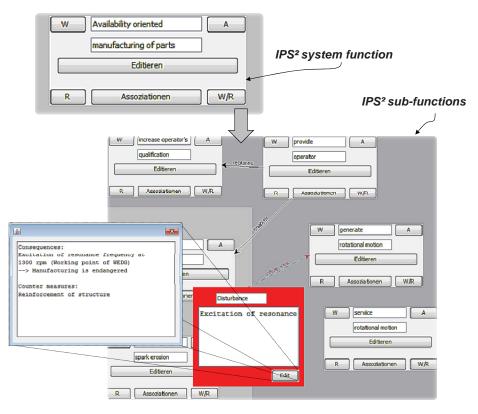


Figure 9: IPS² system inputs and system outputs

attributed by diameter, length, material etc., is defined as material input. The result of the manufacturing process, the 'finished part', is specified in the modelling element 'material output'. In addition to geometrical attributes, manufacturing related properties are defined in this model element. Immaterial input for the transformation of raw parts into finished parts is provided in form of financial resources, electrical power and labour. Besides the material output, the IPS² also generates an immaterial output. In the designated modelling element 'immaterial output' local, temporal and technical availability as well as the mechanical performance are specified.

8.3 Conceptual development of the dynamic target system


The target values which are defined as IPS² system outputs are also an inherent part of the dynamic target system. Moreover, the portfolio of options agreed upon within the contract is defined within the dynamic target system.

To limit the complexity of the evaluation example, only one option will be considered. With this option the customer gets the possibility of replacing the machine operator within the delivery and use phase. Thus, the machining could be performed by the customer himself instead by the supplier's personnel.

8.4 Conceptual development of the robust IPS² basis

Following the superior guideline the next substep of the development of the IPS² concept is the development of the robust IPS² basis. The transformation of input into output requires an IPS² system function, which describes the overall performance on the lowest level of detailing (cf. Fig. 10). In the beginning detailing the IPS² system function is based on the development of manufacturing related sub-functions. These functions enable the transformation of material input into material output. After that, functions to generate the desired immaterial performance level

	Enterprise Modelling and Information Systems Architectures
	Vol. 6, No. 2, May 2011
50	Tim Sadek, Matthias Köster

Figure 10: IPS² functions

are developed. To manufacture rotationally symmetric μ m-parts, the customer's EDM-machine will be temporarily supplemented with an additional spindle, which is portable and integrated into the machine's workspace.

Besides the technical IPS² artefacts and the machine operator needed for manufacturing μ mparts, additional human and superordinate IPS² artefacts are required. To guarantee technical availability, a service technician is needed for maintaining the spindle. Furthermore, the maintenance has to be coordinated by an adequate superordinate IPS² artefact. To guarantee a local and temporal availability, the superordinate IPS² artefact logistics is required to coordinate and accomplish the transportation of the spindle.

8.5 Conceptual development of the dynamic IPS² adaptation

The IPS² has to allow its dynamic adaptation to changing restriction or influencing factors. In

this evaluation example, the changeability of the IPS² has to be considered by the possibility of replacing the supplier's personnel through customer's personnel during the manufacturing process. Hereby, the operator's qualification influences the manufacturing process significantly. The change of risk allocation is combined with the change of the machine operator. The customer takes the risk for machine operation. To integrate less qualified machine operators, additional IPS² artefacts have to be added, e.g., an 'operator training'.

In Fig. 11 the IPS² object plane and the IPS² process plane are shown.

An increasing spindle wear that is associated with the replacement of the operator, requires additional components for condition monitoring. Thus, a condition monitoring equipment has to be integrated as well as additional sensors to measure the condition of the spindle. For a

Conceptual Development of Industrial Product-Service Systems

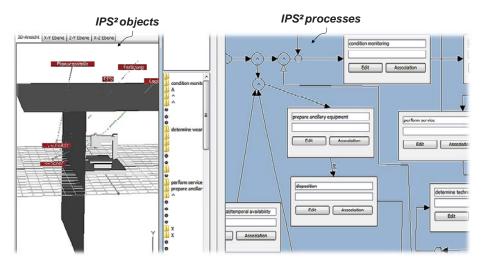


Figure 11: IPS² objects and IPS² processes

condition-based maintenance the condition monitoring

equipment has to communicate the machine data to the maintenance organisation.

9 Summary and Outlook

 IPS^2 is a problem solution for B2B market issues and targets a long-term customer-supplier relationship. Taking interdependencies into account already in the early phase of IPS^2 development is especially important to ensure the synergetic interaction of IPS^2 artefacts during their entire life cycle and to offer an integral customer specific solution. Thus, based on the heterogeneous modelling approach, a model based methodology for conceptual IPS^2 development has been proposed. To show its feasibility, it has been implemented as a software prototype and evaluated based on an IPS^2 specific issue from the field of micro manufacturing.

Future research needs a further development and optimisation of the software tool and the design methodology. During conceptual IPS² development, the IPS² designer has to make a lot of initial design decisions. These decisions affect the entire subsequent design process significantly. Especially the desired flexibility of an IPS^2 , which is very important in terms of longterm customer-supplier relationships as focused in the new business models, causes particular difficulties in making decisions. To provide flexibility in an uncertain environment the IPS^2 has to allow its dynamic adaptation to changing restrictions and influencing factors during its lifecycle. Therefore, a changeable architecture of the IPS^2 is necessary and hereby connected design decisions under uncertainty already have to be made in the early phase of IPS^2 development. Therefore, an adequate methodical framework to support decision making under uncertainty has to be developed, which considers economic as well as engineering properties.

Furthermore the development of a model-based approach for domain allocation is aspired. Based on the heterogeneous IPS² concept modelling approach, the deliberate and explicit choice of domains (here technical products and industrial services) as well as their combination to IPS² is focused. The aspired methodology should support a designer to create and vary IPS² concepts systematically. In this context, IPS² specific premises, for example the maximisation of the overall benefit, as well as specific views on IPS² concept development, such as the product/process-integration, will be considered.

Enterprise Modelling and Information Systems Architectures

	Vol. 6, No. 2, May 2011
52	Tim Sadek, Matthias Köster

Considering the IPS² concept development tool, improvements of the software prototype can be separated into three different aspects. First, improvements of the graphical user interface are necessary. The graphical user interface is designed to provide essential functionality for IPS² concept modelling ignoring a possible information and interface overload for the user. A better form of representation has to be found. The second aspect is the improvement of the knowledge-based assistance. The concept modeller is capable of providing an adequate support for concept modelling in terms of model verification and completion but does not provide functions for more efficient modelling. The improvement of both aspects has to consider practical user experiments, which have to reveal the specific limits of the software prototype. The last aspect is the integration of the concept modeller in a more complex development environment. In this regard, a suitable data exchange with Design for X (DfX) software and Product Lifecycle Management has to be developed.

Acknowledgements

Financial support from the German Science Foundation (DFG) through SFB/TR29 is gratefully acknowledged.

References

- Arai T., Shimomura Y. (2004) Proposal of Service CAD System – A Tool for Service Engineering. In: CIRP Annals – Manufacturing Technology 53, Issue 1
- Aurich J. C., Clement M. H. (2010) Produkt-Service-Systeme: Gestaltung und Realisierung. Springer, Berlin
- Bartalanffy L. (1969) General System Theory. George Braziller Inc.
- Bender K. (2005) Embedded Systems: Qualitätsorientierte Entwicklung. Springer, Berlin
- Kingman Brundage J., Shostack L. G. (1991) How to Design a Service. In: Congram C. A., Friedman M. L. (eds.) The AMA Handbook of Marketing for the Service Industry. New York, USA

- Burianek F., Reichenwald R. (2009) Contractual Implications of Solution selling. In: INFORMS 2009: International Conference on Service Science. Hong Kong
- Ehrlenspiel K. (2007) Integrierte Produktentwicklung: Denkabläufe, Methodeneinsatz, Zusammenarbeit, 3., aktualisierte Aufl. Carl-Hanser, München
- Haberfellner R. (2002) Systems engineering: Methodik und Praxis, 11., durchges. Aufl. Verl. Industrielle Organisation, Zürich
- Hitzler P., Krötzsch M., Rudolph S., Sure Y. (2008) Semantic Web: Grundlagen. Springer, Berlin
- Hünerberg R., Hüttmann A. (2003) Performance as a basis for price-setting in capital goods industry: concepts and empirical evidence. In: European Management Journal 21(6), pp. 717– 730
- Jansen S. (2007) Eine Methodik zur modellbasierten Partitionierung mechatronischer Systeme: Zugl.: Bochum, Univ., Diss., 2006. Schriftenreihe / Ruhr-Universität Bochum, Fakultät für Maschinenbau, Institut für Konstruktionstechnik Vol. 07,3. LMF, Lehrstuhl für Maschinenelemente und Fördertechnik, Bochum
- Jansen S., Welp E. G. (2007) A heterogeneous modelling approach for domain allocation in mechatronics. In: Design for society: Knowledge, innovation and sustainability – 16th International Conference on Engineering Design. Paris
- Jaschinski C. (1998) Qualitätsorientiertes Redesign von Dienstleistungen: Zugl.: Aachen, Tech. Univ., Diss.. Shaker, Aachen
- Klein B. (2007) TRIZ, TIPS Methodik des erfinderischen Problemlösens, 2., verb. und erw. Aufl.. Oldenbourg, München [u.a.]
- Oliva R., Kallenberg R. (2003) Managing the Transition from Products to Services. In: International Journal of Service Industry Management 14, pp. 160–172
- Pahl G., Beitz W., Feldhusen J., Grote K. H., Wallace K., Blessing L. T. (2007) Engineering design: A systematic approach, 3. ed. Springer, London

Enterprise Modelling and Information Systems Architectures

Vol. 6, No. 2, May 2011

Conceptual Development of Industrial Product-Service Systems

- Ramaswamy R. (1996) Design and management of service processes: Keeping customers for life, 1. print. Engineering process improvement series. Addison-Wesley, Reading
- Sadek T. (2009) Ein modellorientierter Ansatz zur Konzeptentwicklung industrieller Produkt-Service-Systeme: Zugl.: Bochum, Univ., Diss., 2009. Schriftenreihe / Institut für Konstruktionstechnik Vol. 09,[7]. Shaker, Aachen
- Shostack M. J. (1984) Designing services that deliver. In: Harvard Business Review 62(1), pp. 133–139
- Spath D., Demuß L. (2003) Entwicklung hybrider Produkte - Gestaltung materieller und immaterieller Leistungsbündel. In: Bullinger H. J., Scheer A. W. (eds.) Service Engineering -Entwicklung und Gestaltung innovativer Dienstleistungen. Springer, Berlin
- Steinbach M. (2005) Systematische Gestaltung von Product-Service-Systems: Integrierte Entwicklung von Product-Service-Systems auf Basis der Lehre von Merkmalen und Eigenschaften: Univ., Diss.–Saarbrücken, 2005.. Schriftenreihe Produktionstechnik Vol. 35. LKT, Saarbrücken
- Tan A. R., Andreasen M. M., Matzen D. (2008) Conceptualisation of Product/Service-Systems through structural characteristics. In: 10th International Design Conference. Dubrovnik, pp. 517–528
- Thomas O., Walter P., Loos P. (2008) Design and usage of an engineering methodology for product-service systems. In: Journal of Design Research 7(2)
- Trigeorgis L. (1996) Real options: Managerial flexibility and strategy in resource allocation. MIT Press, Cambridge
- VDI (1986) Methodik zum Entwickeln und Konstruieren technischer Systeme und Produkte.
 VDI-Richtlinien Vol. 2221. Verein Deutscher Ingenieure and Gesellschaft Entwicklung, Konstruktion, Vertrieb, Düsseldorf
- VDI (1996) Konstruktionsmethodik Methodisches Entwickeln von Lösungsprinzipien.VDI-Richtlinien Vol. 2222. Verein Deutscher

Ingenieure and Gesellschaft Entwicklung, Konstruktion, Vertrieb, Berlin

- VDI (2004) Entwicklungsmethodik für mechatronische Systeme =: Design methodology for mechatronic systems. VDI-Richtlinien Vol. 2206. Verein Deutscher Ingenieure, Düsseldorf
- Weber C., Werner H. (2001) Schlussfolgerungen für "Design for X" (DFX) aus der Perspektive eines neuen Ansatzes zur Modellierung von Produkten und Produktentwicklungsprozessen. In: 12th Symposium Design for X. Neukirchen
- Welp E. G., Sadek T. (2008) Conceptual Design of Industrial Product-Service Systems (IPSS) based on the extended Heterogeneous Modelling Approach. In: 10th International Design Conference. Dubrovnik
- Welp E. G., Sadek T., Müller P., Blessing L. T. (2008a) Integrated modelling of products and services – The conceptual design phase in an integrated IPSS development process. In: CIRP Design Synthesis. Delft
- Welp E. G., Meier H., Sadek T., Sadek K. (2008b) Modelling Approach for the Integrated Development of Industrial Product-Service Systems. In: 41th CIRP Conference on Manufacturing Systems. Tokyo

Tim Sadek, Matthias Koester

Chair of Engineering Design (LMK) at the Institute for Product and Service Engineering, Ruhr-University of Bochum IB, Universitaetsstrasse 150 44801 Bochum Germany {sadek | koester}@lmk.rub.de