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Towards a Methodology for Flexible Process

Specification

This paper proposes the foundations of a methodology for specifying process flexibility based on a view

of processes as design objects. It is represented using the function-behaviour-structure (FBS) ontology of

designing. The paper shows how the FBS ontology allows extending and generalising recent work on flexibility

in engineering design, and how it allows applying this work to processes. The resulting framework provides a

comprehensive account of process flexibility that subsumes existing approaches. Finally, the paper presents a

method for flexible process specification, illustrated using examples of a property valuation process in the

Australian lending industry.

1 Introduction

Flexible modelling of processes is a key issue

for the effective use of process-aware informa-

tion systems (PAIS) in dynamic business environ-

ments (Weber et al. 2009). Factors such as market

or strategy changes, technological innovations

and new regulations often require modifications

of a process. Furthermore, unforeseen events in

the immediate environment of the process need

to be handled flexibly, such as resource bottle-

necks or effects of unexpected human or system

errors. PAIS using process models that are too

rigidly specified are poorly applicable in real-

world contexts and are ultimately rejected by

their users.

Research has been concerned with understand-

ing, modelling and implementing the notion of

process flexibility. The taxonomies and meth-

ods resulting from these efforts address a wide

range of aspects of flexibility (Daoudi and Nur-

can 2007; Pesic and Aalst 2006; Regev et al. 2006,

2007). However, there is no coherent, compre-

hensive methodology as most approaches have

been developed independently of each other. An

attempt to providing such a framework has re-

cently been undertaken by Schonenberg et al.

(2008), proposing a general taxonomy of process

flexibility associated with different realisation

approaches.

Flexibility in PAIS is often viewed as a balance

between the freedom to change and the need for

stability (Regev et al. 2007). This balance is also an

inherent characteristic of designing: Designers

aim to change parts of the world through their

designs, balancing the use of their individual per-

ception and creativity, and the need to comply

with requirements and constraints. A view of

process performers as process re-designers has

been well described by Aken (2007). This paper

explores a design view of flexibility, aiming to es-

tablish broader, interdisciplinary foundations for

understanding and specifying process flexibility.

This provides the basis for a new methodology

that augments existing frameworks of process

flexibility.

Section 2 introduces an ontology of designing,

the function-behaviour-structure (FBS) ontology,

that can be applied to any object of designing, no

matter whether this object is a physical product,

a software product, or a process. The FBS ontol-

ogy is then used to extend and generalise recent

work on flexibility in engineering design. This

provides the basis for a mapping between the de-

sign view of flexibility and existing approaches

to modelling process flexibility. It is shown that



Enterprise Modelling and Information Systems Architectures

Vol. 5, No. 3, 2010

Towards a Methodology for Flexible Process Specification 45

none of the existing approaches encompasses

and clearly distinguishes all aspects of flexibility.

Section 3 develops the conceptual foundations

for specifying process flexibility based on an ex-

isting framework of design activities, the situated

FBS framework. A method is then derived and

illustrated using a property valuation process in

the Australian lending industry. Section 4 sum-

marises and concludes the paper.

2 A Design View of Process Flexibility

2.1 The Function-Behaviour-Structure
View of Designing

The FBS ontology (Gero and Kannengiesser 2004,

2007) is a well established way of conceptualising

design objects. It has been applied to various

instances of design objects, including physical

products (Gero and Kannengiesser 2004), soft-

ware (Kruchten 2005) and processes (Gero and

Kannengiesser 2007).

Structure (S) is defined as a design object’s com-

ponents and their relationships. It can be viewed

as the final outcome of a design process. In the

domain of physical products, structure comprises

the geometry, topology and material of individ-

ual components or assemblies. The structure

of software consists of abstract constructs such

as classes, components and pieces of code. In

the domain of processes, structure includes three

general classes of components: input, transforma-

tion and output (Gero and Kannengiesser 2007).

The transformation often consists of a set of sub-

transformations, some of which can be viewed as

‘micro-level’ mechanisms that represent the ‘ma-

terials’ of the transformation. For example, a se-

quence of activities concerned with logging into

an online banking system, and filling out and sub-

mitting a funds transfer form can be viewed as

a process-centred ‘material’ of a payment trans-

formation (Kannengiesser 2008). Other ‘materi-

als’ are object-centred; they refer to the agent

performing the transformation. Process-centred

and object-centred ‘materials’ map onto Dietz’

notions of realisation and implementation of a

process, respectively (Dietz 2006). Structure en-

compasses control-flow, data, resource, and task

views of a process (Kannengiesser 2008).

Behaviour (B) is defined as the attributes that can

be derived from a design object’s structure. They

provide criteria for comparing and evaluating dif-

ferent design objects. An example of a physical

product’s behaviour is ‘weight’, which can be de-

rived (or measured) from the product’s structure

properties of material and spatial dimensions. Be-

haviour of software (e.g., a text editor) includes

its response time for visualising user input. It can

be derived from software structure and its inter-

action with the operating environment. Typical

behaviours of processes include speed, cost, pre-

cision and accuracy. They can be derived from

process structure; for example, speed can be de-

rived from (time-stamped) input and output.

Function (F) is defined as a design object’s tele-

ology (‘what it is for’). This notion is indepen-

dent of the common distinction between ‘func-

tional’ and ‘non-functional’ properties; it com-

prises both as they describe the design object’s

usefulness for a stakeholder (or ‘using system’

(Dietz 2006)). This also distinguishes function

from the concept of ‘transfer function’ (that cor-

responds to the transformation component of

structure). Function is ascribed to behaviour by

establishing a teleological connection between

a human’s goals and measurable effects of the

design object. There is no direct connection

between function and structure. The particu-

lar functions of a design object are ontologically

independent of whether the design object’s struc-

ture is conceptualised as a physical product, a

software product or a process. For example, the

functions ‘wake people up’, ‘be reliable’ and ‘be

punctual’ may be ascribed to relevant behaviours

of a mechanical alarm clock (i.e., a physical prod-

uct), a virtual alarm clock (i.e., software), or a

sequence of activities (i.e., a process).

From a high-level perspective, designing can be

viewed as decision making. This view implies the

existence of choices (Gero 1994) that can be rep-

resented as alternative values for the variables
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of the design. The set of all design variables and

their ranges of values form what is called the

design state space, i.e., the space of all possible

designs. The design state space is partitioned

into three subspaces: function state space, be-

haviour state space, and structure state space,

as shown in Fig. 1. The three subspaces are in-

terconnected through the designer’s compiled

knowledge of qualitative and quantitative rela-

tionships between function, behaviour and struc-

ture. These relationships are the basis for mod-

elling designing as an activity that aims to pro-

duce structure that exhibits suitable behaviour to

which desired function can be ascribed.

The notion of a design state space allows under-

standing designing through the use of spatial

metaphors. Selecting values for a set of design

variables can be described as a process of moving

through the design state space. This model of de-

signing is often referred to as search (Gero 1994).

However, most designing involves more than

moving through a well-defined space of known

design alternatives. It also involves generating

the space in terms of design variables and their

ranges of values. This can involve discarding

some previously expected variables or ranges of

values, leading to a shift of the design state space.

The notion that addresses these changes is called

exploration (Gero 1994). Changes may affect all

three subspaces, and changes of one subspace

may lead to changes of a subspace connected to

it. For example, a change of the structure state

space may lead to changes of the behaviour state

space. This, in turn, may lead to subsequent

changes of the function state space and/or the

structure state space.

Expectations about the design problem are funda-

mental in distinguishing exploration from search.

Exploration reflects changed expectations as the

designer learns more about the design problem

by interacting with it (Schön 1983). In contrast,

the notion of search reflects unchanged expecta-

tions of the design (state space). Some of the ini-

tial design expectations are formulated through

explicitly stated requirements. Others arise from

the designer’s understanding of the design ob-

ject’s socio-technical environment across the life

cycle. The possible change of a design state space

from its inception to a later point in time is pre-

sented conceptually in Fig. 2. The increasing size

of the design state space is to indicate that a great

deal of the knowledge required to produce a de-

sign is constructed during designing (Logan and

Smithers 1993).

The application of the state space concept in PAIS

has commonly had a more narrow focus. It is

usually understood only as a representation of

the set of possible changes in the world that may

occur during the execution of a process instance,

not as a representation of the set of all possible

process designs. Recent work on business rules

in process models (Dietz 2008) can be viewed

as expanding the scope of state space models of

processes. However, these approaches are limited

to the notion of a structure state space, and do

not cover behaviour and function state spaces.

Design state spaces can be represented in many

ways, most of which can be classified as one of

the following approaches:

• Enumeration (e.g., a set of alternative product

modules (Greer et al. 2003) or process frag-

ments (Sadiq et al. 2001)),

• Generative rules (e.g., grammars (Brown 1997)),

• Constraints (e.g., in optimisation models (Pa-

palambros and Wilde 2000), or declarative pro-

cess definitions (Pesic and Aalst 2006)), and

• Abstraction (e.g., using types defined in do-

main ontologies or taxonomies (Gorti et al.

1998)).

Table 1 shows approaches that are most com-

monly used for representing function, behaviour

and structure subspaces.

2.2 Generalising an Engineering Design
Approach to Flexibility

Flexibility has been a popular concept in many

areas within engineering design. Similar to pro-

cess flexibility, it is understood here as the ability
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Figure 1: Function, behaviour and structure state spaces, and their interconnections

Figure 2: A design state space (D) changes between the initial time t0 and a later time ti

of a product or system to handle change. How-

ever, more precise definitions of this notion are

often missing (Saleh et al. 2003). One of the most

comprehensive approaches to defining and char-

acterising flexibility in engineering design has

recently been proposed by researchers from the

MIT Engineering Systems Division (Ross et al.

2008). This Section provides an overview of rel-

evant concepts of this work, and expands and

generalises them using the FBS ontology. Ross

et al. (2008) propose two aspects of flexibility

of a design object: change effects, and change

mechanisms.

Change effects characterise the difference be-

tween the states of a design object before and

after its change. States are described in terms

of variables and values that may refer to any

aspect of the design object, including function,

behaviour and structure. There are three cate-

gories of change effects: robustness, scalability,

and modifiability.

Robustness is the ability to maintain the design

object’s required functions without changing its

structure, despite the presence of changes af-

fecting the object’s internal or external envi-

ronment (Ross et al. 2008). For example, a car

may achieve its function of transportation with-

out changing its design, despite internal changes

such as tire abrasion or external changes such

as altered road conditions. Robustness handles

change by being insensitive to it. In fact, it has

been understood as a concept that is related but

quite distinct from flexibility (Saleh et al. 2003).

Scalability is the ability to vary the design ob-

ject’s state in terms of the values of its vari-

ables (Ross et al. 2008). For example, varying the

length, width and height of a mobile phone is a

scalable change of structure. Varying the speed

of a central processing unit is a scalable change

of behaviour. And varying the reliability of an

alarm clock is a scalable change of function. Scal-

ability is captured in the state space representa-

tion of designing as either search (if the change

remains within state space boundaries) or explo-

ration (if the change involves crossing a state

space boundary in terms of ranges of values).
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Table 1: Common approaches for representing FBS subspaces

Modifiability is the ability to vary the design ob-

ject’s state in terms of its variables (Ross et al.

2008). For example, the addition of a DVD burn-

ing module to a computer is a modifiable change

of structure. Changing a car’s petrol consump-

tion rate to rapeseed oil consumption rate is a

modifiable change of behaviour. And augment-

ing a mobile phone with the ability to play MP3

files is a modifiable change of function. Modifia-

bility is captured in the state space representation

of designing as exploration via changing the set

of variables.

Variations of function, behaviour and structure

rarely occur in isolation of one another. As out-

lined in Sect. 2.1, a change of one subspace often

leads to changes of other subspaces. The spe-

cific ways in which a change propagates across

the subspaces depend not only on given require-

ments and constraints but also on the individual

expertise and interpretations of the designer. We

can view this as an additional dimension of flex-

ibility, embedded within the notion of change

effects.

Change mechanisms represent different ways

of achieving the desired change effects. Ross et

al. (2008) propose the number of possible change

mechanisms, filtered by a subjective acceptability

threshold for their ‘cost’, as a basis for quantify-

ing flexibility. Here, ‘cost’ is an aggregated mea-

sure for the consumption of various resources

including time and money.

We can expand the notion of change mechanisms

by defining three categories, Fig. 3: design goal

achievement, design realisation, and design as-

sessment.

Design goal achievement is the ability to vary

the activities and resources required for trans-

forming intended changes of function (ΔFi) into

intended changes of structure (ΔSi) via intended

changes of behaviour (ΔBi). For example, be-

sides generating design changes from scratch,

one may have the option of reusing previous de-

sign knowledge captured in patterns, best prac-

tices, rationale, case bases, prototypes or other

forms of representation. Each of these options

requires different technologies and user skills.

Design goal achievement also includes strategies

with which one can search for or explore appro-

priate change effects in the function, behaviour

and structure state spaces.

Design realisation is the ability to vary the activi-

ties and resources required for transforming an

intended change of structure (ΔSi) into a realised

change of structure (ΔSr). This includes the al-

location of agents (machines or people), their

coordination and any setup tasks required (for

example, programming, instructing and training).

It also includes strategies for preventing or mit-

igating issues, such as downtime and obsolete

work items arising from changes in the realisa-

tion.

Design assessment is the ability to vary the ac-

tivities and resources required for monitoring,

analysing and validating the success (for exam-

ple, the consistency, correctness and efficiency)

of the change. This includes methods and tools

available for deriving changes of behaviour (ΔBr)

from a realised change of structure (ΔSr), and

ascribing changes of function (ΔFr) to these

changes of behaviour.
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Figure 3: Three categories of change mechanisms: design goal achievement, design realisation, and design assessment.

2.3 Casting Existing Approaches to
Process Flexibility in a Design View

The three categories of change effects (robust-

ness, scalability, and modifiability) and the three

categories of change mechanisms (design goal

achievement, design realisation, and design as-

sessment) can be mapped onto existing research

in flexible PAIS.

Robustness captures ‘flexibility by design’ (Scho-

nenberg et al. 2008) or ‘flexibility by definition’

(Sadiq et al. 2001) that is the ability to include

multiple execution paths in the process model

at design time. They represent different ways

of dealing with anticipated variations in the in-

ternal or external environment of the process.

The different paths are selected at runtime for

individual process instances.

Scalability captures two categories of process flex-

ibility proposed by Schonenberg et al. (2008) that

imply the existence of expected choices. One is

‘flexibility by deviation’ (Schonenberg et al. 2008)

that is the ability of a process instance to deviate

from the original process model (type) without

altering it. It encompasses only changes in the

execution sequence of tasks, not the tasks them-

selves. We conceptualise the ordering relation-

ships that determine the execution sequence as a

set of interrelated ‘ports’ of the tasks (Gottschalk

et al. 2008). Specifically, every task has variables

for their ‘inflow ports’ and ‘outflow ports’, and

the values of these variables are pointers to other

tasks. Changing the relationships can then be

viewed as varying the values of structure vari-

ables. The other category of process flexibil-

ity corresponding to scalability is ‘flexibility by

underspecification’ (Schonenberg et al. 2008) or

‘flexibility by templates’ (Sadiq et al. 2001) via late

binding of process fragments to a placeholder.

This category of process flexibility is the ability to

execute an incomplete process model by complet-

ing it at runtime, via selection from a pre-defined

set of process fragments. The fragments can be

represented as structure variables with Boolean

values. A process fragment with the value ‘false’

means that this fragment is currently not selected.

Changing the value to ‘true’ corresponds to se-

lecting it to instantiate the placeholder. Poten-

tial subjects of scalable change include not only

control flow but also other aspects of process

structure (Regev et al. 2006).

Scalable changes of process function and process

behaviour are not included in existing work on

process flexibility. Examples include improving

maintainability of a process (a scalable change of
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function), and reducing the cost of a process (a

scalable change of behaviour).

Modifiability captures two categories of process

flexibility proposed by Schonenberg et al. (2008)

that imply a shift of expectations. One is ‘flexi-

bility by underspecification’ (Schonenberg et al.

2008) via late modelling, which is the ability to

construct a new process fragment for a place-

holder. It is best thought of as the generation

of a new variable to be introduced in the struc-

ture state space of the process. The other cat-

egory mapping onto modifiability is ‘flexibility

by change’ (Schonenberg et al. 2008), which is

the ability to modify a process at runtime, in

response to unforeseen circumstances in the ex-

ecution environment. Here, changes represent

new tasks being introduced and/or removed, af-

fecting process instances and/or process types.

By representing every task as a structure variable,

we can model these changes as modifications of

the structure state space. Potential subjects of

modifiable change include not only control flow

but also other aspects of process structure, such

as informational, organisational and operational

aspects (Regev et al. 2006).

Modifiable changes of process function and pro-

cess behaviour are not included in most existing

work on process flexibility. Examples include

considering the waste production of a manufac-

turing process in addition to other process at-

tributes (a modifiable change of behaviour), and

changing the goal of a transportation process

from ‘people transportation’ to ‘cargo transporta-

tion’ (a modifiable change of function). There is

work on using variations of quality goals to gen-

erate different configurations of process structure

(e.g., Lapouchnian et al. (2007)).

Design goal achievement is addressed by the range

of methodologies for process design. Methodolo-

gies differ in their notations, their coverage of dif-

ferent process views, their technological support,

and their ease of use. A number of existing tech-

nologies, including ADEPT1, YAWL, FLOWer and

Declare, have been examined by Schonenberg et

al. (2008) for their potential use as mechanisms

to achieve different change effects.

Design realisation subsumes migration strategies

for running process instances, and mechanisms

for version, access and concurrency control,

which are described by Weber et al. (2008). De-

sign realisation also includes methods and tech-

nologies for communication and ‘setup’ (instruct-

ing, training, etc.), and strategies for adapting to

variations in the execution environment (includ-

ing some exception-handling strategies).

Design assessment includes methods and tech-

nologies for analysing correctness, consistency,

efficiency, traceability, usability and other pro-

cess quality attributes (Rinderle et al. 2004; Weber

et al. 2008).

Casting existing frameworks for classifying pro-

cess flexibility in a design view shows that they

fall short in two ways: First, there is no single

approach that captures both change effects and

change mechanisms. The framework proposed

by Schonenberg et al. (2008) covers all categories

of change effects, including robustness, scalabil-

ity and modifiability, but largely excludes change

mechanisms. In turn, the work by Weber et al.

(2008) strongly focuses on change mechanisms,

but does not address change effects. Other ap-

proaches incorporate parts of both aspects but

without clearly differentiating between them. For

example, the taxonomy proposed by Regev et

al. (2006) contains ‘abstraction level’ and ‘sub-

ject’ of change, which relate to change effects,

and ‘properties’ of change (e.g., ‘extent’, ‘dura-

tion’, and ‘swiftness’), which relate to attributes

of change mechanisms. Similarly, the classifica-

tion of process changes proposed by Aalst and

Jablonski (2000) is a collection of features describ-

ing change effects (e.g., ‘perspectives’, and ‘kinds

of change’) and change mechanisms (e.g., tim-

ing of change, and migration strategies), without

explicit distinction of the two aspects.

The second shortcoming of most existing ap-

proaches is that they do not explicitly address

the notions of function and behaviour. There
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are some existing characterisations that may be

cast in these notions. For example, some the ‘rea-

sons for change’ proposed by Aalst and Jablonski

(2000) can be interpreted in terms of the function

or behaviour that underpin a particular change of

process structure. The categories of ‘type flexibil-

ity’, ‘volume flexibility’ and ‘structural flexibility’

proposed by Snowdon et al. (2007) are derived

from influencing factors for flexibility that may

also be mapped onto function and behaviour. In

the broader area of process modelling, there is

an increasing interest in integrating notions of

goals (Lapouchnian et al. 2007; Soffer and Regev

2005) and ‘context’ (Rosemann et al. 2008) into

process models to more comprehensively cap-

ture how changes of process structure can be

traced back to their underlying rationale. The

Worklets approach (Adams et al. 2006) aims to re-

alise flexible process execution through context-

aware selection of process fragments at runtime.

However, existing frameworks of process flexibil-

ity do not provide a generic schema for explicitly

representing process function and behaviour be-

sides process structure, thus restricting the scope

of flexibility in PAIS.

3 Specifying Process Flexibility

3.1 Conceptual Foundations

The design view of process flexibility presented

in Sect. 2 is based on the idea of a design state

space with its three subspaces for function, be-

haviour and structure. We have presented this

notion as the set of all possible designs based

on the expectations and experience of the indi-

vidual designer. When we adopt a prescriptive

stance, a design state space becomes the set of all

‘permitted’ designs according to specifications

given to the process designer. Here, the bound-

aries of the design state space, both in terms of

the specified set of variables and their ranges of

values, represent requirements that may be so-

cially enforceable. In fact, the specified design

state space represents a ‘normative restriction of

design freedom’ (Dietz 2006).

On the other hand, as shown in Fig. 2, parts of the

initial specification of a design state space may

be relaxed over the course of designing, resulting

in a new design state space with modified bound-

aries. Therefore, different degrees of ‘normative

strength’ of the state space boundaries should be

made explicit to specify what parts of the space

may be changed and what parts must not. This

can be realised by associating individual design

variables and their ranges of values with modal-

ity attributes such as ‘mandatory’ and ‘optional’.

Figure 4 shows that specifying a subset Dm of

an initial design state space D(t0) as mandatory

requires any subsequent design state space D(ti)
to also include these parts. The relative comple-

ment of Dm with respect to D(t0) is the set of

optional requirements that may or may not be

included in D(ti).

The approach to understanding flexibility de-

veloped in Sect. 2 can be cast in an existing

framework of designing, the situated FBS frame-

work (Gero and Kannengiesser 2004). Its basis is

a three-world model of interactions in designing,

Fig. 5(a). The external world is composed of rep-

resentations outside the designer or design agent.

The interpreted world is built up inside the design

agent in terms of sensory experiences, percepts

and concepts. It is the internal representation of

that part of the external world that the design

agent interacts with. The expected world is the

world imagined actions of the design agent will

produce. It is the environment in which the ef-

fects of actions are predicted according to current

goals and interpretations of the current state of

the world.

These three worlds are linked together by three

classes of connections. Interpretation transforms

variables which are sensed in the external world

into the interpretations of sensory experiences,

percepts and concepts that compose the inter-

preted world. Focussing takes some aspects of

the interpreted world, and uses them as goals

for the expected world that then become the ba-

sis for the suggestion of actions. Action is an



Enterprise Modelling and Information Systems Architectures

Vol. 5, No. 3, 2010

52 Udo Kannengiesser

Figure 4: A set of mandatory requirements Dm can be specified that is a subset of the initial design state space D(t0)
and all subsequent design state spaces D(ti)

effect which brings about a change in the exter-

nal world according to the goals in the expected

world.

The two kinds of design changes presented in

Fig. 3, i.e., intended and realised design changes,

can be mapped onto this three-world model. In-

tended design changes are goals that direct the

execution of actions, and are therefore included

in the expected world. Realised design changes

are concepts that have been interpreted for as-

sessment, and are therefore included in the in-

terpreted world. Intended and realised design

changes are linked via the external world that

includes the realisation of intended changes.

Figure 5(b) specialises the three worlds by nest-

ing them and articulating general classes of de-

sign representations as well as the activity of re-

flection (Schön 1983). The set of expected design

representations (Xei) corresponds to the notion

of a design state space. This state space can be

modified during designing by transferring new

interpreted design representations (Xi) into the

expected world and/or transferring some of the

expected design representations (Xei) out of the

expected world. This leads to changes in exter-

nal design representations (Xe), which may then

be used as a basis for re-interpretation changing

the interpreted world. Novel interpreted design

representations (Xi) may also be the result of

constructive memory, which can be viewed as an

interaction among design representations within

the interpreted world rather than across the inter-

preted and the external world. Both interpreta-

tion and constructive memory are represented as

‘push-pull’ activities (Gero and Fujii 2000). This

emphasises the role of individual experience in

constructing the interpreted world, by ‘pulling’

interpreted representations rather than just by

‘pushing’ what is presented in the external world.

It is the interaction of push and pull that may

produce new representations that can be used to

modify the design state space.

A specific set of external design representations

are requirements (XRe). They can be thought

of as specifying an initial design state space at

time t0, as represented in Fig. 2. XRe consists

of mandatory requirements XRe
m and optional

requirements XRe
o, i.e., XRe = XRe

m ∪ XRe
o with

XRe
m ∩ XRe

o = ∅. We assume for the purposes of

this paper that all requirements are unambiguous

and fixed, and that they match their representa-

tion in the interpreted world at an initial time

t0, i.e., that Xi(t0) = XRe. Further, we assume

that the complete set of interpreted requirements

is transferred into the expected world at the

same time t0, i.e., that Xei(t0) = Xi(t0) = XRe.

These assumptions simplify the roles of interpre-

tation and focussing activities to simple one-to-

one mappings.

When there are changes of the design state space

at a later point in time t1, the new design state

space Xei(t1) includes additional representations
(through additional variables or expanded ranges

of values) or drops initially focused representa-

tions (through eliminated variables or reduced

ranges of values), i.e., Xei(t1)ΔXei(t0) � ∅. How-
ever, the modified design state space must in-

clude all mandatory requirements XRe
m,i.e.,
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Figure 5: Three interacting worlds: (a) general model, (b) specialised model for design representations

Xei(t1) ⊇ XRe
m. Specifying a modifiable design

state space enables the potential for generating

changes of the design (state space) via focussing.

The activities enabled by the permitted change ef-

fects can be represented in more detail using the

situated FBS framework (Gero and Kannengiesser

2004), presented in Fig. 6. This framework inte-

grates the model in Fig. 5(b) with the concepts

described in Fig. 3, by replacing the general de-

sign representation X in Fig. 5(b) with the more

specific design representations of F, B and S, and

by adding activities that transform F into B, and

B into S in the expected world, and vice versa in

the interpreted world. The situated FBS frame-

work defines 20 labelled activities in designing

(note that the labels do not represent any or-

der of execution; see Gero and Kannengiesser

(2004)). These 20 design activities represent gen-

eral classes of change mechanisms. External re-

quirements are grouped into requirements on

function (FRe), behaviour (BRe) and structure

(SRe). As a result, the initial design state space

consists of Fei(t0) = Fi(t0) = FRe, Bei(t0) =
Bi(t0) = BRe, and Sei(t0) = Si(t0) = SRe, formed

by interpretation (activities 1 to 3 in Fig. 6) and

focussing (activities 7 to 9).

Table 2 provides a summary of the activities (or

change mechanisms) enabled by different specifi-

cations of function state spaces, behaviour state

spaces and structure state spaces. The activities

are categorised as either exploration or search

activities (as introduced in Sect. 2.1). Exploration

captures activities used for reformulating the ini-

tial design state space. They include two types

of activities: those that directly change the ex-

pected world (activities 7 to 10), and those that

generate new representations as precursors of

changing the expected world (activities 4, 5, 6,

13, 14, 16, 19, 20; for more information see Gero

and Kannengiesser (2004, 2007)). Search captures

activities used for selecting structure instances

within the structure state space (activity 11), re-

alising them (activity 12), and testing them based

on expected behaviours (activities 13 to 15). Itera-
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Figure 6: The situated FBS framework

tions may occur as these activities can be carried

out multiple times.

We can subsume the different specification types

presented in Tab. 2 in the following general sce-

narios:

a) Specification of S robustness: This is the case

where the initial structure state space contains

only one point that is specified as mandatory.

As a result, the process structure can be re-

alised (activity 12) immediately without con-

sidering any alternative structures. The exter-

nal structure of the process, often in the form

of one or more process executions, can be mon-

itored or interpreted (activity 13), and its be-

haviour can be derived (activity 14) and then

compared against expected behaviour (activity

15). In case of unsatisfactory results of this

assessment, only the external process struc-

ture can be changed (via activity 12), not the

expected process structure. The difference be-

tween the external and expected structure is

that the latter is often an ex post rationalisa-

tion (Weick 1995) of the former, by pruning

some external components (or process steps)

and their relationships (or control flows). High-

level, linear structures can thus be interpreted

from detailed, iterative external process struc-

tures. The difference between expected and ex-

ternal structures can be understood as the dif-

ference between the notions of process archi-

tecture and process realisation (Kannengiesser

2009), respectively.

b) Specification of S scalability: Specifying a scal-

able process structure enables activity (11) that

selects among different process structures to

find one that meets expectations of behaviour.

All candidate structures must be within the

specified structure state space. Once a partic-

ular structure is realised (activity 12), it is in-
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Table 2: Specification types based on different change effects enable different design activities. Numbers refer to the
labelled activities in the situated FBS framework.

terpreted (activity 13), and its behaviour is de-

rived (activity 14) and then compared against

expected behaviour (activity 15). If the struc-

ture does not meet expectations, it can be re-

placed with another structure within the same

state space (activity 11). This scenario sub-

sumes the one described in (a) by opening

up the potential of changing, within specified

ranges, the expected structure rather than only

the external structure.

c) Specification of S modifiability: Specifying a

modifiable process structure enables changes

of the initial structure state space through ad-

dition, subtraction or substitution of variables,

or through modifying ranges of values (activ-

ity 9). This allows generating and testing new

classes of process structures (activities 11 to 15)

that were not possible using the initial struc-

ture state space. There are two drivers for

these changes: interpretation of previously

generated (executed) process structures (activ-

ity 13), and constructive memory (activity 6).

The former can produce new variables because

it has the potential for re-conceptualising pro-

cess structures. Examples include the discov-

ery of workflows, which has been described in

literature on process mining (Aalst and Wei-

jters 2004). This scenario subsumes the one

described in (b) by enabling exploration of ex-

pected structures in addition to search within

these structures.

d) Specification of B- or F- scalability or mod-

ifiability: Specifying flexibility at the levels

of function or behaviour constrains process

structures only indirectly, through the inter-

connections of the three subspaces based on

individual experience. For example, a scal-

able or modifiable change of behaviour may

be achieved with the same structure (S robust-

ness), or with alternative structures within

(S scalability) or outside (S modifiability) the

initial structure state space. The same holds

for scalable and modifiable changes of func-

tion; they may be achieved with alternative

behaviours within (B scalability) or outside (B

modifiability) the initial behaviour state space.

Specifying B modifiability enables focussing

on different behaviours (activity 8), and speci-

fying F modifiability enables focussing on dif-

ferent functions (activity 7). Providing details

about the drivers for these reformulations (ac-

tivities 4, 5, 10, 14, 16, 19 and 20) is beyond

the scope of this paper; interested readers may

refer to Gero and Kannengiesser (2007). This

scenario subsumes the one described in (c).

Making a process specification more flexible by

moving its type towards the bottom of Tab. 2 in-
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creases the agent’s ‘design freedom’ as it enables

a higher number of design activities. While this

can be beneficial in many circumstances, it may

also have undesired consequences arising from

the ad hocway in which changes may now be car-

ried out. These consequences can be controlled

by constraining the enabled design activities (i.e.,

the general classes of change mechanisms), again

by using a set of FBS requirements. We refer to

these requirements as mechanism requirements,

distinguishing them from the requirements on

change effects, which we call effect requirements.

We will use this distinction in the next Section

that presents as method for specifying flexible

processes using both kinds of requirements.

3.2 A Method for Specifying Flexible
Processes

The conceptual framework developed in Sect. 3.1

provides a basis for a new method for specifying

flexible processes. This method includes con-

structs that can cover the complete spectrum of

possible specification types shown in Tab. 2. Tra-

ditional, flow-based process modelling languages

can cover only the specification of structure ro-

bustness. Their usefulness is generally limited to

coarse-grained process definitions. Attempts to

specify robustness in more detailed process struc-

tures often fail due to increasing heterogeneity

and dynamics of the process environment. Ap-

proaches based on the notions of scalability and

modifiability, such as the ones evaluated by Scho-

nenberg et al. (2008), have shown their benefits in

dynamic environments. They can be included in

a more comprehensive methodology that applies

scalability and modifiability not only to specify-

ing structure but also behaviour and function.

The method consists of three basic steps:

1. Specify robust process structure: Specify a

process structure in a top-down manner using

a flow-based modelling language, up to a level

of detail where possible process variations are

sufficiently known and can be captured in the

process model. The result is a process structure

that is robust at this level of detail.

2. Specify scalable and modifiable change ef-

fects: Identify the individual process activi-

ties that need to be elaborated, define require-

ments on their function (FRe), behaviour (BRe)

and/or structure (SRe), and connect these ef-

fect requirements as annotations to the pro-

cess activities. Effect requirements are speci-

fied for every process activity by associating

every element of a subspace representation

with a modality. Approaches for represent-

ing FBS subspaces may be chosen based on

Tab. 1. Modalities are either ‘mandatory’ or

‘optional’, or may include more fine-grained

attributes such as proposed by Borch and Ste-

fansen (2006).

3. Specify change mechanisms: Identify, using

Tab. 2, those enabled design activities (or

change mechanisms) that need to be con-

strained, define requirements on their func-

tion, behaviour and/or structure, and reference

these mechanism requirements from the effect

requirements. References linking the two re-

quirements are established based on the output

of every activity (indicated by the arrowheads

in Fig. 6): Mechanism requirements on activ-

ities whose outputs are function, behaviour

or structure, are referenced by the effect re-

quirements FRe, BRe or SRe, respectively. In

particular, FRe may include references to the

mechanism requirements on activities 7, 4, 20

and 16; BRe can include references to the mech-

anism requirements on activities 8, 5, 19, 14, 15

and 10; and SRe can include references to the

mechanism requirements on activities 9, 6, 11,

12 and 13.

We can illustrate the basics of this method by

applying it to a property valuation (short: valua-

tion) process in the Australian lending industry.

Step 1 (Specify robust process structure) pro-

duces a top-level BPMN model of process struc-

ture, Fig. 7, that is assumed to be robust at this

level of detail. The process starts when the valu-

ation company receives a request from a lender

(e.g., a bank) to assess the market value of a spe-

cific property. An employee (called the ‘valuer’)
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is then assigned to perform the valuation by in-

specting the property and preparing a valuation

report that contains the estimated market value

of the property. After that, the valuation report is

sent to the lender, and, concurrently, an invoice

is sent. Upon receipt of payment, the valuation

process terminates.

Figure 7 includes three collapsed sub-processes,

one of which (‘Perform Valuation’) is expanded

as shown in Fig 8. This is again assumed to be a

robust process structure, at a more detailed level.

The other two sub-processes (‘Assign Valuer’ and

‘Send Valuation Report’) are not expanded due to

uncertainty regarding the process environment

and consequently the specific process variations

likely to be needed.

Step 2 (Specify scalable and modifiable change

effects) defines a set of FBS requirements for all

three sub-processes, and includes them in the

model via annotations, Fig. 9. The approaches

for representing FBS subspaces are chosen from

Tab. 1 and include enumeration for representing

function state spaces, constraints for represent-

ing behaviour state spaces, and abstraction for

representing structure state spaces. The rationale

underpinning some of these choices is easy com-

prehension for readers of this paper. In particular,

this has led to choosing abstraction for represent-

ing structure state spaces, despite the lack of a

well-defined, formal ontology for the domain of

property valuation. It is clear that a more formal

approach, such as declarative (constraint-based)

notations, would be required when defining spec-

ifications for process execution and analysis.

Step 3 (Specify change mechanisms) identifies

those enabled design activities (change mecha-

nisms) that need to be constrained in addition

to the change effects specified so far. Figure 10

shows the results of this Step: A mandatory ‘mi-

gration type = proceed’ (see Schonenberg et al.

(2008)) is added to the requirements on ‘Assign

Valuer’, and a mandatory ‘exception-handling

type = deferred fixing’ (see Lerner et al. (2010))

is added to the requirements on ‘Perform Valu-

ation’. They establish new mechanism require-

ments that are added to the existing effect re-

quirements. As ‘migration type’ and ‘exception-

handling type’ both relate to the realisation of

structure (design activity 12 in Fig. 6), they are

attributed to the structure (S) parts of the anno-

tations.

How do the process specifications obtained

through applying our method affect process flexi-

bility? Let us have a look at the sub-process ‘Per-

form Valuation’. Its expected (and required) struc-

ture is specified as robust, as shown in Fig. 8, with

a requirement on the realisation of this structure,

related to exception handling. This may result

in an external structure, as described in Fig. 11,

that includes additional activities and paths for

detecting and dealing with exceptional situations

in the realisation of the sub-process. The activity

‘Visually Inspect’ is added to detect complicated

site conditions, such as slopes and irregular build-

ing shapes. These exceptional circumstances are

immediately taken note of (‘Record Nature of

Complications’), but their consequences are dealt

with (‘Renegotiate Fees’) later in the sub-process.

This ‘deferred fixing’ exception-handling strat-

egy is time-efficient and a likely way in which

the required behaviour of the sub-process, ‘time

< 2 business days’ (see Fig. 10), can be achieved.

This strategy allows scalable changes of realising

external structure (design activity 12 in Fig. 6) in

that the ‘Renegotiate Fees’ activity may also be

carried out either immediately prior to or in par-

allel with the ‘Prepare Valuation Report’ activity.

The kind of flexibility presented in this example

is thus consistent with scenario (a) in Sect. 3.1.

The structure state space specified by the anno-

tation of ‘Assign Valuer’ in Fig. 10 includes a

family of process fragments that can all be char-

acterised as ‘top-down selection’ processes. One

of these fragments needs to be selected (design

activity 11), based on the expected (required) be-

haviour of ‘time < 2 business days’. Figure 12

shows two ‘top-down selection’- type process

fragments of ‘Assign Valuer’. Let us assume that
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Figure 7: Step 1 produces a robust structure of a property valuation process at the top level

Figure 8: Step 1 produces a robust structure of the sub-process ‘Perform Valuation’

Fragment 1 (Fig. 12(a)) is selected as a candidate

structure within the structure state space (Sei).

After realising, interpreting and assessing it (de-

sign activities 12 to 15), the agent may decide to

enhance time behaviour by selecting Fragment

2 (Fig. 12(b)) as the new candidate structure and

again testing the resulting behaviour. The design

activities enabled in this example are consistent

with scenario (b) in Sect. 3.1.

Since the ‘top-down selection’ type of process

fragments is specified as optional rather than

mandatory, the agent may make more significant

changes by modifying the structure state space.

Figure 13 shows a process fragment that is se-

lected (design activity 11) from a new ‘bidding’-

type family of process structures, replacing the

previous ‘top-down selection’ type (design activ-

ity 9). With this ‘bidding’- type structure, the

sub-process can quickly identify those potential

valuers that are currently located near the prop-

erty to be valuated. As a result, the time for

assigning valuation jobs can be significantly re-

duced. The new structure is inspired by the way

taxi companies dynamically assign incoming cus-

tomer requests to specific drivers. This can be

modelled as the interpretation (design activity

13) of an external process structure from a differ-

ent domain. The modifiable change of expected

structure illustrated by Fig. 13 requires further

changes that are not shown in the BPMN model,

such as the development and implementation

of appropriate information and communication

technologies. Once the new expected structure

is realised (design activity 12), it needs to be as-

sessed in a similar way as described earlier (de-

sign activities 13 to 15). The design activities

enabled in this example are consistent with sce-

nario (c) in Sect. 3.1.

The annotation of ‘Send Valuation Report’ in

Fig. 10 includes only specifications of functions,

leaving a great deal of design freedom in terms

of the design activities needed to achieve the

required functions. The agent can use domain

knowledge to transform the function ‘provide

interoperable data’ into a new behaviour (design

activity 10) that may be termed ‘LIXI compli-

ance’. LIXI (Lending Industry XML Initiative;

see www.lixi.org.au) is a consortium of the Aus-

tralian lending industry with the goal of introduc-

ing interoperable, straight-through processing

of mortgage applications based on the standard

Credit Application Language (CAL). LIXI com-

pliance can be achieved by using new expected

structure variables including ‘output file type =

XML’ and ‘output vocabulary type = CAL’. These

new variables are constructed internally using

domain knowledge (design activity 6) and then

introduced in the structure state space through

focussing (design activity 9). The design activi-

ties enabled in this example are consistent with

scenario (d) in Sect. 3.1.
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Figure 9: Step 2 produces annotations that contain effect requirements for individual sub-processes

Figure 10: Step 3 adds mechanism requirements to the existing effect requirements

4 Conclusion

A methodology for flexible process specification

that is based on a design view of process flexi-

bility leverages a characteristic that is inherent

in the nature of designing: the capacity to op-

erate within a space of alternatives that is gen-

erated based on not only a set of requirements

but also the designer’s individual understanding

of the problem. The methodology presented in

this paper expands and generalises a recent ap-

proach from engineering design, using a domain-

independent ontology of designing. Current ap-

proaches to modelling process flexibility fit in

this framework, but do not explicitly cover the

notions of function and behaviour. These aspects

capture ‘what should be done without specifying

how it should be done’ (Pesic and Aalst 2006) in

a more meaningful and comprehensive way than

existing declarative approaches that are limited

to process structure. The design view provides

a unifying framework that brings together dif-

ferent research streams in flexible PAIS, most of

which can be categorised as focusing on either

change effects or change mechanisms.

The proposed methodology can be used to spec-

ify the flexibility of a process at different design-

ontological levels and with different degrees of

‘normative strength’. It supports the view of

stakeholders as designers or re-designers of the

process, while constraining their design activities
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Figure 11: External structure of the ‘Perform Valuation’ sub-process

Figure 12: Two ‘top-down selection’- type process fragments ((a) Fragment 1 and (b) Fragment 2) can be selected as
expected structures of the ‘Assign Valuer’ sub-process

using a necessary and sufficient set of specifica-

tions. The examples in this paper demonstrate a

range of process designs that can be generated

based on different process specifications.

The genericity of the methodology has the ben-

efit that it can be applied to any process in any

domain. It can capture any process view, such as

control-flow, data-flow, and organisational views.

Although the methodology was illustrated in the

paper using annotated BPMN diagrams, it is in-

dependent of the use of any particular process

modelling notation. On the flip side, the main

limitation of this generic methodology is that it

provides little domain-specific decision-making

support. For example, selecting which parts of a

process are to be specified in a robust, scalable or

modifiable way remains a challenge for domain

experts. And as more experience with the dynam-

ics of a particular process environment becomes

available over time, some previously anticipated

change effects might turn out unrealistic, which

could then require changes in the original pro-

cess specification. No methodological support is

currently available for making these specification

decisions.

All the examples presented in this Section are

extracted from the ongoing engagement of our

research group with the Australian lending in-

dustry. As yet, we have not gathered any ex-

periences with industrial applications of using

the proposed methodology. However, we are

currently developing resource-oriented architect-

ing technologies (Xu et al. 2008) to enable pro-

cess flexibility in distributed, web-based envi-

ronments, using the methodological foundations

presented in this paper. One of the issues to be

addressed is the definition of a domain ontology

that is shared among stakeholders. A lightweight
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Figure 13: A ‘bidding’- type process fragment selected as a new class of expected structure of the ‘Assign Valuer’
sub-process

but sufficiently well defined ontology may enable

unambiguous communication of process require-

ments to human operators. Formally verifiable

ontologies and executable process notations are

needed for applying the methodology in auto-

mated process environments. Progress in this

area is likely to draw on research in process pat-

terns (Aalst et al. 2003), exception-handling pat-

terns (Lerner et al. 2010), configurable process

models (Gottschalk et al. 2008) and semantic busi-

ness process management (Wetzstein et al. 2007).

There are opportunities to expand the design

view of process flexibility and thus to refine the

methodology, using further analogies from engi-

neering design. One research direction may focus

on the qualitative relationships between function,

behaviour and structure state spaces. Capturing

them can guide process designers realising de-

sired changes of function through appropriate

changes of behaviour and structure. For example,

research in product family design maps different

types of product families (that can be modelled

as sets of scalable or modifiable behaviours and

structures) onto strategies for targeting different

market segments (that can be modelled as sets of

scalable or modifiable functions) and onto differ-

ent manufacturing paradigms (that can be mod-

elled as design realisation options) (Maier and

Fadel 2007). Research in PAIS is likely to benefit

from further investigation of these analogies, as

they allow tapping into well established method-

ologies of flexibility from various domains.
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