
Enterprise Modelling and Information Systems Architectures

Vol. 5, No. 2, October 2010

38 Jörg Ackermann, Klaus Turowski

Jörg Ackermann, Klaus Turowski

Domain Level Specification of Parameterisable

Business Components

Combining software components from different vendors to customer-individual business application systems

requires sophisticated techniques to specify the components. If a component can be parameterised, its

parameterisation properties must be included in the specification. That is the topic of an ongoing research

project. This paper discusses how parameterisation issues can be specified on domain level – that is how to

describe parameterisable business terms and business tasks as well as parameterisation effects for a functional

expert.

1 Introduction

Many information systems currently in use are
monolithic, integrated applications that are hard
to maintain and hard to adapt to changing re-
quirements. In contrast to that, component-based
or service-oriented business applications have
the advantage that some of the required flexi-
bility can be reached by changing system parts
(replacing components or services) (Overhage
and Turowski 2007). Exchanging components
alone, however, can not solve all variability is-
sues because it is not efficient for frequent smal-
ler changes. Using parameterisable business com-
ponents is an alternative to replacing compo-
nents. To use parameterisation in component-
based business applications is particularly suit-
able in situations, where a locally restricted func-
tionality shall be adapted, where frequent
changes occur or where several adaptation vari-
ants are required simultaneously (Ackermann
and Turowski 2006). This is the reason why we
study parameterisable business components.

A crucial prerequisite for a component-based
approach is an appropriate and standardised spe-
cification of software components (see Sect. 2).
How to include parameterisation options in a
component specification was earlier not address-
ed but is now topic of a research project. This
paper discusses how parameterisation related

properties can be specified on domain level. Spe-
cifying business terms and business tasks on do-
main level is a prerequisite that functional ex-
perts can participate in selecting and evaluat-
ing business components (see Sect. 4.1). After
introducing an exemplary component (Sect. 3)
we discuss the current specification on domain
level (Sect. 4) and make some preliminary con-
siderations (Sect. 5). After that we develop de-
tailed proposals how to include parameterisation
into component specifications for business terms
(Sect. 6) and business tasks (Sect. 7). The paper
concludes with an assessment of results (Sect. 8),
a discussion of related work (Sect. 9) and a sum-
mary (Sect. 10).

This paper makes the following contributions to
the area of specification and conceptual model-
ling of business components: We propose how
to specify parameters and parameterisation tasks
on domain level. Additionally we show how the
effects parameterisation has on business terms
and business tasks can be specified. Special atten-
tion is given to the description of variable term
and task relationships. These results by itself
form an important building block for the com-
plete specification of parameterisable business
components. Moreover, the results are interest-
ing for any software using parameterisation (like
standardised business application suites such as

Enterprise Modelling and Information Systems Architectures

Vol. 5, No. 2, October 2010

Domain Level Specification of Parameterisable Business Components 39

SAP ERP) because our approach is a first step to-
wards general specification of parameterisation
effects.

2 Specification of (Parameterisable)
Software Components

An appropriate and standardised specification of
software components is a prerequisite for a com-
position methodology (Overhage 2004) and sup-
ports reuse of components by third parties (Con-
rad and Turowski 2001). With specification of a
component we denote the complete, unequivocal
and precise description of its external view – that
is which services a component provides under
which conditions (Turowski 2002). The specific-
ation is provided by the component producer
and serves as contract between producer and
user of a component – for that it must include
all information which is necessary to reuse the
component.

Currently there exists no generally accepted and
supported specification standard covering all as-
pects relevant to component-based software en-
gineering (see Sect. 8). We base our work on
the specification framework ‘Standardised Spe-
cification of Business Components’ (Turowski
2002). The content of this work is a recommenda-
tion made by the business components working
group of the German Informatics Society (GI).
For this Turowski (2002) defines different specific-
ation levels, identifies the objects to be specified
and proposes for each level a specific notation
language:

• The interface (or syntactic) level contains the
signature of the components interfaces which
are specified by OMG IDL (OMG 2004a) (or
since recently also with UML 2.0 (OMG 2004b)).
Agreements at behavioural level describe how
the component acts in general and in border-
line cases and are specified using UML OCL
(OMG 2006). Agreements at coordination (or
synchronisation) level regulate the sequence
in which component services may be invoked.
As notation language serves a version of OCL

that is enhanced by temporal operators (Con-
rad and Turowski 2001). Quality attributes and
non-functional characteristics (as availability
or response time of a service) are specified at
the quality level. These four contract levels
mainly concern the technical (software) ex-
pert and are therefore referred to as technical
levels.

• In contrast to that we denote by domain levels
those contract levels that concern the func-
tional expert: The terminology level serves as
central registry and keeps all used terms and
their definitions in a dictionary. The task level
specifies which business tasks are supported
or automatically done through services of the
component. Both levels use normative lan-
guage (Ortner and Schienmann 1996) as nota-
tion. Domain level specification is the focus of
this paper.

• Finally the marketing level specifies features
that are important from a business-organisa-
tional point of view as, e.g., (legal) contract
terms or vendor contact persons.

Adaptation is of great importance in component-
based application systems because components
can rarely be reused without being adapted (Bo-
sch 1997; cf. also Sect. 8). One adaptation tech-
nique is the so called (data-based) parameterisa-
tion (Ackermann 2004). It is a technique for plan-
ned adaptation where the component producer
defines parameters (which influence structure
and behaviour of the component) and the com-
ponent consumer chooses parameter settings
that are suitable for his requirements. Param-
eter values are assumed to be data-like and non-
executable – in contrast to situations where pro-
grams or whole components are expected as par-
ameter values (program-based parameterisation).
There are several variants to save parameter val-
ues persistently: in database tables, in self-de-
fined files (like text or XML) or in configura-
tion files of a component technology (like prop-
erty files in OMG CORBA Component Model or
deployment descriptors in Suns Enterprise Java

Enterprise Modelling and Information Systems Architectures

Vol. 5, No. 2, October 2010

40 Jörg Ackermann, Klaus Turowski

Figure 1: Conceptual data model of component WarehouseManagement.

Beans (EJB)). Main advantages of data-based par-
ameterisation are that adaptation can be easily
performed and does not require implementation
knowledge because no coding modifications are
necessary. One disadvantage is that adaptation
is limited to use cases foreseen by the compon-
ent producer. Another disadvantage stems from
the way parameterisation is often used: many
software systems like SAP ERP allow complex
parameterisation without providing an adequate
parameter specification – correlations between
parameters and the application functionality be-
come almost impossible to trace (Mertens et al.
1991).

Parameter settings typically change structure
and behaviour of a component – that is they
influence the component’s external view. Con-
sequently parameterisation aspects must be part
of a component’s specification. This earlier un-
solved issue is currently under investigation in
our research project.

3 Exemplary Component
WarehouseManagement

In this section we introduce an exemplary com-
ponent WarehouseManagement that will be used
throughout the rest of the paper. To be as real-
istic as possible design and terminology of our

example were influenced by real business appli-
cation products like SAP ERP (SAP 2005). Note
that, however, to be suitable as an example we
simplified the component substantially – real
applications support, e.g., complex allocation
strategies.

The business task of the component is to manage
a simple warehouse complex. Figure 1 shows the
information objects belonging to the component.
The componentWarehouseManagement allows to
define several warehouses which might differ in
their warehouse handling (e.g., fixed bin picking
area or hall with high rack shelves). Each ware-
house consists of different storage bins (storage
places) where the goods are physically stored.
An entity of WarehouseStock represents one unit
of a material stored at a specific storage bin. The
type Material represents the warehouse specific
properties of a material. To simplify matters we
assume that each material will be stored at ex-
actly one warehouse (real business applications
might support complex warehouse determina-
tion strategies).

The component allows for parameterisation by
providing several parameters (data fields used
for parameterisation) as, e.g., putawayStrategy.
Parameters are typically grouped by parameter
groups as, e.g.,Warehouse. Note that these groups

Enterprise Modelling and Information Systems Architectures

Vol. 5, No. 2, October 2010

Domain Level Specification of Parameterisable Business Components 41

can have several instances and therefore allow
different behaviour in parallel.

The exemplary component has two parameter
groups: StorageUnitType and Warehouse. Stor-
age unit types define the unit size in which ma-
terials are stored (e.g., a euro palette or a fixed
size box). The organisational unitWarehouse of-
fers several control parameters. The parameter
putawayStrategy (removalStrategy) defines how
to find a suitable storage bin in which to store
(from which to retrieve) a unit of material. To be
more precise, the following putaway strategies
are supported: each material is assigned to fixed
bins (static putaway), the system looks for a suit-
able bin optimising, e.g., storage space (dynamic
putaway) or a storage bin is selected by the oper-
ator (manual putaway). The Boolean parameter
useStorageUnitTypes controls how the size of a
storage bin is described. If true, then each storage
bin is assigned to the unit type it stores, each ma-
terial is assigned to the unit type it is delivered in
and storage is only allowed if they correspond. If
false, then a storage bin can be directly assigned
to a fixed material. This means that some of the
relationships in Fig. 1 are optional or alternative
and their occurrence at runtime is controlled by
parameter useStorageUnitTypes – these complex
dependencies will be used later in the specifica-
tion of parameterisation effects.

The exemplary component enables to set par-
ameters inWarehouse and StorageUnitTypes and
to manage master data StorageBin and Material.
Furthermore it supports actual stock manage-
ment activities as storing and retrieving stock
and determining the number of available stock
units.

4 Current Domain Level Specification
for Business Components

This section provides an overview of the current
state of specification on domain level – after dis-
cussing significance of the domain level (Sect. 4.1)
we address specifications for terminology level
(Sect. 4.2) and task level (Sect. 4.3). Describing

the current state serves two objectives: to foster
understanding of the following details and to en-
able the clear identification of the novel aspects
in the results of later sections.

4.1 Relevance and Intention of Domain
Level Specification

One important aspect when selecting a business
component for an information system is its suit-
ability from a business point of view: Does the
component support the required business tasks?
Are the restrictions and constraints acceptable?
Which business data is supported and what is the
relationship between different business terms?
The business requirements are usually provided
by the business departments – therefore the busi-
ness adequacy of a component should ideally be
verified by functional experts.

Many approaches for component specification
either only specify technical aspects (e.g., Beug-
nard et al. 1999; Han 1998; Hemer and Lindsay
2001) or use technical notations like UML for
business aspects (e.g., Cheesman and Daniels
2001). As a consequence such approaches do not
adequately support component search and selec-
tion (Geisterfer and Ghosh 2006). Without proper
domain level specification functional experts can
not be involved in component selection or tech-
nical experts must ‘translate’ component prop-
erties for functional experts. It is sometimes
argued that specifying a component on technical
and business level is not efficient due to its partial
redundancy. The (one-time) effort for the com-
ponent producer, however, is small compared to
the situation where each prospective component
user ‘translates’ either the component specific-
ation for its functional experts or the business
requirements into technical terms.

In order to enable functional experts to particip-
ate in the component selection one can conclude
two requirements: A component specification
must contain a description on domain level and
the notation used must be suitable for functional
experts. Regarding the second aspect it can not

Enterprise Modelling and Information Systems Architectures

Vol. 5, No. 2, October 2010

42 Jörg Ackermann, Klaus Turowski

Term: WAREHOUSE STOCK

Short definition: A Warehouse stock represents one unit of MATERIAL that is stored
at a STORAGE BIN.

Example: One euro palette of material ABC-XYZ stored at storage bin 015-07-02 on
October 15th, 2009

Relationships:
A WAREHOUSE STOCK has a DATE OF PUTAWAY.
A STORAGE BIN consists of 0 to arbitrary many WAREHOUSE STOCK.
A WAREHOUSE STOCK is related to a MATERIAL.

Constraints:
The MATERIAL related to the WAREHOUSE STOCK must be assigned to the same
WAREHOUSE as the WAREHOUSE STOCK.

Figure 2: Specification of term Warehouse stock.

(A | An) A consists [in role1] of (a | an | [number1 to] (number2 | arbitrary many)) B [in
role2] (and (a | an | [number3 to] (number4 | arbitrary many)) C [in role3])+.

Figure 3: Complete sentence building pattern for decomposition.

generally be assumed that functional experts un-
derstand formal or semiformal (technical) nota-
tions like UML.

Therefore the specification framework (Turowski
2002) proposes to specify all relevant business
terms and all business tasks supported by the
component on domain level (additionally to the
technical specification of signatures, protocols
etc.). The notation to be used on domain level is
normative language, which is an ontology defini-
tion language (Ortner and Schienmann 1996). Its
idea is to use a standardised form of natural lan-
guage which is human-understandable, which
reduces ambiguities of the natural language and
which is also machine-understandable and thus
allows for automatic processing.

4.2 Specification on Terminology Level

The task of the terminology level (of the spe-
cification framework; Turowski 2002) is to clarify
all functional terms on domain level. For this it

provides a dictionary of all used terms including
their definition and their relationship to other
terms. According to Turowski (2002) and Over-
hage (2004) the specification of a term provides
its name, a short definition and an accompanying
example in natural language (Fig. 2 shows exem-
plary how the term Warehouse stock is specified).
The specification must additionally include the
relationship to other terms: An entity of ware-
house stock belongs to a storage bin, refers to
the material being stored and keeps the date of
putaway. Additionally one can supplement con-
straints the term or its properties need to adhere
to.

A central aspect of the term definition is the
specification of its relationships to other terms.
To specify the relationship between terms four
relationship types are predefined:

• Decomposition of a term into other terms (An
A consists of a B) – example: a warehouse
consists of storage bins.

Enterprise Modelling and Information Systems Architectures

Vol. 5, No. 2, October 2010

Domain Level Specification of Parameterisable Business Components 43

Expression1 | Expression2 Alternate expressions

[Expression] Optional expression

(Expression) Precedence parentheses

(Expression)* Expression repeated n times (n 0)

(Expression)+ Expression repeated n times (n 1)

Symbol Terminal symbol

Symbol Symbol to be replaced (pseudo terminal symbol)

Figure 4: Notation for syntax of sentence building patterns.

• Association of a term with other terms (An
A is related to a B) – example: a material is
related to exactly one warehouse (in which it
is stored).

• Properties of a term (An A has a B) – example:
a storage bin has a maximal capacity.

• Specialisation of a term (An A is a B) – ex-
ample: a high-rack warehouse is a warehouse.

For each of the relationship types there are cor-
responding sentence building patterns defined.
These patterns must be used to express relation-
ships and thus standardise the relationship spe-
cification (Overhage 2004). The sentence building
patterns in their simplest form are shown above
in parentheses. To express more complicated re-
lationships, there are sentence building patterns
for connecting multiple terms and for specifying
roles and cardinalities. Figure 3 shows exem-
plary the complete sentence building pattern for
decomposition. Following Overhage (2006) the
sentence building pattern in Fig. 3 (and all sub-
sequent patterns) is expressed by symbols of a
Backus-Naur form – the used symbols are ex-
plained in Fig. 4.

Using sentence building patterns has two ad-
vantages compared to natural language: Spe-
cifications become less ambiguous und the re-
sulting dictionary structure forms a light-weight
ontology allowing an easy way to automatic-
ally retrieve relationship information (e.g., find

all terms related to a certain term). The advan-
tage of using normative language compared to
other ontology notations lies in the fact that it is
understandable for functional experts who may
not have knowledge of formal modeling or on-
tology notations (Note that by defining appro-
priate mappings one can transform normative
language expressions automatically into other
ontology notations).

The compartment Constraints of a term specifica-
tion shall be used to express restrictions which
apply to a term on a business level and which
can not be expressed by the predefined sentence
building patterns. Constraints are currently spe-
cified by natural language – using only predefined
sentence building patterns is difficult as the con-
straints can be rather complex. A more formal
representation is desirable in the future and might
be achieved by utilising sentence building pat-
terns for first order logic expressions.

4.3 Specification on Task Level

The chore of a business component is to support
or execute certain business tasks within a busi-
ness application system. If a functional expert
wants to determine if a component is suitable
for his requirements, he must be able to analyse
the business tasks supported by the component
on a domain (conceptual) level. This shall be
done on the task level of the component specifi-
cation (Turowski 2002).

Enterprise Modelling and Information Systems Architectures

Vol. 5, No. 2, October 2010

44 Jörg Ackermann, Klaus Turowski

Task: GET STOCK

Short definition: The task of Get stock is to return the number of units of a
MATERIAL currently stored within the WAREHOUSE COMPLEX.

Example: 26 euro palettes of material ABC-XYZ currently stored

Relationships:
MANAGE STOCK consists of GET STOCK.

Figure 5: Specification of task Get stock.

Term: PUTAWAY STRATEGY

Short definition: A Putaway strategy is a strategy which defines how to determine
one (or several) STORAGE BINs in which units of MATERIAL will be stored.
Supported strategies are: manual, static, dynamic.

Example: Dynamic putaway strategy

Relationships:
PUTAWAY STRATEGY is a mandatory parameter.
A WAREHOUSE has a PUTAWAY STRATEGY.
A PUTAWAY STRATEGY is manual or static or dynamic.

Figure 6: Specification of term Putaway strategy.

According to Overhage (2004) terms and tasks
are specified in the same way (both considered as
instances of a more general idea concept). There-
fore normative language is also used to specify
all related business tasks. For a business task its
name, a short definition and an accompanying
example are given (cf. Fig. 5). If applicable, one
can additionally specify relationships between
tasks and supplement constraints that need to be
adhered to when executing the task.

To specify the relationship between business
tasks two relationship types are predefined:

• Decomposition allows describing which sub-
tasks form the task (A consists of B) – example:
Manage stock comprises Putaway stock and
Remove stock as well as Get stock.

• Specialisation allows distinguishing between
different forms (variants) of a task (A is B) –
example: Putaway stock manually is a variant
of Putaway stock.

For both relationship types corresponding sen-
tence building patterns are predefined and shown
above (in their simplest form) in parentheses.

5 Preliminary Considerations

When developing specification proposals for par-
ameterisable business components the following
considerations are helpful to structure the task
at hand and to enable a structured approach:

• When discussing parameterisation properties
one can distinguish between the parameterisa-
tion objects (like parameters) themselves and
the effects parameterisation has on the com-
ponents functionality (Ackermann and Turo-
wski 2008) – a specification must consider both
aspects.

• For the specification of parameterisation prop-
erties one must both identify the specification
objects (what to specify) and to make suitable
specification proposals (how to specify) (Ack-
ermann 2003).

Enterprise Modelling and Information Systems Architectures

Vol. 5, No. 2, October 2010

Domain Level Specification of Parameterisable Business Components 45

• Top-level specification objects are parameters
and parameter groups on terminology level
and parameterisation tasks on task level (Ack-
ermann and Turowski 2008).

• Parameterisation objects have a structure sim-
ilar to other information objects and in border-
line cases it is not always possible to clearly
distinguish between them (Ackermann 2003).
Therefore (in accordance with the principle
of clarity from the Guidelines of Modeling
(GoM; Becker et al. 2000) parameterisation ob-
jects should be specified similarly to other in-
formation objects.

• Parameters need to be clearly recognisable
for component users because they often in-
fluence component functionality substantially
and must be set at configuration time. More-
over, the effects of parameterisation must also
be explicitly specified because missing docu-
mentation about parameterisation effects com-
plicates the correct use of software (Mertens
et al. 1991).

6 Specification on Terminology Level

In this section we extend the specification ap-
proach on terminology level (as outlined in Sect.
4.2) such that it also covers parameterisation
properties of business components. For that we
distinguish (according to Sect. 5) between speci-
fication of parameters themselves (Sect. 6.1) and
specification of parameterisation effects (Sect.
6.3). Special emphasis will be given to defining
sentence building patterns for variable relation-
ship specification (Sect. 6.2).

6.1 Specification of Parameters

In this section we develop a proposal how the ter-
minology associated with parameters (without
its runtime effects) can be specified. Accord-
ing to Sect. 5 top-level specification objects are
parameters and parameter groups. Parameters
and their groups typically have a domain mean-
ing and therefore must be specified on termino-
logy level. Because parameterisation terms have

a structure similar to other terms (cf. Sect. 5)
we propose to specify parameter and parameter
groups similar to other domain terms.

Figure 6 shows how the parameter Putaway stra-
tegy (of parameter group Warehouse) can be spe-
cified. Note particularly that parameters are
properties of their owning group and therefore
a relationship of type ‘property’ can be used to
show the parameter-to-parameter group assign-
ment. As an example Fig. 6 specifies that (param-
eter group)Warehouse has (the parameter) Put-
away strategy. The values a parameter can take
are provided by value declarations – Fig. 6 spe-
cifies, e.g., that the parameter Putaway strategy
can only take predefined fixed values (manual,
static, dynamic). Other relationships and con-
straints are discussed below.

Parameters need to be clearly recognisable for
component users (cf. again Sect 5) – therefore
we define additional sentence building patterns
to identify parameters and parameter groups (cf.
Fig. 7). The corresponding pattern for param-
eters additionally allows specifying if the param-
eter is mandatory, optional or conditionally op-
tional. The statements built from these patterns
are assigned to the relationships compartment
and in this way extend the collection of state-
ments – as a consequence they are automatically
retrievable. The first relationship in Fig. 6 shows
examplary how such a pattern is applied and
specifies that Putaway strategy is a mandatory
parameter.

Parameter groups are specified analogously to
parameters. Figure 8 shows exemplary the speci-
fication of the parameter group Warehouse: All
five parameters of Warehouse are listed using a
relationship of type property. Relationships with
other information objects are specified like any
other relationship (here: a warehouse consists of
storage bins). Dependencies between different
parameters can be expressed as constraints in
natural language. As an example the first con-
straint in Fig. 8 demands that dynamic putaway
requires the use of storage unit types.

Enterprise Modelling and Information Systems Architectures

Vol. 5, No. 2, October 2010

46 Jörg Ackermann, Klaus Turowski

X is a (mandatory | optional | conditionally optional) parameter.
Y is a parameter group.

Figure 7: Sentence building patterns for parameterisation properties.

6.2 Expressing Variability in
Relationships between Terms

We know from domain analysis (Czarnecki and
Eisenecker 2000), reference data modeling (Schüt-
te 1998) and an analysis about parameterisation
effects on component specifications (Ackermann
2004) that parameters often influence the rela-
tionships between terms. Therefore we extend
in this section the sentence building patterns
(introduced in Sect. 4.2) such that they allow ex-
pressing variable participation in relationships
and variable cardinalities and roles.

Substantial work on variability was done in do-
main analysis and we will use their results as
starting point. Domain analysis uses feature
models to represent ‘the common and variable
features of concept instances and the dependen-
cies between variable features’ (Czarnecki and
Eisenecker 2000, p. 86). To express the different
variants how a feature can be related to its sub
feature(s) six different feature types are defined:
mandatory, optional, alternative, optional alter-
native, (inclusive) or, optional or. We will refer
to these variants as variability types. Experience
has shown that these variability types are suffi-
cient to model structural variability in domain
analysis. Note that the variability type optional
or can be normalised to several optional features
for composite relationships (like decomposition
or association) and is therefore not further con-
sidered in domain analysis. For abstractive re-
lationships (specialisation), however, this nor-
malisation is not possible and therefore all six
variability types need to be considered.

The current approach for term specification (cf.
Sect. 4.2) can only describe must-relationships
(mandatory variability type). Therefore it is ne-
cessary to extend the sentence building patterns

such that they cover the other variability types
as well. This will be shown exemplary for de-
compositions. Solutions for associations and
properties are analogous – specialisation needs
(because of its abstractive nature) to be treated
differently and will be discussed in Sect. 7.2.

The necessary extensions for the sentence build-
ing patterns are shown (in its simplest form) in
Fig. 9. An optional decomposition is expressed by
the additional word optionally in the sentence
structure. Decompositions of type alternative,
optional alternative and or concern several sub-
terms. To express them we introduce a different
sentence structure. Alternative decompositions
are described so: ‘Exactly one of the following
statements is true: an A consists of a B, an A
consists of a C.’ For optional alternative (or) de-
compositions it is only necessary to replace ex-
actly by the phrase at most one (at least one).
Defining the sentence building pattern in the
given way was motivated by two reasons: 1. It is
hard to find a combined sentence plan which is
understandable and grammatically correct and
can be translated into other languages as well –
a sentence like ‘An A consists of exactly one of
a B or a C.’ seems rather unnatural. 2. The solu-
tion above easily allows combining statements of
several relationship types. One could state, e.g.,
‘Exactly one of the following statements is true:
a MATERIAL has a BASIC UNIT TYPE, a MA-
TERIAL is related to a STORAGE UNIT TYPE.’ to
express, that the unit type of a material is either
given by a predefined basic unit type or by an
explicitly defined storage unit type.

For easier understanding Fig. 9 shows the sen-
tence building patterns in its simplest form – the
complete patterns are depicted in Fig. 10. These
patterns additionally allow describing variable

Enterprise Modelling and Information Systems Architectures

Vol. 5, No. 2, October 2010

Domain Level Specification of Parameterisable Business Components 47

Term: WAREHOUSE

Short definition: A Warehouse is a physical or logical subdivision of a WAREHOUSE
COMPLEX that is characterised by its warehouse technique, the space used, its orga-
nisational form or its function.

Example: Warehouse 001 (High-rack storage Munich)

Relationship:
A WAREHOUSE is a parameter group.
A WAREHOUSE has a NAME and an ID and a FLAG STORAGE UNIT TYPES and
a PUTAWAY STRATEGY and a REMOVAL STRATEGY.
A WAREHOUSE consists of 0 to arbitrary many STORAGE BIN.
A MATERIAL is related to a WAREHOUSE.

Constraints:
For dynamic PUTAWAY STRATEGY the FLAG STORAGE UNIT TYPES must be
set to true.
For static PUTAWAY STRATEGY the FLAG STORAGE UNIT TYPES must be set
to false.

Figure 8: Specification of term Warehouse.

cardinalities or roles in form of an enumeration.
To avoid too complex statements it shall not be
possible to include variable roles or cardinalit-
ies in the expressions for alternative decompos-
ition – instead one can use several expressions.
By extending the earlier sentence building pat-
terns to the ones in Fig. 10 we are able to specify
decompositions of all variability types and ad-
ditionally with variable roles and cardinalities.
These results will be used in Sect. 6.3 to specify
parameterisation effects. Note, however, that the
presented extensions are independent from par-
ameterisation and can therefore also be used for
variability which is not related to parameters.

6.3 Specification of Parameterisation
Effects

In this section we discuss how parameterisation
can have an effect on term specification and how
these effects shall be specified. Specification ob-
jects on terminology level are term definitions,
relationships and constraints. If the meaning of
a term is variable (depending on a parameter),
all variants need to be described in the terms

short definition. (For reasons of clarity, how-
ever, one should avoid making the meaning of
a term parameter dependent. Instead one could
use a specialisation and define separate terms for
all variants.) Dependencies of a constraint on
parameter settings need to be explicitly covered
in the constraint. As we use natural language
this does not need special techniques – one must
only be careful to keep the constraint description
understandable.

The relationship specification between different
terms can be parameter dependent – variation
points are the participation in the relationship
itself as well as the cardinalities and roles of the
considered terms. The extended sentence build-
ing patterns from Sect. 6.2 provide a solution how
to express such variability in normative language.
These sentence building patterns are so far inde-
pendent of parameterisation and can generally
be used to specify variability. If the variability
depends on parameters it is necessary to spe-
cify this dependency in detail because missing
documentation about parameterisation effects
complicate the correct use of software (Mertens
et al. 1991).

Enterprise Modelling and Information Systems Architectures

Vol. 5, No. 2, October 2010

48 Jörg Ackermann, Klaus Turowski

Mandatory decomposition: (An | A) A consists of (a | an) B.

Optional decomposition: (An | A) A consist optionally of (a | an) B.

Alternative decomposition: Exactly one of the following statements holds: (an | a) A
consist of (a | an) B, (an | a) A consist of (a | an) C.

Optional alternative decomposition: At most one of the following statements holds:
(an | a) A consist of (a | an) B, (an | a) A consist of (a | an) C.

Or-decomposition: At least one of the following statements holds: (an | a) A consist
of (a | an) B, (an | a) A consist of (a | an) C.

Figure 9: Variable relationship types and associated sentence building patterns.

To specify how relationship variability is depend-
ent on parameters we follow two approaches in
parallel:

• We denote on which parameters the variabil-
ity depends using predefined sentences. For
this we define the additional sentence build-
ing pattern in Fig. 11. Corresponding sen-
tence fragments are added to variable relation-
ships (an example is given in the association
of Fig. 12).

• We specify in detail which parameter settings
result in the occurrence of which relationship
variant. Such specifications are included in
the constraint section and are done in natural
language (an example is also given in Fig. 12).

The detailed specification is necessary because
only so the exact effects of parameterisations can
be described. As these dependencies can be ar-
bitrarily complex it is quite elaborate to define
a complete set of sentence building patterns for
them. Therefore we utilise – as for all other
constraints – natural language specification. De-
claring additionally the parameter dependency
using sentence building patterns provides crucial
advantages: 1. Parameter dependencies can be
automatically retrieved – it becomes possible to
search for all effects one particular parameter
has. This is a big advantage compared to cur-
rent business applications where such inform-
ation can not easily be captured (Ackermann
2004). 2. The specification makes clear if a vari-
able relationship is parameter dependent (this

corresponds to so-called build-time operators in
reference data modeling; Schütte 1998).

Figure 12 shows how parameter dependent vari-
ability is described in the specification of the
term Storage Bin. The last relationship specifies
that a Storage Bin is either related to a Storage
Unit Type or to a Material or to none of them.
Which association is allowed is defined by the
parameter Flag storage unit types. This depend-
ency is detailed in the constraints where it is
specified how the parameter Flag storage unit
types (of the Warehouse the Storage bin belongs
to) restricts the allowed associations.

To summarise, our approach enables us to ex-
press variable relationships between different
terms (which frequently occur by parameterisa-
tion). Furthermore we explicitly denote on which
parameters a variability depends using normat-
ive statements – this enables us to automatically
retrieve places where parameter dependencies
occur. The complete specification how a variabil-
ity depends on a parameter is done as constraints
in natural language – a more formal approach
to specify constraints is desirable and a point for
future research.

To verify our solution proposal we confirmed
that our solution is powerful enough to specify
variability as identified by feature types in do-
main analysis (Czarnecki and Eisenecker 2000)
and by so-called build-time operators in refer-
ence data modeling (Schütte 1998). Moreover we

Enterprise Modelling and Information Systems Architectures

Vol. 5, No. 2, October 2010

Domain Level Specification of Parameterisable Business Components 49

Mandatory and optional decomposition with variable cardinalities and roles:
(A | An) A consists [optionally] [in role1 (or in role2)*] of (a | an | [number1 to]
(number2 | arbitrary many)) (or [number3 to] (number4 | arbitrary many))* B [in role3
(or in role4)*].

Alternative, optional alternative, or-decompositions:
(Exactly | At most | Al least) one of the following statements holds: expression1(,
expression2) +.
expression = (a | an) A consists [in role1] of (a | an | [number1 to] (number2 | arbitrary
many)) B [in role2]

Figure 10: Complete sentence building patterns for variable decomposition.

Declaration of parameter dependency:
– variability depends on parameter X1 [of parameter group Y1] (and on parameter X2
[of parameter group Y2])*.

Figure 11: Sentence building pattern for specifying parameter dependencies.

checked that the approach can express all param-
eterisation effects identified in Ackermann (2004)
that are relevant on terminology level and that all
terms of the exemplary component Warehouse-
Managment could be specified satisfactorily.

7 Specification on Task Level

In this section we propose how parameterisa-
tion properties can be specified on task level.
For that we distinguish between specification of
parameterisation tasks (Sect. 7.1) and specifica-
tion of parameterisation effects on business tasks
(Sect. 7.2). As business tasks are specified quite
similarly to business terms (cf. Sect. 4.3) our spe-
cification proposals for the task level resemble
the ones for the terminology level. Therefore
Sect. 7 does not so much introduce new specifi-
cation proposals but rather shows how to trans-
fer the ones from Sect. 6 to the task level and
serves in this way as another proof of concept.

7.1 Specification of Parameterisation
Tasks

In this section we develop a proposal how par-
ameterisation tasks (without its runtime effects)

can be specified. Top-level specification objects
are the parameterisation tasks themselves. Par-
ameterisation tasks are similar to business tasks
and therefore we propose to specify them analo-
gously.

Additionally to normal task specification we need
to consider two parameterisation-specific aspects
(cf. Sect. 5): 1. Parameterisation tasks must be
clearly recognisable as such and thus distinguish-
able from normal business tasks. 2. Specification
on task level should include information which
parameters are affected by a parameterisation
task. It is desirable that both types of informa-
tion are automatically retrievable. Therefore we
propose to specify these aspects in the relation-
ship category and introduce for that the new
sentence building patterns shown in Fig. 13.

Figure 14 displays an exemplary task specifica-
tion for the parameterisation taskDefine putaway
strategy. This task sets the related parameters
Putaway strategy and Flag storage unit types of a
Warehouse. The specification shows that Define
putaway strategy is a subtask of the task Manage

warehouses. Moreover, the constraint category

Enterprise Modelling and Information Systems Architectures

Vol. 5, No. 2, October 2010

50 Jörg Ackermann, Klaus Turowski

Term: STORAGE BIN

Short definition: A Storage bin (also storage slot) is the smallest available unit of
space within a WAREHOUSE that can be separately addressed.

Example: Storage bin 015-07-02 located at lane 015, shelf 07, area 02

Relationship:
A STORAGE BIN has an ID and a MAXIMAL CAPACITY.
A WAREHOUSE consists of 0 to arbitrary many STORAGE BIN.
A STORAGE BIN consists of 0 to arbitrary many WAREHOUSE STOCK.
At most one of the following statements holds: a STORAGE BIN is related to a
STORAGE UNIT TYPE, a STORAGE BIN is related to a MATERIAL – variability
depends on parameter FLAG STORAGE UNIT TYPES of parameter group
WAREHOUSE.

Constraints:
The number of WAREHOUSE STOCK for the STORAGE BIN must not exceed its
MAXIMAL CAPACITY.
If FLAG STORAGE UNIT TYPES is true (for the WAREHOUSE the STORAGE
BIN belongs to), then the STORAGE BIN is related to a STORAGE UNIT TYPE and
is not related to a MATERIAL.
If FLAG STORAGE UNIT TYPES is false (for the WAREHOUSE the STORAGE
BIN belongs to), then the STORAGE BIN is not related to a STORAGE UNIT TYPE
and can be related to a MATERIAL.

Figure 12: Specification of term Storage bin.

demands that the task Define warehouse must be
performed before Define putaway strategy.

7.2 Specification of Parameterisation
Effects

Now we discuss how parameterisation can ef-
fect task specifications and how to specify such
effects. Parameters can influence business task
definitions, relationships and constraints. Speci-
fication of such parameterisation effects will be
analogous to the specification on terminology
level. Variations in the definition (again not
recommended) or in constraints have to be in-
cluded into the natural language specification.
For variable relationships between different tasks
we use again special sentence building patterns.
For decomposition of tasks it is possible to use
the results from Fig. 10 analogously. Variants in a
specialisation are discussed below. If the variabil-
ity depends on a parameter, this is again denoted
using the sentence building patterns from Fig. 11.

Figure 15 depicts the necessary sentence build-
ing patterns when applying the six variability
types the specialisation relationship. The first
pattern describes the special case of a special-
isation with only one subtype and corresponds
to the mandatory and optional variability types.
The second sentence building pattern supports to
describe specialisation for the other four variabil-
ity types. Note that these four variants (deduced
from feature types) exactly correspond to the
following types of specialisation (in this order):
disjoint total, disjoint partial, non-disjoint total,
non-disjoint partial. The sentence building pat-
terns in Fig. 15 replace the pattern introduced
in Sect. 4.3 because the latter does not clearly
distinguish between the different types of spe-
cialisation.

As an example Fig. 16 shows how variability in
the business task Putaway Stock is specified. The
component supports three variants (Dynamic

Enterprise Modelling and Information Systems Architectures

Vol. 5, No. 2, October 2010

Domain Level Specification of Parameterisable Business Components 51

Z is a (mandatory | optional | conditionally optional) parameterisation task.

Z affects (parameter X1 | parameter X2 (and parameter X3)* of parameter group Y1 | pa-
rameter group Y2) (and (parameter X4 | parameter X5 (and parameter X6)* of parameter
group Y3 | parameter group Y4))*.

Figure 13: Sentence building patterns for parameterisation properties.

putaway, Static putaway, Manual putaway) how
the task can be performed – these variants are
specified as subtasks (it is a modeling decision
to decide if the differences in task variants are
big enough to justify defining separate subtasks).
In the relationship in Fig. 16 it is specified that
exactly one of the three subtasks is performed
when executing Putaway stock. Which one will
be picked depends on the parameter Putaway
strategy. By using sentence building patterns
it becomes again easy to retrieve the param-
eterisation dependencies (e.g., which tasks are
influenced by a given parameter). The constraint
of Fig. 16 describes the strategy finding in de-
tail: the material decides in which warehouse
a charge will be stored and the parameter Put-
away strategy of that warehouse decides which
strategy is used.

8 Assessment of Results

The last two sections introduced specification
proposals for the parameterisation properties of
business components. The correctness, complete-
ness and suitability of these specification propos-
als were evaluated in two ways:

• An extended analytical validation of the pro-
posals was conducted. As validation criteria
served the principles of correctness, relevance,
economic efficiency, clarity, comparability and
systematic design (taken from the Guidelines
of Modeling; Becker et al. 2000). This vali-
dation was performed in form of an analysis.
Main challenges of this analysis were to ex-
tend the GoM from modeling to specification
proposals and to ensure the consistency of the
approach across several specification levels.

By this comprehensive analysis we achieved a
validation in a broad sense.

• Two case studies were performed in which
parameterisable business components were
specified according to the specification pro-
posals. The business component Warehouse-

Management (an extended version of the one
introduced in Sect. 3) was constructed in such
a way that it featured a wide variety of poten-
tial parameterisation options and effects (as
identified in an analysis of parameterisation
properties; Ackermann and Turowski 2008). In
contrast to that, the second component Flight-
Ticketing already existed and was in practical
use. These two components were completely
specified on both domain and technical levels.
Based on these component specifications we
informally interviewed specification experts
(among them some from the industry) regard-
ing the specification approach and results.

The evaluation of the specification proposals (by
extended analysis, case studies and expert inter-
views) yielded the following central findings:

• The specification proposals permit the correct
and consistent specification of parameteris-
able business components. The completeness
of the proposals is presumed based on the
structured approach while identifying speci-
fication relevant parameterisation properties
and effects. The aspects of clarity, comparabil-
ity and systematic design were also considered
in the development of the specification propos-
als.

• A limitation must be noted for the economic
efficiency due to the rather large effort neces-
sary for authoring component specifications.

Enterprise Modelling and Information Systems Architectures

Vol. 5, No. 2, October 2010

52 Jörg Ackermann, Klaus Turowski

Task: DEFINE PUTAWAY STRATEGY

Short definition: The task of Define putaway strategy is to define for a WAREHOUSE
which PUTAWAY STRATEGY will be employed and if STORAGE UNIT TYPEs
shall be used.

Example: Choose for warehouse 001 (High-rack storage Munich) dynamic putaway
strategy and the use of storage unit types.

Relationships:
DEFINE PUTAWAY STRATEGY is a mandatory parameterisation task.
MANAGE WAREHOUSES consists of DEFINE PUTAWAY STRATEGY.
DEFINE PUTAWAY STRATEGY affects parameters PUTAWAY STRATEGY and
FLAG STORAGE UNIT TYPES of parameter group WAREHOUSE.

Constraints:
The task DEFINE PUTAWAY STRATEGY requires that the task DEFINE WARE-
HOUSE has been performed for the considered WAREHOUSE.

Figure 14: Specification of task Define putaway strategy.

This can be illustrated by the length of the
textual specification of componentWarehouse-

Management: 10 pages for the domain levels
and 36 pages for all specification levels to-
gether. It shall be noted, however, that this is
not specific for parameterisable components
but a general issue for the complete specifica-
tion of black-box components.

• Both case studies supported these findings:
the specification approach permitted the com-
plete and satisfactory specification of the com-
ponents but required high effort. One finding
of the case studies is particularly noteworthy:
the high effort is not only caused by inher-
ent complexity of parameterisation but also
(in our examples even more) by a high num-
ber of rather trivial conditions (like specifying
value range and optionality of parameters or
other data fields). Note that omitting these
conditions would contradict the completeness
requirement.

• The interviews yielded similar results: the
specification approach was judged as reason-
able and the specification results as satisfact-
ory and understandable. Concerns, however,
were raised by the high effort to produce (and
to consume) the specifications. Improvements

in the efficiency were seen as a prerequisite for
a wide-spread adoption in practice. Possible
directions for improvement include better sup-
port by specification tools and the utilisation
of specification patterns.

It should be noted that the introduced specifi-
cation proposals are intended for (and appropri-
ate for) business components with normal par-
ameterisation complexity. This focus is justified
by the results of an analysis that determined in
which adaptation scenarios the use of param-
eterisation is suitable (Ackermann and Turowski
2006). Technically it might also be possible to ap-
ply our approach to big, highly variable compon-
ents or even to whole application systems like
SAP ERP (although this is not the focus of the
paper). For such cases with highly complex par-
ameterisation, however, additional techniques
for efficient specification will be necessary be-
cause our approach by itself will not be economic
in such large scale.

9 Related Work

Component-based software engineering requires
the precise specification of software compon-
ents. Currently there exists no generally accep-

Enterprise Modelling and Information Systems Architectures

Vol. 5, No. 2, October 2010

Domain Level Specification of Parameterisable Business Components 53

Mandatory and optional specialisation:
A is [optionally] C.

Specialisation with variable subtypes:
(Exactly one | At most one | At least one | Any number) of the following variants hold: C is A (or B)+.

Figure 15: Sentence building patterns for variable types of specialisation.

ted and supported specification standard cov-
ering all relevant aspects. Various authors ad-
dressed specifications for specific tasks of the
development process as, e.g., design and imple-
mentation (Cheesman and Daniels 2001; D’Souza
and Wills 1998), component adaptation (Yellin
and Strom 1997) or component selection (Hemer
and Lindsay 2001). Approaches towards a com-
prehensive specification of software components
are few and include Han (1998), Beugnard et al.
(1999), Turowski (2002) and Overhage (2004). Its
consideration of technical and domain aspects
in one unified proposal is the main advantage
of Turowski (2002) and Overhage (2004). Param-
eterisation aspects are not discussed in the litera-
ture about component specification.

Adaptation is an important aspect of component-
based software engineering because in practice
components can rarely be reused without be-
ing adapted (Bosch 1997). Consequently adapta-
tion in component-based systems is discussed by
many authors – for an overview and a compar-
ison of different techniques see, e.g., Bosch (1997)
or Reussner (2001). Parameterisation is identified
as an adaptation technique by many authors, but
not discussed in detail. Specification aspects are
not covered in the literature about component
adaptation.

Integrated standard application suites like SAP
ERP allow complex parameterisation (also called
customising) which is often discussed in the lit-
erature. Many authors focus on process mod-
els and high-level configuration of business pro-
cesses (for SAP cf., e.g., Keller and Teufel 1998;

Appelrath and Ritter 2000). The detailed descrip-
tion of parameter settings, however, received
less attention. The quality of parameter docu-
mentation is often not sufficient – correlations
between parameters and the components func-
tionality become almost impossible to trace (Mer-
tens et al. 1991). Several works contain detailed
recommendations for parameter settings that are
specific for a software suite and a functional area
(e.g., Dittrich et al. 2006 for production planning
with SAP).

A general approach towards specification of par-
ameters and parameterisation effects, however,
does not exist.

Parameter settings typically influence the com-
ponents external view and must therefore be con-
sidered in a component specification. This earlier
unsolved issue was investigated in our research
project. This paper builds on earlier project re-
sults on parameterisable business components in
general and on technical level specification (Ack-
ermann 2003, 2004; Ackermann and Turowski
2008) and extends earlier results (Ackermann and
Turowski 2007).

Variability is an important issue in software en-
gineering and, e.g., relevant for configurable ref-
erence models (Becker et al. 2004; Schütte 1998),
software reuse (Jacobson et al. 1997), generic pro-
gramming (Czarnecki and Eisenecker 2000) and
the related product-line approach (Bosch et al.
2001). Their results form a methodical foundation
of our work.

The communication problems between inform-
ation system users and system developers are

Enterprise Modelling and Information Systems Architectures

Vol. 5, No. 2, October 2010

54 Jörg Ackermann, Klaus Turowski

Task: PUTAWAY STOCK

Short definition: The task of Putaway stock is to find suitable STORAGE BINs for a
number of units of MATERIAL and store them there physically.

Example: Store one euro palette of material ABC-XYZ – system assigns storage bin
015-07-02

Relationships:
Exactly one of the following variants holds: PUTAWAY STOCK is MANUAL
PUTAWAY or STATIC PUTAWAY or DYNAMIC PUTAWAY – variability
depends on parameter PUTAWAY STRATEGY of parameter group WAREHOUSE.

Constraints:
The parameter PUTAWAY STRATEGY (of the WAREHOUSE the MATERIAL is
stored in) decides which task to perform: If this parameter is set to DYNAMIC
(STATIC / MANUAL) PUTAWAY STRATEGY, then DYNAMIC (STATIC /
MANUAL) PUTAWAY is performed.

Figure 16: Specification of business task Putaway stock.

discussed in Ortner and Schienmann (1996). As
solution they propose to communicate via norm-
ative language, which is an ontology definition
language that is both machine and human-under-
standable and reduces the ambiguity of the nat-
ural language. The component specification ap-
proach Turowski (2002) proposes to use normat-
ive language for the component specification on
domain level.

10 Summary and Outlook

The paper discussed the specification of param-
eterisable business components on domain level.
We proposed how to specify parameters and par-
ameterisation tasks and we showed how param-
eterisation effects on business terms and busi-
ness tasks can be described. For that we exten-
ded the existing normative language for compon-
ent specification in such a way that it can be
used to describe parameterisation properties (in
a way that allows for automatic retrieval of this
information) and that enables to specify variable
relationships between terms and tasks.

The results of this paper form an important build-
ing block for the complete specification of param-
eterisable business components. They addition-
ally foster variability specification on domain

level independent from parameterisation. More-

over, the results of this paper are also interesting

for any software using parameterisation because

our approach is a first step towards general spe-

cification of parameterisation effects – a so far

unsolved issue.

Topics for future research include an investi-

gation if the constraints on domain level can

be completely specified using only predefined

sentence building patterns and the development

of the necessary patterns. Another interesting

issue is the question which role parameterisation

plays in the adoption of software services and (if

relevant) how parameterisable software services

can be specified.

References

Ackermann J. (2003) Specification Proposals
for Customizable Business Components. In:
Overhage S., Turowski K. (eds.) Proceedings
1st International Workshop Component En-
gineering Methodology. Erfurt, pp. 51–62

Enterprise Modelling and Information Systems Architectures

Vol. 5, No. 2, October 2010

Domain Level Specification of Parameterisable Business Components 55

Ackermann J. (2004) Zur Beschreibung
datenbasierter Parametrisierung von
Softwarekomponenten (in German). In:
Turowski K. (ed.) Architekturen, Kompon-
enten, Anwendungen – Proceedings zur 1.
Verbundtagung Architekturen, Komponen-
ten, Anwendungen (AKA 2004). Augsburg,
pp. 131–149

Ackermann J., Turowski K. (2008) Zentrale Ge-
genstände der Parametrisierung bei betrieb-
lichen Softwarekomponenten (in German).
In: Dinter B., Winter R., Chamoni P., Gronau
N., Turowski K. (eds.) Synergien durch Integ-
ration und Informationslogistik. Proceedings
zur DW 2008. St. Gallen, pp. 509–528

Ackermann J., Turowski K. (2006) Zur Rolle von
Parametrisierung bei der fachlichen Anpas-
sung betrieblicher Softwarekomponenten. In:
Schelp J., Winter R., Frank U., Rieger B., Tur-
owski K. (eds.) Integration, Informationslo-
gistik und Architektur – Proceedings zur
DW2006. Friedrichshafen, pp. 341–359

Ackermann J., Turowski K. (2007) On the Speci-
fication of Parameterizable Business Com-
ponents. In: Draheim D., Weber G. (eds.)
Trends in Enterprise Application Architec-
ture (TEAA 2006). Springer, Berlin, pp. 25–
39

Appelrath H.-J., Ritter J. (2000) SAP R/3 Imple-
mentation: Methods and Tools. Springer, Ber-
lin

Becker J., Rosemann M., von Uthmann C. (2000)
Guidelines of Business Process Modelling. In:
van der Aalst W., Desel J., Oberweis A. (eds.)
Business Process Management: Models, Tech-
niques and Empirical Studies. Springer, Ber-
lin, pp. 30–49

Becker J., Delfmann P., Knackstedt R. (2004)
Konstruktion von Referenzmodellierungs-
sprachen – Ein Ordnungsrahmen zur Spezi-
fikation von Adaptionsmechanismen für In-
formationsmodelle. In: WIRTSCHAFTSIN-
FORMATIK 46(4), pp. 251–264

Beugnard A., Jézéquel J.-M., Plouzeau N.,
Watkins D. (1999) Making Components Con-
tract Aware. In: IEEE Computer 32(7), pp. 38–

44
Bosch J. (1997) Adapting Object-Oriented Com-

ponents. In: Proceedings of the 2nd Inter-
national Workshop on Component-Oriented
Programming (WCOP ’97). Turku, Finland

Bosch J., Florijn G., Greefhorst D., Kuusela
J., Obbink H., Pohl K. (2001) Variability Is-
sues in Software Product Lines. In: Pro-
ceedings of the Fourth International Work-
shop on Product Family Engineering (PFE-4).
Springer, Bilbao, pp. 13–21

Cheesman J., Daniels J. (2001) UML Components.
Addison-Wesley, Boston

Conrad S., Turowski K. (2001) Temporal OCL:
Meeting Specification Demands for Business
Components. In: Siau K., Halpin T. (eds.) Uni-
fied Modeling Language: Systems Analysis,
Design and Development Issues. Idea Group,
Hershey, pp. 151–165

Czarnecki K., Eisenecker U. (2000) Generative
Programming: Methods, Tools, and Applica-
tions. Addison-Wesley, Boston

D’Souza D., Wills A. (1998) Objects, Compon-
ents, and Frameworks with UML: The Cata-
lysis Approach. Addison-Wesley, Reading

Dittrich J., Mertens P., Hau M., Hufgard A.
(2006) Dispositionsparameter in der Produk-
tionsplanung mit SAP: Einstellhinweise,
Wirkungen, Nebenwirkungen (in German),
4th ed. Vieweg, Wiesbaden

Geisterfer C., Ghosh S. (2006) Software Com-
ponent Specification: A Study in Perspect-
ive of Component Selection and Reuse. In:
Proceedings of the 5th International Con-
ference on COTS-Based Software Systems
(ICCBSS’06). IEEE Computer Society Press,
Orlando, pp. 100–108

Han J. (1998) A Comprehensive Interface Defin-
ition Framework for Software Components.
In: Proceedings of 1998 Asia-Pacific Software
Engineering Conference. Taipei

Hemer D., Lindsay P. (2001) Specification-based
retrieval strategies for module reuse. In:
Grant D., Sterling L. (eds.) Proceedings 2001
Australian Software Engineering Conference.
IEEE Computer Society, Canberra, pp. 235–

Enterprise Modelling and Information Systems Architectures

Vol. 5, No. 2, October 2010

56 Jörg Ackermann, Klaus Turowski

243
Jacobson I., Griss M., Jonsson P. (1997) Software

Reuse. ACM Press / Addison Wesley Long-
man, New York

Keller G., Teufel T. (1998) SAP R/3 Process-
oriented Implementation. Iterative Process
Prototyping. Addison Wesley Longman, Har-
low

Mertens P., Wedel T., Hartinger M. (1991)
Management by Parameters? (in German).
In: Zeitschrift für Betriebswirtschaft 61(5/6),
pp. 569–588

OMG (2004a) Common Object Request Broker
Architecture: Core Specification. Version
3.0.3, 2004-03-12. http://www.omg.org/

OMG (2004b) Unified Modeling Language:
Superstructure. Version 2.0, formal/05-07-
04. http : / / www . omg . org / technology /

documents

OMG (2006) Object Constraint Language. Ver-
sion 2.0, formal/06-05-01. http://www.omg.

org/technology/documents

Ortner E., Schienmann B. (1996) Normative Lan-
guage Approach: A Framework for Under-
standing. In: Thalheim B. (ed.) Conceptual
Modeling. ER ’96, 15th International Confer-
ence on Conceptual Modeling. Springer, Ber-
lin, pp. 261–276

Overhage S. (2004) UnSCom: A Standardized
Framework for the Specification of Software
Components. In: Weske M., Liggesmeyer P.
(eds.) Object-Oriented and Internet-Based
Technologies, Proceedings of the 5th Annual
International Conference on Object-Oriented
and Internet-Based Technologies, Concepts,
and Applications for a Networked World
(NOD 2004). Erfurt

Overhage S. (2006) Vereinheitlichte Spezi-
fikation von Komponenten – Grundlagen,
UnSCom Spezifikationsrahmen und An-
wendung. Ph.D. Thesis, Universität Augs-
burg, Augsburg

Overhage S., Turowski K. (2007) Service-
orientierte Architekturen – Konzept und
methodische Herausforderungen. In: Nis-
sen V., Petsch M., Schorcht H. (eds.)

Service-orientierte Architekturen. Chancen
und Herausforderungen bei der Flexibilis-
ierung und Integration von Unternehmen-
sprozessen. Deutscher Universitätsverlag,
Wiesbaden, pp. 3–17

Reussner R. (2001) The Use of Parameterised
Contracts for Architecting Systems with Soft-
ware Components. In: Proceedings of the
6th International Workshop on Component-
Oriented Programming (WCOP 2001). Buda-
pest

SAP (2005) SAP Implementation Guide (IMG).
In: Online Documentation for SAP ERP, Re-
lease 6.0. Walldorf

Schütte R. (1998) Grundsätze ordnungsmäßiger
Referenzmodellierung. Gabler, Wiesbaden

Turowski K. (ed.) Standardized Specification
of Business Components: Memorandum of
the working group 5.10.3 Component Ori-
ented Business Application System. Univer-
sity of Augsburg, Augsburg. http://www.

fachkomponenten.de

Yellin D., Strom R. (1997) Protocol Specifications
and Component Adaptors. In: ACM Transac-
tions on Programming Languages and Sys-
tems 19, pp. 292–333

Jörg Ackermann, Klaus Turowski

Chair of Business Informatics and Systems
Engineering
University of Augsburg
Universitätsstr. 16
86159 Augsburg
Germany
{joerg.ackermann |
klaus.turowski}@wiwi.uni-augsburg.de

