
Enterprise Modelling and Information Systems Architectures

Vol. 6, No. 1, March 2011

Detecting Common Errors in Event-Driven Process Chains by Label Analysis 3

Volker Gruhn, Ralf Laue

Detecting Common Errors in Event-Driven Process
Chains by Label Analysis

In this article, we discuss several classes of error patterns that can frequently be found in Event-Driven Process

Chains (EPC). Instances of these patterns can be detected by using a pattern-matching approach: The model

is translated into a set of Prolog rules and potential modelling problems are located by querying the Prolog

fact base for certain problem patterns. In particular, this article presents patterns for problems that can be

detected by analysing the labels of events and functions in EPCs. To make reasoning about the contents of the

labels possible, the labels are transformed into a normal form. By taking synonyms, antonyms and negating

words (no, not) into account, we locate labels that contradict each other. This leads to the detection of some

classes of errors like modelling of an event and its negation occurring at the same time. Our method has been

applied to 1253 EPC models in German language. We have been able to detect a large number of errors in

those models that remain undetected using traditional approaches for EPC validation.

1 Introduction

According to Esswein et al. (2004), two stances
of semantics of a model must be separated: First,
semantics includes the rules for automated in-
terpretation of a model (for EPC models repres-
ented by rules defining how the state space of
all possible executions is calculated). Second,
each modelling construct represents some real-
world entities which is another aspect of model
semantics. In EPC models, this second aspect of
semantics is expressed by the labels of functions
and events.

Pfeiffer and Niehaves (2005) call the graphical ar-
rangements of model elements and their connec-
tions among each other model element structure.
The actual meaning of the modelling constructs
in the application domain is called terminological

structure. Pfeiffer and Niehaves stress that an
essential part of the semantics of a conceptual
model descents from a reference to the language
of the application domain. Hence, model valid-
ation should take into account both aspects of
semantics.

If we look at approaches that have been pub-
lished for the validation of EPC model semantics

(for example van der Aalst 1997, Rump 1999, and
Mendling 2007), we realise that the majority of
them focuses on the first aspect of semantics.
They allow to find control-flow errors like dead-
locks but abstract away from the actual meaning
of the events and functions in EPCs.

Only a few authors (for example Awad et al.
2008a whose approach will be discussed in Sect. 5)
tackled the problem of detecting modelling prob-
lems related to the actual meaning of function
and event labels.

When reviewing real-world EPCs from various
sources, we categorised some frequent error pat-
terns that can only be detected by analysing the
labels of functions and events. The aim of our
work was to automate this analysis such that a
modelling tool can instantly give feedback about
the occurrence of a problem. This helps to im-
prove the model quality at the time when a model
is created.

Our method has been implemented into the open-
source modelling tool bflow* Toolbox. Now this
tool gives feedback not only about syntactical
and control-flow problems as described in Gruhn

Enterprise Modelling and Information Systems Architectures

Vol. 6, No. 1, March 2011

4 Volker Gruhn, Ralf Laue

et al. (2009), but also about contradictions found

in the usage of labels.

The remainder of this paper is structured as fol-

lows: The error pattens are categorised in Sect. 2.

In Sect. 3, we describe our algorithm for locating

instances of those patterns in a model. The res-

ults of a validation of our approach, using 1253

EPC models from various sources, can be found

in Sect. 4. In Sect. 5, we discuss the results and

compare our approach with previously published

methods.

2 Error Patterns

When analysing EPC models, we identified sev-

eral error patterns that remain undetected by

current control-flow analysis tools. Table 1 gives

an overview about the error patterns.

While we use the term ‘error patterns’ for all pat-

terns in this article, we have to stress that not

every occurrence of such a pattern necessarily

indicates an actual error in the model. The sever-

ity of the occurrence of the patterns is discussed

in Tab. 1 and in the subsections of this section.

Some patterns indicate actual modelling errors

(for example pattern B and J, see below), while

other patterns (for example patterns C and D)

show a possibility to improve the readability of

the model.

In general, the occurrence of a pattern alerts the

modeller to double-checked the part of the model

where the pattern has been found.

In this section, we discuss the patterns and give

examples of the occurrence of those patterns in

real-world models. For the purpose of this article,

these model fragments have been translated from

German into English language.

2.1 Pattern A: Identical Events Before a
Join

In an EPC, the semantics of events that are dir-
ectly connected to a join is that the events model
different conditions that can occur during the ex-
ecution of the business process. For this reason,
two events with the same meaning both having
an arc to the same join can be an indication of a
modelling problem.

In some cases, the reason for the occurrence of
this pattern is that the business process has been
modelled in a wrong way. For example, in the
model fragment in Fig. 1 (taken from Grohmann
et al. 2007) the two events with the same label
‘mark as ’unsuccessful’ ’ are the result of a mod-
elling error: Most likely, the left branch should
depict the situation ‘to be marked as successful’.

However, in most cases, the multiple occurrence
of the same event just means that the EPC can
be simplified. An example for such a case is
shown in Fig. 2. The left model does not fulfill
the ‘minimality’ property as required by Weber
(1997), i.e. the requirement to restrict the number
of modelling elements to a minimum in order to
improve readability.

When searching for identical events, we have to
disregard trivial texts such as ‘OK’ or ‘processed
successfully’. As there is no description what

has been processed successfully, both events can
depict different managerial situations. Our al-
gorithm disregards such trivial texts. Anyway,
this pattern can cause occasional ‘false alarms’
(see Fig. 3 (taken from König 2006) for an exam-
ple).

Furthermore, we have to consider that events
which are associated to different organisational
units always have to be considered as different
- even if they have the same label. For exam-
ple, an event ‘audit successful’ associated to the
accounting department is something else as an
event ‘audit successful’ associated to the legal
department.

Enterprise Modelling and Information Systems Architectures

Vol. 6, No. 1, March 2011

Detecting Common Errors in Event-Driven Process Chains by Label Analysis 5

Pattern A Identical Events Before a Join
A A Definition: A join is preceded by two events with the same meaning.

Consequences: In the most cases the model can be simplified by placing the event after the join.

Pattern B Identical Events After a Split

A A

Definition: A split is followed by two events with the same meaning.
Consequences: Such a construct contradicts the semantical meaning of events which should show
different postconditions that can occur after the split.

Pattern C Identical Start Events Precede Same Join
S t a r t AS t a r t A Definition: There are two start events S1 and S2 with the same meaning. There is a path p1 from S1

to a join J and a path from S2 to the same join J such that the only common node of p1 and p2 is J.
Consequences: The modeller should double-check whether the model can be simplified.

Pattern D Identical End Events Follow Same Split

E n d A E n d A

Definition: There are two end events E1 and E2 with the same meaning. There is a path p1 from a
split S to E1 and a path from the same split S to E2 such that the only common node of p1 and p2 is
S.
Consequences: The modeller should consider closing the control-flow block started by S by adding
a corresponding join node in order to make the model easier to read.

Pattern E Contradicting Events at an AND/OR-Connector

A A

/
Definition: An AND- or OR-connector has two events which contradict each other as direct
successor or predecessor. This is a logical error in the model.
Consequences: The modeller should consider to replace the connector by an XOR-connector.

Pattern F Contradicting Start Events Precede Same AND/OR-Join
S t a r t AS t a r t A

/

Definition: There are two start events E1 and E2 which contradict each other. There is a path p1

from S1 to a join J of type AND or OR. There is also a path from S2 to the same join J such that the
only common node of p1 and p2 is J.
Consequences: This pattern can indicate a logical error in the model.

Pattern G Contradicting End Events Follow Same AND/OR-Split

E n d A E n d A

/
Definition: There are two end events E1 and E2 which contradict each other. There is a path p1

from a split S of type AND or OR to E1. There is also a path from the same split S to E2 such that
the only common node of p1 and p2 is S.
Consequences: This pattern can indicate a logical error in the model.

Pattern H XOR Connector Preceded or Followed by Events A, ¬A and B

A A B

Definition: An XOR-connector is directly followed or preceded by at least three events. For two of
these events (A and ¬A) it holds that one is the negation of the other one.
Consequences: The purpose of a third event is questionable.

Pattern I Comparison Between Two Values Does not Include the Case “Equality”

A A B

Definition: Events after a split describe a comparision of values like “x < y” / “x > y” or changes of
a value like “value x has increased” / “value x has decreased”
Consequences: It could be the case that the modeller has forgotten the case “Equality” (“x = y”) or
“Constancy” (value x remained unchanged).

Pattern J AND- or OR-Split After a yes/no-Question

/

y e s o r n o ? Definition: A question that can be answered by either “yes” or “no” is followed by an AND- or
OR-split.
Consequences: The modeller should consider to replace the split by an XOR-split.

Table 1: List of error patterns discussed in this article

Enterprise Modelling and Information Systems Architectures

Vol. 6, No. 1, March 2011

6 Volker Gruhn, Ralf Laue

take final
exam

result
>= 60%

result
< 60%

first testsecond
test

mark exam as
"unsuccessful"

exam marked
"unsuccessful"

Was it the
first test?

mark exam as
"unsuccessful"

exam marked
"unsuccessful"

Figure 1: This model needs to be corrected.

A

B C

D E F

G H I

D

G

A

B C

E F

H I

D

G

Figure 2: Left: original EPC; Right: improved EPC

Approval with
regard to

building law

Approval with
regard to
structural

engineering

approval has
been granted

approval has
been granted

Figure 3: False alarm for pattern A

2.2 Pattern B: Identical Events After a
Split

In an EPC, events that follow a split are used
to model the different postconditions that can
occur after the processing of the split. There is
no good reason for having modelled the same
event twice after a split. If such a situation is
found anyway in a model, this indicates an er-
ror that should be corrected. An example model
we have identified with this problem is shown in
Fig. 4 (which is a model fragment from the EPC Fi-
nancial Accounting-Consolidation-Preparations

for Consolidation from the SAP R/3 reference
model).

2.3 Pattern C/D: Identical Start Events
Precede Same Join/Identical End
Events Follow Same Split

These patterns are similar to pattern A and pat-
tern B: The purpose of start events and end events
in an EPC is to model different situations that
can occur before starting/after finishing the ex-
ecution of a business process. If the same start
event/end event is modelled multiple times be-
fore the same join/after the same split, this often
means that the EPC can be modelled in a more
structured way as shown in Fig. 5

2.4 Pattern E: Contradicting Events at
an AND/OR-Connector

If an AND- or OR-split has an arc both to an
event E1 as to another event E2, the semantics of
the split means that both events can take place at
the same point of time. If E1 and E2 contradict
each other, we can assume that there is an error

Enterprise Modelling and Information Systems Architectures

Vol. 6, No. 1, March 2011

Detecting Common Errors in Event-Driven Process Chains by Label Analysis 7

Rollup is carried out
in the same system

Breakdown by
transaction type is

prepared

Cross-system rollup
exists

Rollup is carried out
in the same system

Applying Consolidation
Rules

...more events omitted...

Figure 4: The event ‘Rollup is carried out in the same system’ seems to be modelled wrongly.

A B C

E E E

A B C

E

Figure 5: EPC fragment with pattern D (left) and improved EPC fragment (right)

in the model. Analogously, we can assume an

error being in an EPC where contradicting events

E1 and E2 both have an arc to the same AND- or

OR-join.

Such modelling errors are quite common for novice

modellers. In particular, they may be misled by

a natural-language specification such as ‘After

the processing of X, E1 or E2 can occur’. While

described by the word ‘or’ in natural language,

the correct connector to use in an EPC diagram

is the XOR connector. An example of such a mod-

elling error (found in a diploma thesis) is shown

in Fig. 6.

search for
goods

goods have
been found

goods have not
been found

Figure 6: OR should be replaced by XOR here.

2.5 Pattern F/G: Contradicting Start
Events Precede Same
AND/OR-Join/Contradicting End
Events Follow Same AND/OR-Split

These patterns refer to models where an event
E1 and its negation E2 = ¬E1 are modelled such
that they can occur together either as start events
or as end events. Such a construction seems to be
erroneous. As we did not find a remarkable num-
ber of instances of these patterns in our model
repository, we do not discuss them in detail. The
formal definition of the patterns can be found in
Tab. 1.

2.6 Pattern H: XOR Connector Preceded
or Followed by Events A, ¬A and B

In this pattern, an XOR-connector is directly fol-
lowed or preceded by an event A, its negation
¬A and at least one additional event B. As A
is the negation of ¬A, either A or ¬A should
become true. For this reason, the purpose of a
third event is questionable (Tertium non datur).

A modelling construct like the one shown in Fig. 7
(taken from Giesa and Kopfer 2000), will be at
least difficult to understand1: Obviously, one of

1We are unable to judge about the correctness of the
modelling fragment, because we are not familiar with the
modelled domain.

Enterprise Modelling and Information Systems Architectures

Vol. 6, No. 1, March 2011

8 Volker Gruhn, Ralf Laue

apply system for
key figures

demand for application no demand for
application

demand to change
system for key figures

demand to change by
executive team

Figure 7: One of the both leftmost events will always occur.

the leftmost events has to occur so that there
seems to be no good reason for having the other
events in the model.

Interestingly, this pattern gave raise to some false
alarms in cases like the one shown in Fig. 8.
In this model, the statement ‘CR is available
and (in)complete’ has been abbreviated by ‘CR
is (in)complete’. Although this is easy to under-
stand by a human reader, such a construct caused
our algorithm to report a possible modelling
problem.

CR is
complete

CR is not
complete

CR not
available

Figure 8: False alarm will be caused by pattern H

While it is in fact impossible to prevent false
alarms in cases like the one shown in Fig. 8, we
can prevent false alarms in another case that
can frequently be found in EPCs: Often A, ¬A
and B depict the results of a decision such as
‘yes’/‘no’/‘possibly’. For this reason, our algorithm
does not signal the occurrence of this pattern if
the label of event B contains restricting words
such as ‘partially’, ‘possibly’, ‘conditionally’, etc.

2.7 Pattern I: Comparison Between Two
Values Does not Include the Case
‘Equality’

Often, the label of an an event in an EPC is based
on the comparison of two values.

check / sign project
application

contract value
< xxx Euro

contract value
> xxx Euro

Figure 9: It could be the case that ‘value= xxx EUR’ has
been forgotten here.

In the example shown in Fig. 9 (taken from Becker
et al. 2008, p. 634), the project application will be
processed immediately if the contract value is
less than a given amount of money. Otherwise,
additional assessments are required. In such a
case, it looks as the case ‘contract value is exactly
xxx Euro’ has been forgotten (see Ambler 2003,
rule 233).

Our algorithm identifies such situations and
alerts the modeller. In the same way, we deal
with events that describe the increase/decrease
of some value. For example when a split is fol-
lowed by two events ‘demand has increased’ and
‘demand has decreased’, we alert the modeller
to consider modelling the case ‘demand remains
unchanged’ as well.

2.8 Pattern J: AND- or OR-Split After a
yes/no-Question

Usually, a function that is labelled with a ques-
tion that can be answered by either ‘yes’ or ‘no’
should be followed by an XOR-split and two
events (one for the positive reply, another one for
the negative reply). The same holds for functions
with labels of the form ‘Test whether x or y’. Our

Enterprise Modelling and Information Systems Architectures

Vol. 6, No. 1, March 2011

Detecting Common Errors in Event-Driven Process Chains by Label Analysis 9

Check whether the customer still
has films borrowed

Customer still has films
borrowed

Customer has not borrowed
films anymore

Figure 10: After such a decision, there should be an XOR-split.

algorithm identifies this kind of questions that
are wrongly followed by an AND- or OR-split
instead of an XOR-split.

An example where our algorithm can locate an
error is shown in Fig. 10. In this construct, the
OR should be replaced by an XOR. Note that in
this case, pattern E will be found as well, but this
has not to be necessarily the case.

3 Algorithm for Detecting Error Pattern
Instances

Our algorithm for detecting instances of the de-
scribed patterns uses the approach published in
Gruhn and Laue (2007): The information con-
tained in an EPC model is transformed into a
set of Prolog facts, and Prolog queries are used
for locating errors in the model. In previous pa-
pers we have shown how this method can be
used for checking syntactical correctness (Gruhn
and Laue 2006), absence of control-flow errors
(Gruhn and Laue 2009a) and unnecessarily com-
plicated modelling structures (Gruhn and Laue
2009b).

The necessary steps for analysing an EPC using
this Prolog-based approach are as follows:

1. The information contained in the EPC model
is translated into Prolog facts like
event(i_3) (there is an event with an ID
i_3) or elementname(i_3,"Create
Invoice") (the node with ID i_3 has the
label ‘Create Invoice’).

2. The labels are transformed into a textual nor-
mal form such that labels with the same mean-
ing will be transformed into the same normal
form.

3. The patterns described in this article are
searched by querying the Prolog system.

3.1 Step 1: Translating the EPC into
Prolog Facts

The translation of the information within an EPC
model into Prolog facts is done by a simple XSLT
transformation. Details can be found in Gruhn
and Laue (2006).

3.2 Step 2: Transforming the Labels into
a Textual Normal Form

In the second step, the labels of events and func-
tions are transformed into a textual normal form.
The purpose of this normal form is that labels
with the same meaning should be transformed
into the same normal form. For this purpose, we
take into account a list of stop words, synonyms
and antonyms. In our prototypical implemen-
tation, we have included 210 synonyms and 70
antonyms of German terms that can frequently
be found in business process models.

For the purpose of populating our catalogue of
synonyms and antonyms, we counted the fre-
quency of words in 1154 EPC models. These mod-
els contained 66,088 words (among them 7,599 dif-
ferent ones). Among the most frequently found
words we grouped terms with the same meaning
into classes of synonyms.

For generating the normal form of a label, our al-
gorithm repeatedly substitutes substrings of the
label such that terms that belong to the same
class of synonyms will be replaced by the same
string that symbolises the normal form for this
class. For example, in the labels ‘The claim is al-
lowed’ and ‘Claim has been accepted’, at first stop
words such as the, is and has beenwill be replaced
by the empty string. Afterwards, the terms ‘al-
lowed’ and ‘accepted’ (which both belong to the

Enterprise Modelling and Information Systems Architectures

Vol. 6, No. 1, March 2011

10 Volker Gruhn, Ralf Laue

Listing 1: Prolog rules for identifying pattern A

findPatternA(E1,E2) :-
split(C),type(C,xor), % C is an XOR-split...
arc(C,E1),arc(C,E2), % which has an arc to E1 and an arc to E2
event(E1),event(E2), % E1 and E2 are events
E1 @< E2, % in particular this means E1 is not equal to E2
elementname(E1,NameE1), % E1 has the label NameE1
elementname(E2,NameE2), % E2 has the label NameE2
equivalent(NameE1,NameE2), % NameE1 and NameE2 have the same meaning
not(trivial(NameE1)), % NameE1 is not a trival label (like "ok")
not(trivial(NameE2)). % NameE2 is not a trival label (like "ok")

same class of synonyms) will be replaced by the
same normal form ‘NF_ACCEPTED’. As the res-
ult, both labels will be transformed into the same
normal form ‘claim NF_ACCEPTED’.

In the same way, we deal with terms that are
included into the list of antonyms. In this case,
we also set a flag that signalises the fact that the
normal form expresses the opposite of the ori-
ginal label. This way, the label ‘claim dismissed’
will also be transformed into the normal form
‘claim NF_ACCEPTED’. The mentioned flag tells
us that the label expresses the negation of the
normal form.

Labels that have the form x � y where � ∈ {<,>,
=,≤,≥, } and labels such as ‘x has increased’, ‘x
has decreased’, ‘x has been incremented’, ‘x has
been decremented’, ‘x remained constant’, etc.
are processed in a special way. Instead of describ-
ing the details here, we give a few examples. Our
algorithm realises that

• ‘x > 1000’ and ‘1000 is greater than x’ contra-
dicts to ‘x < 1000’ or ‘x is equal to 1000’.

• ‘x has increased’ contradicts to ‘x remained
unchanged’ and ‘x has decreased’.

• The propositions ‘x is smaller than y’ and ‘x is
greater than y’ describe two of the three pos-
sible cases ‘smaller than/greater than/equal
to’.

3.3 Step 3: Querying the Prolog System

For identifying the patterns, we use Prolog rules.
An example for such a rule which queries for
pattern A looks as shown in listing 1.

From the description of the problem patterns in
Sect. 2 we see that we need Prolog rules for
reasoning about the following situations:

1. An event is a direct predecessor or a direct

successor of a connector:

This fact is represented by the existence of
an arc in the EPC. In the Prolog representa-
tion of the EPC, this is represented by a fact
arc(x,y).

2. Two events have the same meaning:

As discussed in the explanation to step 2, this
will cause both events to have the same nor-
mal form.

3. Two labels A and B contradict each other:

This is the case if A and B have been trans-
formed into the same normal form, but a pair
of words that is included in the list of ant-
onyms has been used in the process of replace-
ments. This would be signalised by setting the
corresponding flag to true.
Another case for labels A and B contradicting
each other is when A results from B by insert-
ing a negating substring (‘non-’ or ‘not’).
Finally, label A contradicts label B if they rep-
resent two of the three cases ‘smaller
than/greater than/equal to’ or ‘increased/de-
creased/unchanged’.

Enterprise Modelling and Information Systems Architectures

Vol. 6, No. 1, March 2011

Detecting Common Errors in Event-Driven Process Chains by Label Analysis 11

4. A label expresses the fact that an event oc-

curs only partially or only under certain cir-

cumstances:

This situation is assumed if the label contains
a word that restrict its proposition. Such
words are ‘possibly’, ‘partially’, ‘potentially’,
etc.

5. The label is a question that can be answered

by either ‘yes’ or ‘no’:

This situation is assumed if the label contains
the substring ‘whether’ or if it ends with a
question mark but does not start with an in-
terrogative pronoun. This way, the question
‘Has the claimant the authority to withdraw
the claim?’ is regarded as a yes/no-question
while ‘Which products should be offered’ is
not.

4 Validation

We have searched for the pattern described above
in a repository of 1253 EPC models in German
language that we have collected from various
sources:

• 591 models from the SAP R/3 reference model,
a widespread business reference model

• 127 models from textbooks

• 48 models from PhD thesises

• 70 models from published scientific papers

• 252 models from bachelor and diploma thes-
ises and term papers

• 84 models from real-world projects

• 22 models from university lecture notes

• 13 models from technical manuals

The remaining 37 models were EPCs published
on the Internet for which we were unable to
assign them into one of the above categories.
Among the models in our repository, there is a
great variation in size of the models, purpose of
modelling, business domain and experience of
the modelers. For this reason, we think that the
models represent a reasonable good sample of
real-world models.

Because of the large number of models and the
great variation in the modeled domain, we have
been unable to perform a manual analysis of all
models. For this reason, we are unable to de-
cide whether there were any instances of the dis-
cussed error patterns that have not been found
by our algorithm, i.e. we cannot quantify the
Recall value for our algorithm.

However, we have analysed the Precision value as
follows: All problems that have been signalised
by our tool have been checked manually in order
to decide whether the model in fact should be
improved with respect to this problem pattern.
In some cases, such a decision was impossible
for us due to lack of domain knowledge (in par-
ticular for pattern H). If there were any doubts,
we categorised a reported problem as ‘(possible)
false alarm’.

This way, we got the following numbers of legit-
imate problem alerts and false alarms:

Altogether, our tool has located 129 cases in 99
EPCs where indeed an improvement of the model
seemed to be advisable. On the other hand, there
were 46 false alarms in 44 models. The large per-
centage of false alarms for the patterns C, D, F, G
and H gives raise to the assumption that it might
be less useful to look for these patterns. For the
patterns A, B, I and J, almost all instances found
of these patterns pointed to a possibility to cor-
rect or improve the model. It would be useful for
a modeller to run these checks at modelling time
in order to avoid the occurrence of the problem
patterns.

There is a remarkable coherence between the
origin of the EPCs and the classes of problems
found in them. For instance, the error pattern E
is very typical for novice modellers: Instead of
an XOR-split, they use an OR-split which would
be suggested by the specificaton of a business
process in natural language. While error pattern
E was found very often in students’ papers (and
as well in models from a modelling project in the
media domain), there was no instance of this pat-
tern in the SAP R/3 reference model. This shows

Enterprise Modelling and Information Systems Architectures

Vol. 6, No. 1, March 2011

12 Volker Gruhn, Ralf Laue

Pattern pattern instances found (possible) false alarms
Pattern A 70 in 54 models 1 in 1 model
Pattern B 1 in 1 model none
Pattern C 22 in 21 models 12 in 11 models
Pattern D 21 in 21 models 17 in 17 models
Pattern E 31 in 19 models 1 in 1 model
Pattern F 2 in 2 models 1 in 1 model
Pattern G 2 in 2 models 2 in 2 models
Pattern H 21 in 18 models 12 in 11 models
Pattern I 3 in 3 models none
Pattern J 2 in 2 models none

Table 2: Patterns found in the 1253 EPCs of our repository

that the detection of problems by our approach
would be more useful for beginners.

5 Comparison of our Approach with
Related Work

The results in the previous chapter show that by
analysing EPC labels, we are able to identify a
remarkable number of modelling problems.

While the method has been implemented for
German-language models, we see no reason why
it should be difficult to adapt it to models in other
languages as well. The main part of the work to
achieve this adaption would be to build the syn-
onym/antonym catalogue.

Our approach does not force the modeller to re-
strict the language used for the labels. Labels
of events and functions can contain any phrase
in natural language which is common practice
in EPC modelling. By restricting the language
for describing events and functions, it should
be possible to improve the effectiveness of the
algorithm considerably.

Such a consolidated usage of words that can
occur in labels can be achieved by using the
tool Semtalk (Fillies and Weichhardt 2005) which
makes use of ontologies. By using such an ontol-
ogy-based concept, it is even possible to assess
the correctness of a business process model with
regard to the application domain. Fillies and

Weichhardt (2003) give an example where two
business process models ‘incoming order’ and
‘order processing’ are analysed. An example for
a business rule that can be checked for those mod-
els is that ‘no order should be processed unless it
is confirmed’. A very similar example is used in
Thomas and Fellmann (2007) where EPC models
are used together with ontologies of the business
domain.

We are convinced that combining business proc-
ess modelling and ontologies can lead to very
powerful tools. Such tools can be used for
checking consistency between models, for val-
idating the compliance with business rules and
for querying model repositories. Current work
on this topic is described in Weber et al. (2008)
and Governatori et al. (2008).

However, we are also convinced that such ontol-
ogy-based methods will become very difficult to
implement in practical modelling projects. The
reason is that (at least during the introduction
stage), the cost and complexity of such a method
will be much higher than with traditional model-
ling. The approaches described in the literature
demand to build an ontology of the business do-
main in addition to the usual modelling task (see
for example the description on how to construct
a the so-called semantical model in Filipowska
et al. 2008).

Enterprise Modelling and Information Systems Architectures

Vol. 6, No. 1, March 2011

Detecting Common Errors in Event-Driven Process Chains by Label Analysis 13

Figure 11: Immediate feedback on errors in the labels of an EPC in the bflow* Toolbox

Our method works without the need to construct
an ontology of the application domain. We only
have to fill the lists of synonyms and antonyms
which can be regarded as a very rudimental part
of a domain ontology. In its current form, the
catelogue of synonyms and antonyms is yet far
from being complete. For this reason we cannot
claim to detect all occurrences of the problem
patterns described in this article.

While this incompleteness is clearly a disadvant-
age, we see an advantage in the fact that our
method is easy to implement and easy to use.
Our validation has shown that even a rather
small catalogue of synonyms and antonyms is
sufficient for finding a remarkable number of
modelling problems. Other than it is the case for
ontology-based approaches, our approach deliv-
ers information about the modelling problems
without adding to the complexity of the model-
ling method.

The pattern-based analysis of EPC models has
already been integrated into the open-source
modelling tool bflow* Toolbox (see Fig. 11). The
analysis can be started ‘at the push of a button’.
This adds more power to the business process
modelling with immediate feedback in the bflow*
Toolbox as described in Gruhn et al. (2009).

Awad et al. (2008b) use information retrieval tech-
niques for defining a measure of similarity be-
tween labels within a BPMN diagram. This ap-
proach uses the general-purpose lexical database
WordNet (Fellbaum 1998), which makes it pos-
sible to compare the similarity of labels without

having to restrict the use of the language. Com-
bining Awad et al. (2008b) with previous work on
BPMN-Q (Awad et al. 2008a) makes it possible
to validate business rules like ‘An account must
not be opened until certain checks have been
completed’.

A similar approach is described in Koschmider
and Oberweis (2007). However, the main purpose
of this work is not the validation of business
process models but to detect model variants.

An important difference between the method de-
scribed in our article and the approaches given
by Awad et al. (2008b) and Koschmider and Ober-
weis (2007) is that we are able to locate a substan-
tial number of modelling problems with a very
small catalogue of synonyms and antonyms that
can be used very efficiently. It will be an inter-
esting subject for further studies how the results
of our pattern search can be improved by using
more advanced algorithms (as described in Awad
et al. 2008b, Koschmider and Oberweis 2007 or
Gervasi and Zowghi 2005) for detecting labels
with the same meaning or labels that contradict
each other.

It is another interesting research field to validate
whether naming conventions for events and func-
tions have been followed. Bögl et al. (2008) show
how lexical databases and semantical patterns for
labels can be used for this purpose. Other authors
have suggested somewhat different solutions for
the same problem: Both Leopold et al. (2009) and
Becker et al. (2009) make use of linguistic syntax
parsing methods for assuring the compliance to
naming conventions.

Enterprise Modelling and Information Systems Architectures

Vol. 6, No. 1, March 2011

14 Volker Gruhn, Ralf Laue

An approach to measure the label quality of EPC
models has been suggested by Friedrich (2009).
In particular, this method can find labels with a
high chance of ambiguity.

It is our intention to research more patterns that
can signalise the possiblity to improve a model.
Researchers and practitioners are invited to use
and to improve the tests in the bflow* Toolbox.
The most current release can be downloaded
from www.bflow.org2.

References

Ambler S. W. (2003) The Elements of UML Style.
Cambridge University Press

Awad A., Decker G., Weske M. (2008a) Efficient
Compliance Checking Using BPMN-Q and
Temporal Logic. In: Proceedings of the 6th In-
ternational Conference on Business Process
Management. Springer, Milan, pp. 326–341

Awad A., Polyvyanyy A., Weske M. (2008b) Se-
mantic Querying of Business Process Models.
In: 12th International Conference on Enter-
prise Distributed Object Computing EDOC

Becker J., Kugeler M., Rosemann M. (2008)
Prozessmanagement. Ein Leitfaden zur
prozessorientierten Organisationsgestaltung,
6th ed. Springer, Berlin

Becker J., Delfmann P., Herwig S., Lis L., Stein
A. (2009) Formalizing Linguistic Conventions
for Conceptual Models. In: Procceedings of
the 28th International Conference on Con-
ceptual Modeling (ER 2009). Lecture Notes in
Computer Science 5829. Springer, Gramado,
pp. 70–83

Bögl A., Schrefl M., Pomberger G., Weber N.
(2008) Semantic Annotation of EPC Models
in Engineering Domains by Employing Se-
mantic Patterns. In: ICEIS 2008 – Proceedings
of the Tenth International Conference on En-
terprise Information Systems, Volume AIDSS,
Barcelona, pp. 106–115

2The Prolog rules that are responsible for the tests
described in this article can be found in the plugin
org.bflow.toolbox.mitamm.prolog. The list of synonyms
and antonyms we have used for the purpose of our valida-
tion can be found at the same place.

Esswein W., Gehlert A., Seiffert G. (2004) To-
wards a Framework for Model Migration.
In: Advanced Information Systems Engineer-
ing, 16th International Conference, CAiSE
2004, Riga, June 7–11, 2004, Proceedings. Lec-
ture Notes in Computer Science Vol. 3084.
Springer, pp. 463–476

Fellbaum C. (ed.) WordNet: An Electronic Lex-
ical Database (Language, Speech, and Com-
munication). The MIT Press, Cambridge

Filipowska A., Kaczmarek M., Stein S. (2008) Se-
mantically Annotated EPC within Semantic
Business Process Management. In: Ardagna
D., Mecella M., Yang J. (eds.) Business Proc-
ess Management Workshops. Lecture Notes
in Business Information Processing Vol. 17.
Springer, Berlin, pp. 486–497

Fillies C., Weichhardt F. (2003) Towards the Cor-
porate Semantic Process Web. In: Berliner
XML Tage. XML-Clearinghouse, pp. 78–90

Fillies C., Weichhardt F. (2005) On Ontology-
based Event-driven Process Chains. In:
EPK 2005, Geschäftsprozessmanagement mit
Ereignisgesteuerten Prozessketten

Friedrich F. (2009) Measuring Semantic La-
bel Quality Using Word Net. In: EPK 2009,
Geschäftsprozessmanagement mit Ereignis-
gesteuerten Prozessketten. CEUR Workshop
Proceedings

Gervasi V., Zowghi D. (2005) Reasoning about
inconsistencies in natural language require-
ments. In: ACM Trans. Softw. Eng. Methodol.
14(3), pp. 277–330

Giesa F., Kopfer H. (2000) Management lo-
gistischer Dienstleistungen der Kontraktlo-
gistik. In: Logistik Management 2(1), pp. 43–
53

Governatori G., Hoffmann J., Sadiq S., Weber I.
(2008) Detecting Regulatory Compliance for
Business Process Models through Semantic
Annotations. In: 4th International Workshop
on Business Process Design. Springer, Berlin

Grohmann G., Kraemer W., Milius F., Zimmer-
mann V. (2007) Modellbasiertes Curriculum-
Design für Learning Management Systeme:
Ein Integrationsansatz auf Basis von ARIS

Enterprise Modelling and Information Systems Architectures

Vol. 6, No. 1, March 2011

Detecting Common Errors in Event-Driven Process Chains by Label Analysis 15

und IMS Learning Design. In: Wirtschaftsin-
formatik Proceedings 2007. Universitätsver-
lag Karlsruhe, pp. 795–812

Gruhn V., Laue R. (2006) Validierung syn-
taktischer und anderer EPK-Eigenschaften
mit PROLOG. In: EPK 2006, Geschäfts-
prozessmanagement mit Ereignisgesteuerten
Prozessketten, 5. Workshop der Gesellschaft
für Informatik e.V., pp. 69–84

Gruhn V., Laue R. (2007) Checking Properties of
Business Process Models with Logic Program-
ming. In: Modelling, Simulation, Verification
and Validation of Enterprise Information Sys-
tems (MSVVEIS) 2007. INSTICC Press, Fun-
chal, Madeira, pp. 84–93

Gruhn V., Laue R. (2009a) A Heuristic Method
for Detecting Problems in Business Process
Models. In: Business Process Management
Journal 16(5), pp. 806–821

Gruhn V., Laue R. (2009b) Reducing the Cognit-
ive Complexity of Business Process Models.
In: IEEE International Conference on Cognit-
ive Informatics, Hong Kong

Gruhn V., Laue R., Kühne S., Kern H. (2009) A
Business Process Modelling Tool with Con-
tinuous Validation Support. In: Enterprise
Modelling and Information Systems Archi-
tecture 4(2), pp. 37–51

König M. (2006) Workflow-Management in der
Baupraxis. In: 4. Tag des Baubetriebs 2004 –
Tagungsbeiträge Nachtragsmanagement in
Praxis und Forschung, Schriften der Profes-
sur Baubetrieb und Bauverfahren. Bauhaus-
Universität Weimar

Koschmider A., Oberweis A. (2007) How to de-
tect semantic business process model vari-
ants? In: Proceedings of the 2007 ACM sym-
posium on Applied computing. ACM, Seoul,
pp. 1263–1264

Leopold H., Smirnov S., Mendling J. (2009) On
Labeling Quality in Business Process Models.
In: EPK 2009, Geschäftsprozessmanagement
mit Ereignisgesteuerten Prozessketten. CEUR
Workshop Proceedings

Mendling J. (2007) Detection and Prediction of
Errors in EPC Business Process Models. PhD

thesis, Wirtschaftsuniversität Wien, Wien
Pfeiffer D., Niehaves B. (2005) Evaluation of Con-

ceptual Models – A Structuralist Approach.
In: Proceedings of the 13th European Confer-
ence on Information Systems, Information
Systems in a Rapidly Changing Economy,
ECIS 2005, Regensburg

Rump F. J. (1999) Geschäftsprozeßmanage-
ment auf der Basis ereignisgesteuerter
Prozeßketten. B. G. Teubner Stuttgart

Thomas O., Fellmann M. (2007) Semantic EPC:
Enhancing Process Modeling Using Ontology
Languages. In: Proceedings of the Workshop
on Semantic Business Process and Product Li-
fecycle Management, Innsbruck. CEURWork-
shop Proceedings Vol. 251

van der Aalst W. M. P. (1997) Verification of
Workflow Nets. In: Application and The-
ory of Petri Nets 1997, Procceedings of the
18th International Conference, ICATPN ’97,
Toulouse, pp. 407–426

Weber I., Hoffmann J., Mendling J. (2008) Se-
mantic Business Process Validation. In: 3rd in-
ternational workshop on Semantic Business
Process Management at Extended Semantic
Web Conference 2008

Weber R. (1997) Ontological Foundations of In-
formation Systems. 4. Coopers and Lybrand
Accounting Research Methodology mono-
graph

Volker Gruhn

University of Duisburg-Essen, Germany,
PALUNO – The Ruhr Institute for Software
Technology
volker.gruhn@uni-due.de

Ralf Laue

University of Leipzig, Germany, Chair of
Applied Telematics / e-Business
laue@ebus.informatik.uni-leipzig.de

