
Enterprise Modelling and Information Systems Architectures

Vol. 5, No. 3, 2010

24 Patrick Delfmann, Sebastian Herwig, Łukasz Lis, Armin Stein, Katrin Tent, Jörg Becker

Patrick Delfmann, Sebastian Herwig, Łukasz Lis, Armin Stein, Katrin Tent, Jörg

Becker

Pattern Specification and Matching in Conceptual

Models

A Generic Approach Based on Set Operations

Searching for patterns in conceptual models is useful for a number of purposes, for example revealing

syntactical errors, model comparison, and identification of business process improvement potentials. In this

contribution, we introduce a formal approach for the specification and matching of structural patterns in

conceptual models. Unlike existing approaches, we do not focus on a certain application problem or a specific

modelling language. Instead, our approach is generic making it applicable for any pattern matching purpose

and most conceptual modelling languages. In order to build sets representing structural model patterns,

we define formal operations based on set theory, which can be applied to arbitrary models represented by

sets. The basic sets represent the model elements, which in turn originate from the modelling language

specification’s instances. Besides a conceptual and formal specification of our approach, we present particular

application examples and a prototypical modelling tool showing its general applicability.

1 Introduction

The structural analysis of conceptual models has

multiple applications. To support modellers in

their analyses, applying structural patterns to

conceptual models is an established approach.

Single conceptual models, for example, are ana-

lysed using typical error patterns in order to

check for syntactical failures (Mendling 2007).

In the domain of Business Process Management

(BPM), process model analysis helps identifying

process improvement potentials (Vergidis et al.

2008). For example, applying structural model

patterns to process models can help revealing

changes of data medium during process execu-

tion (e.g., printing and retyping a document), re-

dundant execution of process activities or appli-

cation potentials of software systems. When-

ever modelling is conducted in a distributed way,

model integration is necessary to obtain a co-

herent view on the modelling domain. To find

corresponding fragments and to evaluate inte-

gration opportunities, multiple models – gener-

ally of the same modelling language – can be

compared with each other applying structural

model pattern matching (Gori et al. 2005). Dif-

ferent model structures that typically represent

equal real-world issues are identified and spec-

ified as structurally different, but semantically

equal patterns. Counterparts of these patterns

are searched via pattern matching in the mod-

els to be compared. If pattern counterparts are

found in different models, these are marked as

candidates for equivalent model sections. A sub-

sequent comparison of their elements reveals

whether or not their contents are equal as well.

This way, structural pattern matching provides

decision support for model comparison and inte-

gration.

Model patterns have already been subject of re-

search in the fields of graph theory, database

schema integration, and workflow management,

to give some examples. However, our literature

review reveals that existing pattern matching

approaches are limited to a specific domain or re-

stricted to a single modelling language (cf. Sect. 2).

Enterprise Modelling and Information Systems Architectures

Vol. 5, No. 3, 2010

Pattern Specification and Matching in Conceptual Models 25

We argue that the modelling community would

benefit from a more generic approach which is

not restricted to particular modelling languages

or application scenarios.

In this article, we present a set theory-based

model pattern matching approach, which is ge-

neric and thus not restricted regarding its appli-

cation domain or modelling language. We base

this approach on sets and set operations as any

model can be regarded as a set of objects and rela-

tionships – regardless of the modelling language

or application domain. Set operations are used

to construct any structural model pattern for any

purpose. Therefore, we propose a collection of

functions acting on sets of model elements and

define set operators to combine the resulting sets

of the functions (cf. Sect. 3). This way, we are able

to specify structural model patterns for a given

modelling language in form of expressions built

of the proposed functions and operators. These

pattern descriptions can be matched against con-

ceptual models of this language resulting in sets

of model elements, which represent particular

pattern occurrences. As a specification basis, we

use a generic meta-meta model derived from the

Meta Object Facility (MOF) specification (OMG

2002, 2006), so we are able to instantiate most

common modelling languages. To provide a con-

venient basis for the specification of patterns, we

condense the MOF specification to a generic core.

Furthermore, we add an instance section to the

type-based MOF specification to allow for the

analysis of particular model elements. In this pa-

per, we provide application examples for Event-

driven Process Chains (EPC, Scheer 2000) and

the Entity-Relationship Model (ERM, Chen 1976;

cf. Sect. 4). Furthermore, we present a prototypi-

cal modelling tool implementation that shows the

applicability of the approach. After a discussion

of the benefits and limitations of our approach

in Sect. 5, we provide an outlook towards future

research in Sect. 6.

2 Related Work

Supporting the structural analysis of conceptual

models, fundamental work has been done in the

field of graph theory addressing the problem of

graph pattern matching (Fu 1995; Gori et al. 2005;

Valiente and Martínez 1997; Varró et al. 2006).

Based on a given graph, these approaches dis-

cuss the identification of structurally equivalent

(homomorphism) or synonymous (isomorphism)

parts of the given graph in other graphs. Several

pattern matching algorithms are proposed, that

compute walks through the graphs in order to

analyse its nodes and its structure (Dijkman et

al. 2009). As a result, they identify patterns rep-

resenting corresponding parts of the compared

graphs (Dijkman 2008). Thus, a pattern is based

on a particular labelled graph section. Some ap-

proaches are limited to specific types of graphs

(e.g., the approaches of Fu (1995) and Varró et al.

(2006) are restricted to labelled directed graphs).

In the context of process models, so-called be-

havioural approaches have been proposed (Hid-

ders et al. 2005; Hirschfeld 1993; de Medeiros et al.

2008). Two process models are considered equiv-

alent if they behave identically during simula-

tion. This implies that the respective modelling

languages possess formal execution semantics.

Therefore, these approaches are limited to Petri

Nets and similar workflow modelling languages

(van Dongen et al. 2008). Moreover, due to the re-

quirement of model simulation, these approaches

generally consider process models as a whole.

Patterns as model subsets are only comparable if

they are also executable.

In the domain of database engineering, various

approaches have been presented, which address

the problem of schema matching. Two input

schemas (i.e., descriptions of database structures)

are taken and mappings between semantically

corresponding elements are established (Rahm

and Bernstein 2001). These approaches operate

on single elements (Li and Clifton 2000) or as-

sume that the schemas have a tree-like structure

(Madhavan et al. 2001). Recently, the methods de-

veloped in the context of database schema match-

ing have been applied in the field of ontology

Enterprise Modelling and Information Systems Architectures

Vol. 5, No. 3, 2010

26 Patrick Delfmann, Sebastian Herwig, Łukasz Lis, Armin Stein, Katrin Tent, Jörg Becker

matching as well (Aumueller et al. 2005). Addi-

tionally, approaches explicitly dedicated to on-

tology matching have been presented (Euzenat

and Shvaiko 2007). They usually utilise additional

context information such as a corresponding col-

lection of documents (Stumme and Mädche 2001).

Moreover, as schema-matching approaches op-

erate on approximation-basis, similar structures

– and not exact pattern occurrences – are ad-

dressed. Consequently, these approaches lack

the opportunity of including explicit structure

descriptions (e.g., paths of a given length or loops

not containing given elements) in the patterns.

Design patterns are used in systems analysis

and design to describe best-practice solutions

for common recurring problems. Common de-

sign situations are identified, which can be mod-

elled in various ways. The most desirable solu-

tion is identified as a pattern and recommended

for further usage. The general idea originates

from Alexander et al. (1977), who identified and

described patterns in the field of architecture.

Gamma et al. (1995) and Fowler (2002) popu-

larised this idea in the domain of object-oriented

systems design. Workflow patterns, that is pat-

terns applied to workflow models, is another re-

search domain regarding patterns (van der Aalst

et al. 2003). The modeller is expected to adopt the

patterns as best-practice and to apply them intu-

itively whenever a common problem situation is

met.

Patterns are also proposed as an indicator for

possible conflicts typically occurring in the mod-

elling and model integration process. Hars (1994)

proposes a set of general patterns for ERMs. On

the one hand, these patterns depict possible struc-

tural errors that may occur. For such error pat-

terns the author proposes corresponding pat-

terns which provide correct structures. On the

other hand, he discusses sets of model patterns,

which possibly lead to conflicts while integrating

such models into a total model. Similar work

in the field of process modelling has been done

by Mendling (2007). Based on the analysis of

EPC models, he detects a set of general patterns,

which depict common syntactical errors in EPCs.

These two approaches focus on particular struc-

tural patterns for specific modelling languages.

In contrast to existing approaches, we aim at

providing a pattern matching approach that is

• generic to make it applicable to most common

modelling languages

• not restricted to particular matching problems

• not restricted to explicit graph sections but

also includes recursive structures (e.g., paths

of arbitrary length)

3 Specification of Structural Model
Patterns

3.1 Sets as a Basis for Pattern Matching

The idea of our approach is to regard a concep-

tual model as a set of model elements. Here, we

further distinguish between objects representing

nodes and relationships representing edges in-

terrelating objects. Starting from this set, we

search for pattern matches by performing set op-

erations on this basic set. By combining different

set operations, patterns are built up successively.

Given a pattern definition, the matching process

returns a set of model subsets representing the

pattern matches found. Every match found is put

into a seperate subset. The following example

illustrates the general idea.

Set of Pattern Matches

Pattern Matches (Sets of Elements)

Pattern Definition Pattern Matching

Figure 1: Representation of Pattern Matches through
Sets of Elements

In the example, the pattern consists of three ob-

jects of different types that are interrelated with

each other by relationships (cf. Fig. 1). A pattern

match within a model is represented as a set con-

taining three different objects and three relation-

ships that connect them. To distinguish multiple

Enterprise Modelling and Information Systems Architectures

Vol. 5, No. 3, 2010

Pattern Specification and Matching in Conceptual Models 27

Model
Element

Import Namespace Tag Constraint Typed
Element

Generalizable
Element

Feature

Constant Structure
Field Parameter

Package Classifier Behavioural
Feature

Structural
Feature

Association
End

Association Class Data Type Operation Exception Attribute Reference

Primitive Type Structure
Type

Enumeration
Type

Collection
Type Alias Type

Can Raise0..* 0..*

0..*

0..*

1..1

1..1

E
xp

os
es

R
ef

er
s

To

0..*

1..1

Is Of TypeG
en

er
al

iz
es

0..*

0..*

Aliases0..* 0..*
0..*

0..*

Depends On

0..*
0..*

0..*

1..*

Constrains
Contains

Attaches To
0..*

Figure 2: MOF Specification

ET

OT OT OT OT ET

OT

OT

OT OT OT

OT OT OT OT RT

OT OT OT OT OT OT OT

OT OT OT OT OT

RT

RT

RT

RT

RT

RT

RT
RT

Figure 3: Condensing MOF to a Generic Specification Environment

Enterprise Modelling and Information Systems Architectures

Vol. 5, No. 3, 2010

28 Patrick Delfmann, Sebastian Herwig, Łukasz Lis, Armin Stein, Katrin Tent, Jörg Becker

Element Type

Object TypeRelationship
Type

Element

Object Relationship

Directed: Boolean Domain: Enum
Value: Object

0..*

0..*

0..*

0..*

1..1

1..1

1..1

1..1
1..1 0..*Instantiates

Is
 S

ou
rc

e
O

f

Is
 T

ar
ge

t O
f

Is
 S

ou
rc

e
O

f

Is
 T

ar
ge

t O
f

Figure 4: Generic Specification Environment for Conceptual Modelling Languages and Models

pattern matches, each match is represented as a

separate subset. Thus, a pattern matching pro-

cess returns a set of pattern matches (i.e., a set of

sets).

3.2 Definition of Basic Sets

As a basis for the definition of structural model

patterns, we use a generic specification environ-

ment for conceptual modelling languages and

models. A popular and established specification

environment is provided by the Meta Object Fa-

cility (MOF).Within the MOF specification, the

central construct is the model element, which is

a generic placeholder for any possible construct

of a modelling language. This means that it does

not only describe the object types (e.g., classes)

of a modelling language, but also any other pos-

sible construct like relationship types, attributes,

or constraints. Every model element can be re-

lated to other ones. This way, the MOF specifi-

cation allows for defining modelling languages

with arbitrary expressive power (cf. Fig. 2; for a

detailed explanation of MOF constructs, cf. OMG

(2006)). In this paper, we use the MOF 1.4 specifi-

cation. MOF 2.0 consists of 122 classes compared

to 29 classes in MOF 1.4 (Bichler 2004). This is

why MOF 1.4 provides a more comprehensible

overview.

Following the philosophy, that, in general, ‘every-

thing can be related to everything’, we condensed

the MOF specification to a generic core for two

specific purposes: First, our pattern

matching approach should be generic, thus appli-

cable for any modelling language. Consequently,

we aim at being able to search for any construct

in models. Hence, we do not need to distinguish

these constructs. Second, we aim at providing

an easy-to-use and convenient set of constructs

for the specification of patterns. Therefore, the

number of different constructs should be reduced

to a minimum. A similar philosophy is followed

for example by the Graph eXchange Language

(GXL; Holt et al. (2006)), which specifies an XML

based exchange format for graphs.

In particular, in order to condense the specifi-

cation, we rely on graph theory and recognise

any conceptual model as a graph G consisting of

vertices V and edges E, where G = (V,E) with
E ⊆ V×V. Therefore, we reduce the MOF specifi-

cation to object types representing graph vertices

and relationship types representing graph edges.

Object types (OT) comprise any of the constructs

represented as classes within the MOF specifi-

cation (with one single exception, see cf. Fig. 3).

Relationship types (RT) represent all association

edges in the MOF specification as well as the asso-

ciation end class, which was introduced by MOF

Enterprise Modelling and Information Systems Architectures

Vol. 5, No. 3, 2010

Pattern Specification and Matching in Conceptual Models 29

in order to represent n-ary relationships. Finally,

we generalise object types and relationship types

as element types (ET). The latter represents the

central MOF construct model element (cf. Fig. 3).

Our condensed specification consists mainly of

these three constructs (cf. Fig. 4). Element types

are specialised as object types (i.e., vertices) and

relationship types (e.g., edges and links). In some

modelling languages, relationships can be inter-

related in turn (e.g., association classes in UML

Class Diagrams OMG (2009a,b)). To allow these

relationships between relationships, we define

the relationship type as a specialisation of the

element type. Each relationship type has a source

element type from which it originates, and a tar-

get element type to which it leads. Relationship

types are either directed or undirected. When-

ever the attribute directed is FALSE, the direction

of the relationship type is ignored. As already

mentioned above, n-ary relationships have to be

represented as well. In most modelling languages

providing n-ary relationships, these are repre-

sented as vertices (e.g., as a diamond in Class

Diagrams and ERMs). Consequently, an n-ary

relationship is built by defining an according ob-

ject type being related to n relationship types

and complying with the MOF specification.

The primary purpose of MOF and our condensed

specification is to define modelling languages be-

ing represented by instances of the specification.

As the aim of this paper is to introduce a pattern

matching approach for conceptual models (i.e., in-

stances of modelling languages), we need to add

a structurally equivalent specification of the mod-

els resulting from modelling languages. There-

fore, to instantiate element types, object types,

and relationship types, we add a specification

for elements, objects and relationships. Elements

are instantiated from their distinct element type.

They are specialised as objects and relationships.

Each of the latter leads from a source element to

a target element. Objects can (but do not need to)

have values which are part of a distinct domain.

For example, the value of an object ‘name’ con-

tains the string of the name (e.g., ‘product’). As

a consequence, the domain of the object ‘name’

has to be ‘string’ in this case. Thus, attributes are

considered as objects complying with MOF.

For the specification of structural model patterns

we define the following sets, elements, and prop-

erties originating from the specification environ-

ment:

• E: set of all elements available;

e ∈ E is a particular element.

• P (E): power set of E.
• O: set of all objects available;

O ⊆ E; o ∈ O is a particular object.

• R: set of all relationships available;
R ⊆ E; r ∈ R is a particular relationship.

• A: set of all element types available;

a ∈ A is a particular element type.

• B: set of all object types available;
B ⊆ A; b ∈ B is a particular object type.

• C: set of all relationship types available;

C ⊆ A; c ∈ C is a particular relationship type.

• I: set of all instantiations available;
I ⊆ A×E; (a, e) ∈ I is a particular instantiation.

• T: set of all relationship targets available;

T ⊆ E × R; (e, r) ∈ T is a particular target.

• S: set of all relationship sources available;

S ⊆ E × R; (e, r) ∈ S is a particular source.

• X: set of elements with x ∈ X ⊆ E.
• Xk: sets of elements with Xk ⊆ E and k ∈ N0.

• xl: distinct elements with xl ∈ E and l ∈ N0.

• Y: set of objects with y ∈ Y ⊆ O.

• Z: set of relationships with z ∈ Z ⊆ R.
• directed(c): property directed of a particular

relationship type c.

• domain(o): property domain of a particular

object o.

• value(o): property value of a particular object

o.

• nx: positive natural number nx ∈ N1.

• Rd: set of all directed relationships available;

Rd ⊆ R, ((cd, rd) ∈ I ∧ directed(cd) = TRUE∧
cd ∈ C)∀rd ∈ Rd

Enterprise Modelling and Information Systems Architectures

Vol. 5, No. 3, 2010

30 Patrick Delfmann, Sebastian Herwig, Łukasz Lis, Armin Stein, Katrin Tent, Jörg Becker

Table 1: Basic Operations

1. ElementsO f Type(X, a) ⊆ E is provided with a set of elements X and a distinct element type a. It
returns a set containing all elements of X that belong to the given type:

ElementsO f Type(X, a) = {x ∈ X | (a, x) ∈ I}
2. ObjectsWithValue(Y, valueY) ⊆ O takes a set of objects Y and a distinct value valueY. It returns a

set containing all objects of Y whose values equal the given one:

ObjectsWithValue(Y, valueY) =
{
y ∈ Y | value(y) = valueY

}

3. ObjectsWithDomain(Y, domainY) ⊆ O takes a set of objects Y and a distinct domain domainY. It
returns a set with all objects of Y whose domains equal the given one:

ObjectsWithDomain(Y, domainY) =
{
y ∈ Y | domain(y) = domainY

}

• Td: set of all directed relationship targets avail-

able;

Td ⊆ T, (rd ∈ Rd)∀(e, rd) ∈ T.
• Sd: set of all directed relationship sources avail-

able;

Sd ⊆ S, (rd ∈ Rd)∀(e, rd) ∈ S.
• Tu and Su are undirected counterparts;

Tu = T\Td and Su = S\Sd.

3.3 Definition of Set-modifying
Functions

Building up structural model patterns succes-

sively requires performing set operations on

these basic sets. In the following, we introduce

predefined functions on these sets in order to pro-

vide a convenient specification environment for

structural model patterns dedicated to concep-

tual models. Each function has a defined number

of input sets and returns a resulting set. For ev-

ery function, we specify the input and output sets

and provide a formal specification. In addition,

we provide textual explanations where necessary.

First, since a goal of the approach is to specify

any structural pattern, we must be able to reveal

specific properties of model elements (e.g., type,

value, or value domain; see Tab. 1, 1-3).

Second, relations between elements have to be

revealed in order to assemble complex pattern

structures successively. Functions are required

that combine elements and their relationships

and elements that are related respectively. For

this purpose, we define helping functions that

first return single pattern matches. Second, a

further function builds a set containing all the

single match sets (see Tab. 2, 1-5).

Third, in order to construct model patterns rep-

resenting recursive structures (e.g., a path of

an arbitrary length consisting of alternating el-

ements and relationships) the following func-

tions are defined. For the specification of recur-

sive structures, we make use of mathematical se-

quences of the form (xi) = (x1, x2, ..., xn), xi ∈ E.
However, as our functions generally operate on

sets, we need a way to transform sequences into

sets. Therefore, we define an auxiliary function

Set((xi)) taking a sequence as an input and re-

turning the set containing all members of this

sequence: Set((xi)) ={xi ∈ E | xi ∈ (xi)}⊆ E (see

Tab. 3).

In order to provide a convenient specification

environment for structural model patterns, we

define some additional functions that are derived

from those already introduced (see Tab. 4 and 5).

3.4 Definition of Set Operators for Sets
of Sets

By nesting the functions introduced above, it is

possible to build up structural model patterns

successively. The results of each function can

be reused adopting them as an input for other

functions. In order to combine different results,

the basic set operators union (∪), intersection (∩),
and complement (\) can be generally used. Since

it should be possible to combine not only sets of

Enterprise Modelling and Information Systems Architectures

Vol. 5, No. 3, 2010

Pattern Specification and Matching in Conceptual Models 31

Table 2: Operations Relating Elements

1. ElementsWithRelations(X,Z) ⊆ P(E) is provided with a set of elements X and a set of relationships

Z. It returns a set of sets containing all elements of X and all relationships of Z, which are connected.
Each occurrence is represented by an inner set:

For elements x1 ∈ E : EWR(x1,Z) = {z ∈ Z | (x1, z) ∈ T ∨ (x1, z) ∈ S} ∪ {x1}
For elements x ∈ X : ElementsWithRelations(X,Z) = {EWR(x,Z)}

2. ElementsWithOutRelations(X,Zd) ⊆ P(E) is provided with a set of elements X and a set of

relationships Z. It returns a set of sets containing all elements of X that are connected to outgoing

relationships of Z, including these relationships. Each occurrence is represented by an inner set:

For elements x1 ∈ E : EWOR(x1,Zd) = {zd ∈ Zd | (x1, zd) ∈ Sd} ∪ {x1}
For elements x ∈ X : ElementsWithOutRelations(X,Zd) = {EWOR(x,Zd)}

3. ElementsWithInRelations(X,Z) ⊆ P(E) is defined analogously:

For elements x1 ∈ E : EWIR(x1,Z) = {zd ∈ Zd | (x1, zd) ∈ Td} ∪ {x1}
For elements x ∈ X : ElementsWithInRelations(X,Zd) = {EWIR(x,Zd)}

4. ElementsDirectlyRelatedInclRelations(X1,X2) ⊆ P(E) is provided with two sets of elements X1
and X2. It returns a set of sets containing all elements of X1 and X2 that are connected directly via

relationships of R, including these relationships. The directions of the relationships given by their

‘Source’ or ‘Target’ assignment are ignored. Furthermore, the attribute ‘directed’ of the according

relationship types has to be FALSE. Each occurrence is represented by an inner set:

For elements x1 ∈ X1 : EDRIR(x1,X2) =
{x2 ∈ X2, z ∈ Ru | (x1, z) ∈ Su ∧ (x2, z) ∈ Tu ∨ (x2, z) ∈ Su ∧ (x1, z) ∈ Tu } ∪ {x1}
For elements x1 ∈ X1 : ElementsDirectlyRelatedInclRelations(X1,X2) = {EDRIR(x1,X2)}

5. DirectSuccessorsInclRelations(X1,X2) ⊆ P(E) is provided with two sets of elements X1 and X2.

It returns a set of sets containing all elements of X1 and X2 that are connected directly via

relationships of R, including these relationships. The directions of the relationships are predefined,

that is only relationships from elements of X1 to elements of X2 are considered. Each occurrence

is represented by an inner set:

For elements x1 ∈ X1 : DSIR(x1,X2) = {x2 ∈ X2, z ∈ Rd | (x2, z) ∈ Sd ∧ (x1, z) ∈ Td} ∪ {x1}
DirectSuccessorsInclRelations(X1,X2) = {DSIR(x1,X2)}

pattern matches (i.e., sets of sets) but also the pat-

tern matches themselves, that is, the inner sets,

we define additional set operators. These operate

on the inner sets of two sets of sets respectively

(see Tab. 6).

The Join operator performs a Union operation on

each inner set of the first set with each inner set

of the second set. Since we regard patterns as

cohesive, only inner sets that have at least one

element in common are considered. The Inner-

Intersection operator intersects each inner set of

the first set with each inner set of the second set.

The InnerComplement operator applies a comple-

ment operation to each inner set of the first outer

set combined with each inner set of the second

outer set. Only inner sets that have at least one

element in common are considered.

As most of the functions introduced in Sect.3.3

expect simple sets of elements as inputs, we in-

troduce further operators that turn sets of sets

into simple sets. The Self-Union operator merges

all inner sets of one set of sets into a single set

performing a union operation on all inner sets.

The SelfIntersection operator performs an inter-

section operation on all inner sets of a set of sets

successively. The result is a set containing el-

ements that each occur in all inner sets of the

original outer set.

Enterprise Modelling and Information Systems Architectures

Vol. 5, No. 3, 2010

32 Patrick Delfmann, Sebastian Herwig, Łukasz Lis, Armin Stein, Katrin Tent, Jörg Becker

Table 3: Operations Returning Element Sequences

1. Paths(X1,Xn) ⊆ P(E) takes two sets of elements as input and returns a set of sets containing

all sequences which lead from any element of X1 to any element of Xn. The directions of the

relationships, which are part of the paths, are ignored. Furthermore, the attribute ‘directed’ of

the according relationship types has to be FALSE. The elements being part of the paths do not

necessarily have to be elements of X1 or Xn, but can also be of E\X1\Xn. Each path found is

represented by an inner set:

PX(x1, xn) ={Set(x1, x2, ..., xn) | x2, ..., xn−1 ∈ E ∧ ((xi, xi+1) ∈ Su ∨ (xi, xi+1) ∈ Tu)∀1 ≤ i < n}
Paths(X1,Xn) =

⋃
xi∈X1,xn∈Xn

PX(x1, xn)
Therefore, we first define a function PX returning all paths, each as a set, starting with a single,

particular element x1 ∈ X1 and lead to a single, particular element xn ∈ Xn. Every sequence

(x1, ..., xn) containing elements x1, ..., xn being pairwise related, meaning xi and xi+1 have a source

or a target relation, is recognised as a path. Every sequence representing a path is transformed

into a set. The result of PX is a set containing sets, which contain the paths leading from x1 to

xn. Finally, the function PX is executed for every combination of every x1 ∈ X1 and xn ∈ Xn. The

resulting outer sets are unified, so the result is a set containing sets of all paths found.

2. DirectedPaths(X1,Xn) ⊆ P(E) is the directed counterpart of Paths. It returns only paths containing
directed relationships of the same direction. Each such path found is represented by an inner set:

DPX(x1, xn) = { Set(x1, x2, ..., xn) | x2, ..., xn−1 ∈ E
∧(((x2i−1, x2i) ∈ Sd ∧ (x2i+1, x2i) ∈ Td∀1 ≤ i ≤ �n/2
) (a)

∨((x2i, x2i−1) ∈ Td ∧ (x2i, x2i+1) ∈ Sd∀1 ≤ i ≤ �n/2
) (b)

∨((x2i−1, x2i) ∈ Sd ∧ (x2i+1, x2i) ∈ Td ∧ (xn−1, xn) ∈ Sd∀1 ≤ i ≤ �n/2
 − 1) (c)

∨((x2i, x2i−1) ∈ Td ∧ (x2i, x2i+1) ∈ Sd ∧ (xn, xn−1) ∈ Td∀1 ≤ i ≤ �n/2
 − 1)) (d)

∀1 ≤ i < n}
DirectedPaths(X1,Xn) =

⋃
x1∈X1,xn∈Xn

DPX(x1, xn)
Therefore, we first define a Function DPX returning all directed paths, each as a set, starting

with a single, particular element x1 ∈ X1 and lead to a single, particular element xn ∈ Xn. Every

sequence (x1, ..., xn) containing objects that are related by relationships having the same direction

(i.e., leading from x1 to xn), is recognised as a directed path. The formal definition of DPX is

divided in four sections (a-d). This is necessary as the DPX function takes elements (not only

objects) as inputs. Consequently, a path can either start with an object or with a relationship, and

a path can either end with an object or with a relationship (cf. Fig. 5). For example, a path starting

with an object and ending with an object requires a "source" relationship between its first two

elements, followed by alternating "source" and "target" relationships and ending with a "target"

relationship between its last two elements (cf. part (a) of the definition; parts (b)-(d) are defined

analogously). Every sequence representing a directed path is transformed into a set. The result

of DPX is a set containing sets, which contain the directed paths leading from x1 to xn. Finally,

the function DPX is executed for every combination of every x1 ∈ X1 and xn ∈ Xn. The resulting

outer sets are unified, so the result is a set containing sets of all directed paths found.

3. Loops(X) ⊆ P(E) takes a set of elements as input and returns a set of sets containing all sequences,

which lead from any element of X to itself. The direction of relations and path elements are

handled analogously to Paths. Each loop found is represented by an inner set:

Loops(X) =
⋃

x∈X PX(x, x)
4. DirectedLoops(X) ⊆ P(E) is defined analogously:

DirectedLoops(X) =
⋃

x∈X DPX(x, x)

Enterprise Modelling and Information Systems Architectures

Vol. 5, No. 3, 2010

Pattern Specification and Matching in Conceptual Models 33

Table 4: Extended Operations (Part 1)

1. ElementsWithRelationsO f Type(X,Zd, cd) ⊆ P(E) is provided with a set of elements X, a set of

relationships Zd and a distinct relationship type cd. It returns a set of sets containing all elements

of X and relationships of Zd of the type cd, which are connected. Each occurrence is represented

by an inner set:

ElementsWithRelationsO f Type(X,Zd, cd) =
ElementsWithRelations(X,ElementsO f Type(Zd, cd))

2. ElementsWithOutRelationsO f Type(X,Zd, cd) ⊆ P(E) is provided with a set of elements X, a set

of relationships Zd and a distinct relationship type cd. It returns a set of sets containing all elements

of X that are connected to outgoing relationships of Zd of the type cd, including these relationships.

Each occurrence is represented by an inner set:

ElementsWithOutRelationsO f Type(X,Zd, cd) =
ElementsWithOutRelations(X,ElementsO f Type(Zd, cd))

3. ElementsWithInRelationsO f Type(X,Zd, cd) ⊆ P(E) is defined analogously to

ElementsWithOutRelationsO f Type:
ElementsWithInRelationsO f Type(X,Zd, cd) =
ElementsWithInRelations(X,ElementsO f Type(Zd, cd))

4. ElementsWithNumberO f Relations(X,nx) ⊆ P(E) is provided with a set of elements X and a

distinct number nx. It returns a set of sets containing all elements of X, which are connected to the

given number of relationships of R, including these relationships. Each occurrence is represented

by an inner set:

EWNR(x) = {r ∈ R | (x, r) ∈ T ∨ (x, r) ∈ S} ∪ {x}
ElementsWithNumberO f Relations(X,nx) = {EWNR(x) | |EWNR(x)| = nx + 1}

5. ElementsWithNumberO f OutRelations(X,nx) ⊆ P(E) and
ElementsWithNumberO f InRelations(X,nx) ⊆ P(E) are defined analogously:

EWNIR(x) = {r ∈ Rd | (x, r) ∈ Td} ∪ {x}
ElementsWithNumberO f InRelations(X,nx)
= {EWNIR(x) | |EWNIR(x)| = nx + 1}
EWNOR(x) = {r ∈ Sd | (x, r) ∈ Sd} ∪ {x}
ElementsWithNumberO f OutRelations(X,nx)
= {EWNOR(x) | |EWNOR(x)| = nx + 1}

6. ElementsWithNumberO f RelationsO f Type(X, c,nx) ⊆ P(E) is provided with a set of elements

X, a distinct relationship type c, and a distinct number nx. It returns a set of sets containing

all elements of X, which are connected to the given number of relationships of R of the type c,
including these relationships. Each occurrence is represented by an inner set:

EWNRT(x, c) = {r ∈ R | (c, r) ∈ I ∧ ((x, r) ∈ T ∨ (x, r) ∈ S)} ∪ {x}
ElementsWithNumberO f RelationsO f Type(X, c,nx)
= {EWNRT(x, c) | |EWNRT(x, c)| = nx + 1}

7. ElementsWithNumberO f OutRelationsO f Type(X, cd,nx) and
ElementsWithNumberO f InRelationsO f Type(X, cd,nx), both with codomain P(E), are defined

analogously:

EWNIRT(x, cd) = {r ∈ Rd | (cd, r) ∈ I ∧ (x, r) ∈ Td} ∪ {x}
ElementsWithNumberO f InRelationsO f Type(X, cd,nx)
= {EWNIRT(x, cd) | |EWNIRT(x, cd)| = nx + 1}
EWNORT(x, cd) = {r ∈ Rd | (cd, r) ∈ I ∧ (x, r) ∈ Sd} ∪ {x}
ElementsWithNumberO f OutRelationsO f Type(X, cd,nx)
= {EWNORT(x, cd) | |EWNORT(x, cd)| = nx + 1}

Enterprise Modelling and Information Systems Architectures

Vol. 5, No. 3, 2010

34 Patrick Delfmann, Sebastian Herwig, Łukasz Lis, Armin Stein, Katrin Tent, Jörg Becker

Table 5: Extended Operations (Part 2)

8. PathsContainingElements(X1,Xn,Xc) ⊆ P(E) is provided with three sets of elements X1, Xn, and

Xc. It returns a set of sets containing elements that represent all paths from elements of X1 to

elements of Xn, which each contain at least one element of Xc. The direction of relations and path

elements are handled analogously to Paths. Each path found is represented by an inner set:

PCE(x1, xn,Xc) = {Set(x1, x2, ..., xn) | x2, ..., xn−1 ∈ E
∧∃xc ∈ {x2, ..., xn−1} ∧ ((xi, xi+1) ∈ Su ∨ (xi, xi+1) ∈ Tu)∀1 ≤ i < n}
PathsContainingElements(X1,Xn,Xc) =

⋃
x1∈X1,xn∈Xn

PCE(x1, xn,Xc)
The definition of PCE is similar to that of PX. In addition, it forces the sequences returned to

contain at least one element xc ∈ Xc (cf. ∃xc ∈ {x2, ..., xn−1} part of the definition).

9. DirectedPathsContainingElements(X1,Xn,Xc) ⊆ P(E),
PathsNotContainingElements(X1,Xn,Xc) ⊆ P(E), and
DirectedPathsNotContainingElements(X1,Xn,Xc) ⊆ P(E) are defined analogously:

DPCE(x1, xn,Xc) = Set((x1, x2, ..., xn)) | x2, ..., xn−1 ∈ E ∧ ∃xc ∈ {x2, ..., xn−1} ∧
(((x2i−1, x2i) ∈ Sd ∧ (x2i+1, x2i) ∈ Td∀1 ≤ i ≤ �n/2
)
∨((x2i, x2i−1) ∈ Td ∧ (x2i, x2i+1) ∈ Sd∀1 ≤ i ≤ �n/2
)
∨((x2i−1, x2i) ∈ Sd ∧ (x2i+1, x2i) ∈ Td ∧ (xn−1, xn) ∈ Sd∀1 ≤ i ≤ �n/2
 − 1)
∨((x2i, x2i−1) ∈ Td ∧ (x2i, x2i+1) ∈ Sd ∧ (xn, xn−1) ∈ Td∀1 ≤ i ≤ �n/2
 − 1))∀1 ≤ i < n}
DirectedPathsContainingElements(X1,Xn,Xc) =

⋃
x1∈X1,xn∈Xn

DPCE(x1, xn,Xc)
The definition of DPCE is similar to that of DPX. In addition, it forces the sequences returned to

contain at least one element xc ∈ Xc (cf. ∃xc ∈{x2, ..., xn−1} part of the definition).

PNCE(x1, xn,Xc) = {Set((x1, x2, ..., xn)) | x2, ..., xn−1 ∈ E\Xc
∧((xi, xi+1) ∈ Su ∨ (xi, xi+1) ∈ Tu)∀1 ≤ i < n}
PathsNotContainingElements(X1,Xn,Xc) =

⋃
x1∈X1,xn∈Xn

PNCE(x1, xn,Xc)
The definition of PNCE is similar to that of PX. In addition, it forces the sequences returned not

to contain any element xc ∈ Xc (cf. x2, ..., xn−1 ∈ E | Xc part of the definition).

DPNCE(x1, xn,Xc) = {Set((x1, x2, ..., xn)) | x2, ..., xn−1 ∈ E\Xc
∧(((x2i−1, x2i) ∈ Sd ∧ (x2i+1, x2i) ∈ Td∀1 ≤ i ≤ �n/2
)
∨((x2i, x2i−1) ∈ Td ∧ (x2i, x2i+1) ∈ Sd∀1 ≤ i ≤ �n/2
)
∨((x2i−1, x2i) ∈ Sd ∧ (x2i+1, x2i) ∈ Td ∧ (xn−1, xn) ∈ Sd∀1 ≤ i ≤ �n/2
 − 1)
∨((x2i, x2i−1) ∈ Td ∧ (x2i, x2i+1) ∈ Sd ∧ (xn, xn−1) ∈ Td∀1 ≤ i ≤ �n/2
 − 1))∀1 ≤ i < n}
DirectedPathsNotContainingElements(X1,Xn,Xc) =

⋃
x1∈X1,xn∈Xn

DPNCE(x1, xn,Xc)
The definition of DPNCE is similar to that of DPX. In addition, it forces the sequences returned

not to contain any element xc ∈ Xc (cf. x2, ..., xn−1 ∈ E | Xc part of the definition).

10 LoopsContainingElements(X,Xc) ⊆ P(E),
DirectedLoopsContainingElements(X,Xc) ⊆ P(E),
LoopsNotContainingElements(X,Xc) ⊆ P(E),
and DirectedLoopsNotContainingElements(X,Xc) ⊆ P(E) are defined analogously:

LoopsContainingElements(X,Xc) =
⋃

x∈X PCE(x, x,Xc)
DirectedLoopsContainingElements(X,Xc) =

⋃
x∈X DPCE(x, x,Xc)

LoopsNotContainingElements(X,Xc) =
⋃

x∈X PNCE(x, x,Xc)
DirectedLoopsNotContainingElements(X,Xc) =

⋃
x∈X DPNCE(x, x,Xc)

Enterprise Modelling and Information Systems Architectures

Vol. 5, No. 3, 2010

Pattern Specification and Matching in Conceptual Models 35

Table 6: Set Operators for Sets of Sets

Basic Sets Operator Definition Operator Symbol

F,G ⊆ P(E), f ∈ F, g ∈ G Join(F,G) =
{
f ∪ g | ∃e ∈ E : e ∈ f ∧ e ∈ g

}
F G

F,G ⊆ P(E), f ∈ F, g ∈ G InnerIntersection(F,G) =
{
f ∩ g

}
F G

F,G ⊆ P(E), f ∈ F, g ∈ G InnerComplement(F,G) =
{
f\g | ∃e ∈ E : e ∈ f ∧ e ∈ g

}
F G

F ⊆ P(E), f ∈ F Sel f Union(F) =
⋃

f∈F f F
F ⊆ P(E), f ∈ F Sel f Intersection(F) =

⋂
f∈F f F

x1

x3

xn-2

xn

x2

xn-1

S

T

S

T

S

T

...

x2

xn-1

x1

xn

T

S

T

S

...

x1

x3

xn-1

x2

xn

S

T

S

T

S

...

x2

xn-2

xn

x1

xn-1

T

S

T

S

T

...

(a) (b) (c) (d)

Figure 5: Path Configurations

4 Application

In this section, we demonstrate the generic appli-

cability of our approach based on two exemplary

scenarios. Moreover, we present the available

tool-support realised by our research prototype.

4.1 Application Examples

To illustrate the usage of the set functions we

apply our approach to specify and search for

patterns in two exemplary scenarios addressing

the modelling languages of EPC and ERM. They

can both be specified using MOF, thus they are

suitable for an application of the proposed pat-

tern matching approach. Although both EPC and

ERM were not originally specified using MOF,

according specifications have been developed in-

dependently (Korherr and List 2007; Lindow et al.

2001) showing the universal applicability of MOF.

EPC Example

In the first example, we regard a simplified mod-

elling language of EPCs. Models of this lan-

guage consist of the object types function, event,

AND connector, OR connector, and XOR connector

(i.e., B = {function, event, AND, OR, XOR}). Fur-

thermore, EPCs consist of different relationship

types that lead from any object type to any other

object type, except from function to function and

from event to event. All these relationship types

are directed, (i.e., directed(c) = TRUE ∀ c ∈ C).

A common error in EPCs is that decisions (i.e.,

XOR or OR splits) are modelled successively to

an event. Since events are passive element types

of an EPC, they are not able to make a decision

(Scheer 2000). Hence, any directed path in an

EPC that reaches from an event to a function and

contains no further events or functions but an

XOR or OR split is a syntax error (cf. Fig. 6).

In order to reveal such errors, we specify an ex-

emplary structural model pattern as depicted in

Tab. 7.

The first expression (see Tab. 7, 1) determines

all paths that start with an event and end with

a function and do not contain any further func-

tions or events. The result is intersected with all

paths starting with an event and ending with a

function (see Tab. 7, 2) that contain OR and/or

XOR connectors (see Tab. 7, 3), but only those

that are connected to 2 or more outgoing relation-

ships. Thus, these XORs and ORs are subtracted

Enterprise Modelling and Information Systems Architectures

Vol. 5, No. 3, 2010

36 Patrick Delfmann, Sebastian Herwig, Łukasz Lis, Armin Stein, Katrin Tent, Jörg Becker

Figure 6: Finding Typical Errors in Event-driven Process
Chains

Table 7: Definition of the EPC Model Pattern ‘Decision
Split After Event’

DirectedPathsNotContainingElements(
ElementsO f Type(O,’Event’),
ElementsO f Type(O,’Function’),
ElementsO f Type(O,’Event’)∪

ElementsO f Type(O,’Function’)
)

1

∩
DirectedPathsContainingElements(
ElementsO f Type(O,’Event’),
ElementsO f Type(O,’Function’),

2

ElementsO f Type(O,’OR’)∪
ElementsO f Type(O,’XOR’)
)

3

\
(O (ElementsWithNumberO f ←↩

OutRelations(
(ElementsO f Type(O,’XOR’)∪

ElementsO f Type(O,’OR’)),1)
∪ElementsWithNumberO f OutRelations(

(ElementsO f Type(O,’XOR’)∪
ElementsO f Type(O,’OR’)),0)
)

)

4

by XORs and ORs that are only connected to

one or less relationship(s) (see Tab. 7, 4). Sum-

marising, the matching process returns all paths

leading from an event to a function not contain-

ing any further events and functions, and con-

taining splitting XOR and/or OR connectors (cf.

Fig. 6 and Sect.4.2 for implementation issues and

exemplary results).

ERM Example

A second example illustrates the search for typi-

cal model structures in data models. For example,

in ERMs, so-called receipt structures are quite pop-

ular. These are commonly used to relate positions

of a receipt to its header. Regarding their object

types and relationship types, ERMs are defined as

follows: B ={EntityType (ET), RelationshipType
(RT), RelationalEntityType (RET)} is the set of

object types. C ={ET→RT, ET→RET, RET→RET,

RET→RT} is the set of relationship types, with

directed(c) = FALSE ∀c ∈ C. A = B ∪ C is the

set of element types, and E = O ∪ R is the set of

particular elements.

(0,n)(0,n)

(1,1)(1,1)

(0,n)(0,n)

(1,1)(1,1)

(0,n) (1,1)

(1,1)

(0,1)

(1,n)

(1,n)

(1,n)

(0,n)

(0,n)

(0,n)(0,n)

(1,1)(0,n)

(1,1)

(0,n)

Product

Customer Time

Invoice
position

Invoice
header

(0,n)

(0,n)(0,n)

(1,1)

Figure 7: Finding Typical Structures in Entity-
Relationship Models

As a task of a schema integration project, a possi-

ble subject of analysis could be to find all receipt

structures in ERMs containing elements related

to the business object ‘invoice’ (cf. Fig. 7). As a

first step, all receipt structures are recognised by

the patternΨ (cf. Tab. 8, 1 and 2).

The first expression determines all paths begin-

ning with an Entity Type and ending with a Rela-

tional Entity Type. These paths are not allowed

to contain any further Entity Types, Relational

Enterprise Modelling and Information Systems Architectures

Vol. 5, No. 3, 2010

Pattern Specification and Matching in Conceptual Models 37

Table 8: Definition of the ERM Model Pattern ‘Receipt
Structure’

Ψ =
PathsNotContainingElements(
ElementsO f Type(O,ET),
ElementsO f Type(O,RET),
(ElementsO f Type(O,ET)∪

ElementsO f Type(O,RET)
∪ElementsO f Type(R,ET→RET))

)

1

ElementsDirectlyRelatedInclRelations(
ElementsWithNumberO f Relations←↩
O f Type(
ElementsO f Type(O,RET),ET→RET,2)
ElementsO f Type(O,RET),

ElementsO f Type(O,ET)
)

2

{X ∈ Ψ |
ObjectsWithValue(←↩

ObjectsWithDomain(X,STRING),
"*invoice*") � {}},

Ψ,Ψ
′ ⊆ P(E)

3

Entity Types, or Edges between Entity Types

and Relational Entity Types. Consequently, the

first expression returns only paths from an Entity

Type across exactly one Relationship Type to a

Relational Entity Type. The second expression

returns all Relational Entity Types being exactly

related to two Entity Types. Therefore, the in-

ner function returns all Relational Entity Types

of that nature and the outer one relates them to

the Entity Types. Joining both results leads to

sets containing receipt structures. As a second

step, the resulting pattern sets are restricted to

those containing at least one object containing

‘invoice’ in a string value (cf. Tab. 8, 3).

4.2 Tool Support

In order to show the practical feasibility of our

approach, we have implemented a plug-in for a

meta modelling tool that was available from a

former research project (Delfmann and Knack-

stedt 2007). The tool consists of a meta modelling

environment that is based on the generic specifi-

cation approach for modelling languages shown

in Fig. 4. The plug-in provides a specification

environment for structural model patterns. It is

integrated into the meta modelling environment

of the tool, since the patterns are dependent on

the respective modelling language. All basic sets,

functions, and set operators introduced in Sect.3

are provided and can be used to build up struc-

tural model patterns successively (cf. Fig. 8).

In order to gain a better overview over the pat-

terns, they are displayed and edited in a tree

structure. Users can build up the tree-structure

through drag-and-drop of the basic sets, func-

tions and set operators. Whenever special char-

acteristics of an according modelling language

(function, event etc.) or variables such as nu-

meric values or names are used for the speci-

fication, this is expressed by using a ‘variable’

element (provided by the ‘sets’ section in the up-

per left of Fig. 8). The variable element, in turn, is

instantiated by selecting a language-specific char-

acteristic from a menu or by entering a particular

value (such as ‘2’).

The patterns specified can be applied to any model

that is available within the model base and that

was developed with the according modelling lan-

guage. Figure 9 shows an exemplary model that

was developed with the modelling language of

EPCs and that contains a syntax error consisting

of a decision split following an event (cf. Sect. 4.1).

The structural model pattern matching process

is started by selecting the appropriate pattern to

search for. Every match found is displayed by

marking the according model section. The user

can switch between different matches. In our

example, two matches are found, as the decision

split following the event leads to two different

paths (the second match is shown in the lower

right corner of Fig. 9).

Enterprise Modelling and Information Systems Architectures

Vol. 5, No. 3, 2010

38 Patrick Delfmann, Sebastian Herwig, Łukasz Lis, Armin Stein, Katrin Tent, Jörg Becker

Navigation Modelling Language Perspective Editor Administration Shape Management Plug-in Manager

Edit Information

Current Language: EPC

Current Diagram Type: Standard

Save Pattern Cancel
Language Definition

Object Types

Roles

Relationship Types

Refinements

Object Type Import

Diagram Types

Authorization

Structural Model
Patterns

Structural Model Patterns

Sets

Operators

Functions

Pattern Values

Select or enter value:

Documentation

Connection

Save and close Cancel

Figure 8: Specification of the Pattern ‘Decision Split After Event’ to Detect Errors in EPCs

5 Discussion

Supporting model analysis by a generic pattern

matching approach is promising, as it is not re-

stricted to a particular problem area or modelling

language. Especially when applied in an en-

vironment not limited to solely one modelling

language (e.g., modelling in an ARIS environ-

ment with organisational aspects, data, and pro-

cesses; cf. Scheer 2000), the flexibility of the ap-

proach presented here, in conjunction with the

capabilities of a meta-modelling tool, reveals its

strengths.

However, the problem of pattern matching in

graphs is generally known to be computation-

ally expensive (Bunke 2000), which led to our

initial concerns regarding the performance of

our approach. In this paper, it is not our goal

to calculate the complexity of the algorithm im-

plemented in our approach formally. Instead, to

gain an understanding of the user-perceived per-

formance, we conducted a series of performance

measurements on different models consisting of

20-150 elements. On a standard dual-core ma-

chine with a 1.83 GHz processor and 4 GB RAM

and searching for patterns similar to those pre-

sented in Sect.4.1, we could measure a net search

time of 1-4 milliseconds depending on the model

size. Concurrently, retrieving a model from the

server and loading it into the client’s memory

took about 60 times longer and the visualisation

of matches took about 40 times longer. We con-

clude that the search performance was satisfac-

tory from the user’s point of view compared to

Enterprise Modelling and Information Systems Architectures

Vol. 5, No. 3, 2010

Pattern Specification and Matching in Conceptual Models 39

Navigation Modeling Language Editor Perspective Editor Administration Shape Management Plug-in Manager

Edit

Save

Close Model

Select Connect Zoom in Zoom out

Width Page

Show shapes Print

Connection points

Grid

Page setup

Pattern:

Model selection:

Matches:

New search Model Selection

Pattern selection

[em] Structural Pattern Matching

Search Cancel

Connection

Model Modeling View Modeling Environment Pattern Matching

Language: EPC

Language: EPC

Language: EPC

Language: EPC

Search

Figure 9: Result of the Pattern Matching Process of ‘Decision split after event’

the performance of model loading and matches

visualisation.

Although the implementation of the prototype

can be regarded as a first rudimentary evalua-

tion step showing the general feasibility of the

approach, an in-depth analysis still has to be con-

ducted. This currently happens in a modelling

project in the banking sector.

In particular, we are using the approach for re-

vealing weaknesses in business processes in fi-

nancial institutions. For example, typical short-

comings in business processes are frequent chan-

ges in automatic and manual processing, lack

of parallelisation and frequent change of organ-

isational responsibility. These weaknesses have

been discussed in literature extensively (Baacke

et al. 2009; Kusiak et al. 1994). As a starting point,

we use these weakness descriptions to define cor-

responding weakness patterns. The business pro-

cesses of the institute we are currently investigat-

ing are available as process models using differ-

ent modelling languages (Flow Charts, EPCs and

Value Chains). Applying the patterns to the pro-

cess models and at the same time analysing the

process models manually helps us assessing the

effectiveness and the efficiency of the approach,

compared to a manual analysis.

Since the approach has already shown its gen-

eral applicability, we expect it to increase the

efficiency of weakness analysis of process mod-

Enterprise Modelling and Information Systems Architectures

Vol. 5, No. 3, 2010

40 Patrick Delfmann, Sebastian Herwig, Łukasz Lis, Armin Stein, Katrin Tent, Jörg Becker

els especially when applied to large-scale model

bases, compared to a manual analysis. However,

up to now, we cannot estimate the actual amount

of weaknesses the approach is able to detect in

this special case, compared to a manual analysis.

As shown in Sect. 2, a variety of approaches ex-

ist, which address the problem of pattern match-

ing in conceptual models. Some of them, im-

plement subgraph isomorphism algorithms (Ull-

mann 1976) and their later approximate versions

based on graph edit distance and maximum com-

mon subgraphs (Bunke 2000; Dijkman et al. 2009).

In our approach, we do not search for an (ex-

act or approximate) mapping between a graph

representing the model and a subgraph repre-

senting the pattern. Instead, a pattern is rep-

resented by a tree of set functions being an ab-

stract description of a pattern. By using functions

such as Paths(X1,Xn), we are able to define pat-

terns including paths of arbitrary length, which

do not have a univocal subgraph representation.

We then search for model fragments being ex-

act matches of the pattern, that is, fulfilling the

abstract pattern definition.

Therefore, our approach is related to existing

EPC syntax checking approaches based on im-

plicit arc types (Mendling and Nüttgens 2003) or

PROLOG clauses (Gruhn and Laue 2006). The au-

thors provide abstract descriptions of patterns

representing EPC syntax rules (or its violations)

using predicate logic and search for exact matches.

In our approach, we also conduct exact matching

of patterns specified in an abstract form. How-

ever, we aim at making our approach applicable

to different modelling languages and do not re-

strict it to syntax checking. As our approach

is generic, its performance might be, however,

lower than the one of dedicated approaches.

6 Outlook

In the short term, we will focus on completing the

evaluation of the presented approach. We will

conduct a series of with-without experiments

in real-world scenarios. They will show if the

presented function set is complete, if the ease of

use, especially supported by graphical pattern

creation, is satisfactory for users not involved

in the development of the approach, and if the

application of the approach actually leads to an

improved model analysis support.

An obstacle to tackle during future research is the

definition of sets. Up to now, the user has to gain

deep knowledge on set operations to create the

respective patterns. Although the prototype pre-

sented above supports the creation of patterns

by providing a tree-like structure that can be

filled with existing elements like sets, operators

and functions (see again Fig. 8), an easier and

more convenient way to define patterns could

be a graphical one. It is clear to the authors

that sets describing patterns like, for example,

circles or decision split after event are complex

by nature. However, the initial layout could be

generated by "modelling" or "drawing" parts of

the pattern, lowering the acceptance barrier for

end users. Furthermore, we have revealed con-

ceptual improvement potential during our evalu-

ation project in the banking sector. For example,

it could be easier to use explicit model fragments

instead of the proposed functions in some situa-

tions. Thus, we are going to investigate how we

can include explicit model fragments in pattern

definitions of our approach.

References

Alexander C., Ishikawa S., Silverstein M. (1977)

A Pattern Language. Oxford University Press,

New York

Aumueller D., Do H.-H., Massmann S., Rahm E.

(2005) Schema and Ontology Matching with

COMA++. In: Proceedings of the 2005 ACM

SIGMOD international Conference on Man-

agement of Data (SIGMOD 2005). New York,

pp. 906–908

Enterprise Modelling and Information Systems Architectures

Vol. 5, No. 3, 2010

Pattern Specification and Matching in Conceptual Models 41

Baacke L., Becker J., Bergener P., Fitterer R.,

Greiner U., Stroh F., Räckers M., Rohner P.

(2009) Enabling Integration and Optimiza-

tion of Government Processes With Cross-

Functional ICT. In: Weerakkody V., Janssen

M., Dwivedi Y. (eds.) Handbook of Research

on ICT-Enabled Transformational Govern-

ment: A Global Perspective. IGI Global, Her-

shey, New York, pp. 117–139

Bichler L. (2004) Codegeneratoren für MOF-

basierte Modellierungssprachen. PhD the-

sis, Universität der Bundeswehr München,

München

Bunke H. (2000) Recent Developments in Graph

Matching. In: Proceedings 15th International

Conference on Pattern Recognition (ICPR).

IEEE Comput. Soc, Barcelona, Spain, pp. 117–

124 http://ieeexplore.ieee.org/lpdocs/epic03/

wrapper.htm?arnumber=906030

Chen P. P.-S. (1976) The Entity-Relationship

Model – Toward a Unified View of Data. In:

ACM Transactions on Database Systems 1(1),

pp. 9–36

Delfmann P., Knackstedt R. (2007) Towards Tool

Support for Information Model Variant Man-

agement – A Design Science Approach. In:

Proceedings of the 15th European Confer-

ence on Information Systems (ECIS 2007). St.

Gallen, pp. 2098–2109

Dijkman R. (2008) Diagnosing Differences be-

tween Business Process Models. In: Proceed-

ings of the 6th International Conference on

Business Process Management (BPM). Milan,

pp. 261–277

Dijkman R., Dumas M., García-Bañuelos L.

(2009) Graph Matching Algorithms for Busi-

ness Process Model Similarity Search. In:

Proceedings of the 7th International Con-

ference on Business Process Management

(BPM). Ulm

Euzenat J., Shvaiko P. (2007) Ontology Matching.

Springer, Berlin

Fowler M. (2002) Patterns of Enterprise Applica-

tion Architecture. Addison-Wesley, Reading

Fu J. (1995) Pattern Matching in Directed

Graphs. In: Galil Z., Ukkonen E. (eds.) Pro-

ceedings of the 6th Annual Symposium on

Combinatorial Pattern Matching (CPM 1995).

Espoo, pp. 64–77

Gamma E., Helm R., Johnson R. E., Vlissides J.

(1995) Design Patterns. Elements of Reusable

Object-Oriented Software. Addison-Wesley,

Amsterdam

Gori M., Maggini M., Sarti L. (2005) The RW2 Al-

gorithm for Exact Graph Matching. In: Singh

S., Singh M., Apté C., Perner P. (eds.) Pro-

ceedings of the 4th International Conference

on Advances in Pattern Recognition (ICAPR

2005). Bath, pp. 81–88

Gruhn V., Laue R. (2006) Validierung syn-

taktischer und anderer EPK-Eigenschaften

mit PROLOG. In: Nüttgens M., Rump F.

J., Mendling J. (eds.) 5. Workshop der GI

"Geschäftsprozessmanagement mit Ereignis-

gesteuerten Prozessketten (WI-EPK)". CEUR-

WS.org, Viennas, pp. 69–84

Hars A. (1994) Referenzdatenmodelle. Grund-

lagen effizienter Datenmodellierung. Gabler,

Wiesbaden

Hidders J., Dumas M., van der Aalst W. M. P.,

ter Hofstede A. H. M., Verelst J. (2005)When

are two workflows the same? In: Atkinson

M., Dehne F. (eds.) Proceedings of the 11th

Australasian Symposium on Theory of Com-

puting (CATS 2005). Newcastle, pp. 3–11

Hirschfeld Y. (1993) Petri Nets and the Equiva-

lence Problem. In: Börger E., Y. G., Meinke

K. (eds.) Proceedings of the 7th Workshop on

Computer Science Logic (CSL 1993). Swansea,

pp. 165–174

Holt R. C., Schürr A., Sim S. E., Winter A. (2006)

GXL: A graph-based standard exchange for-

mat for reengineering. In: Science of Com-

puter Programming 60(2), pp. 149–170

Korherr B., List B. (2007) Extending the EPC and

the BPMN with Business Process Goals and

Performance Measures. In: Proceedings of the

9th International Conference on Enterprise

Information Systems, pp. 287–294

KusiakA., Larson T. N.,Wang J. R. (1994) Reengi-

neering of design and manufacturing pro-

cesses. In: Computers and Industrial Engi-

Enterprise Modelling and Information Systems Architectures

Vol. 5, No. 3, 2010

42 Patrick Delfmann, Sebastian Herwig, Łukasz Lis, Armin Stein, Katrin Tent, Jörg Becker

neering 26(3), pp. 521–536

Li W.-S., Clifton C. (2000) SemInt: A Tool for

Identifying Attribute Correspondences in

Heterogeneous Databases using Neural Net-

work. In: Data & Knowledge Engineering

33(1), pp. 49–84

Lindow A., Gogolla M., Richters M. (2001)

Ein formal validiertes Metamodell für die

Transformation von Schemata in Informa-

tionssystemen. In: Bauknecht K., BrauerW.,

Mück T. (eds.) Proceeding of GI Jahrestagung

(GI 2001). Austrian Computer Society,Wien,

pp. 662–669

Madhavan J., Bernstein P. A., Rahm E. (2001)

Generic schema matching with Cupid. In:

Apers P. M. G., Atzeni P., Ceri S., Paraboschi

S., Ramamohanarao K., Snodgrass R. T. (eds.)

Proceedings of the 27th International Confer-

ence on Very Large Data Bases (VLDB 2001).

Rome, pp. 49–58

Mendling J. (2007) Detection and Prediction of

Errors in EPC Business Process Models. PhD

thesis,WirtschaftsuniversitätWien, Vienna

Mendling J., Nüttgens M. (2003) EPC Modelling

based on implicit arc types. In: Godlevsky M,

Liddle S.W., Mayr H. C. (eds.) Proceedings of

the 2nd International Conference on Informa-

tion Systems Technology and its Applications

(ISTA). Kharkiv, Ukraine

OMG (2002) Meta Object Facility (MOF) Spec-

ification. MOF Core specification. Version

1.4. formal/2002-04-03. http://www.omg.org/

spec/MOF/1.4/PDF

OMG (2006) Meta Object Facility (MOF) Core

Specification. OMG Available Specification.

Version 2.0. formal/2006-01-01. http://www.

omg.org/spec/MOF/2.0/PDF

OMG (2009a) OMG Unified Modeling

LanguageTM (OMG UML), Infrastructure,

Version 2.2. formal/2009-02-04. http://www.

omg.org/spec/UML/2.2/Infrastructure/PDF

OMG (2009b) OMG Unified Modeling

LanguageTM (OMG UML), Superstructure,

Version 2.2. formal/2009-02-02. http://www.

omg.org/spec/UML/2.2/Superstructure/PDF

Rahm E., Bernstein P. A. (2001) A Survey of

Approaches to Automatic Schema Matching.

In: The International Journal on Very Large

Data Bases 10(4), pp. 334–350

Scheer A.-W. (2000) ARIS – Business Process

Modelling, 3rd ed. Springer, Berlin

Stumme G., Mädche A. (2001) FCA-Merge:

Bottom-up Merging of Ontologies. In: Nebel

B. (ed.) Proceedings of the 17th International

Joint Conference on Artificial Intelligence (IJ-

CAI 2001). Seattle, pp. 225–230

Ullmann J. R. (1976) An Algorithm for Subgraph

Isomorphism. In: Journal of the ACM (JACM)

23(1), pp. 31–42

Valiente G., Martínez C. (1997) An Algorithm

for Graph Pattern-Matching. In: Baeza-Yates

R., Ziviani N. (eds.) Proceedings of the 4nd

South AmericanWorkshop on String Process-

ing (WSP 1997). Brighton, pp. 180–197

Varró G., Varró D., Schürr A. (2006) Incremen-

tal Graph Pattern Matching – Data Struc-

ture and Initial Experiments. In: Margaria

T., Padberg J., Taentzer G. (eds.) Proceedings

of the 2nd International Workshop on Graph

and Model Transformation (GraMoT 2006).

Brighton

Vergidis K., Tiwari A., Majeed B. (2008) Business

Process Analysis and Optimization: Beyond

Reengineering. In: IEEE Transactions on Sys-

tems, Man, and Cybernetics 38(1), pp. 69–82

de Medeiros A. K. A., van der Aalst W. M. P.,

Weijters A. J. M. M. (2008) Quantifying Pro-

cess Equivalence based on Observed Behav-

ior. In: Data & Knowledge Engineering 64(1),

pp. 55–74

van Dongen B., Dijkman R., Mendling J. (2008)

Measuring Similarity between Business Pro-

cess Models. In: Proceedings of the 20th In-

ternational Conference on Advanced Infor-

mation Systems Engineering (CAiSE 2008).

Montpellier, pp. 450–464

van der Aalst W. M. P., ter Hofstede A. H. M.,

Kiepuszewski B., Barros A. P. (2003) Work-

flow Patterns. In: Distributed and Parallel

Databases 14(3), pp. 5–51

Enterprise Modelling and Information Systems Architectures

Vol. 5, No. 3, 2010

Pattern Specification and Matching in Conceptual Models 43

Patrick Delfmann, Sebastian Herwig,

Łukasz Lis, Armin Stein, Jörg Becker

European Research Center for Information

Systems (ERCIS)

University of Münster

Leonardo-Campus 3

48149 Münster

Germany

{patrick.delfmann | sebastian.herwig |

lukasz.lis | armin.stein | joerg.becker}

@ercis.uni-muenster.de

Katrin Tent

Institut für Mathematische Logik und

Grundlagenforschung

University of Münster

Einsteinstrasse 62

48149 Münster

Germany

tent@math.uni-muenster.de

