
Enterprise Modelling and Information Systems Architectures

Vol. 5, No. 1, July 2010

26 Linda I. Terlouw and Jan L.G. Dietz

Linda I. Terlouw and Jan L.G. Dietz

A Framework for Clarifying Service-Oriented
Notions

How to Position Different Approaches

Definitions on Service-Oriented Architecture (SOA) and Service-oriented Design (SoD) are often not clear or

even contradictory, which makes it hard to compare the various methodologies. We apply the Generic System

Development Process (GSDP), a conceptual framework for developing systems of any kind, and specialise it for

service-orientation. Using the resulting Service-Oriented Development Process, we position seven state-of-the

art methodologies for service-orientation based on two criteria. One is the coverage of the system development

process. The other criterion is the depth in which each of the development phases are dealt with.

1 Introduction

Most definitions of SOA (OASIS 2006; OMG 2006;

The Open Group 2006) mention the notion of ar-

chitecture, architectural style or paradigm, but

lack a clear definition of these notions. Next,

when a definition of architecture is provided, it is

usually the descriptive definition, meaning that

architecture is conceived as high-level models, re-

ferred to by names like ‘high-level components’

or ‘blue prints’. Among others, The Zachman In-

stitute for Framework Advancement (2007) uses

this notion: ‘Architecture is that set of design ar-

tifacts, or descriptive representations, that are rel-

evant for describing an object, such that it can be

produced to requirements as well as maintained

over the period of its useful life’. Another defini-

tion that is often adopted in the context of SOA is

the definition from the IEEE 1471 standard (Maier

et al. 2001): ‘the fundamental organisation of a

system embodied in its components, their rela-

tionships to each other, and to the environment,

and the principles guiding its design and evolu-

tion’. Apart from being unclear about the ex-

act relationship between architecture and design,

such definitions offer nothing new. The notion

of fundamental organisation existed already; it is

referred to by names like ‘global design’.

In this article we use the prescriptive notion of

architecture, i.e., we define architecture concep-

tually as the normative restriction of design free-

dom. Such a restriction is necessary and useful

because the design freedom of designers, par-

ticularly in the field of software engineering is

undesirable large. Practically, architecture is seen

as ‘a consistent and coherent set of design prin-

ciples that embody general requirements’ (Dietz

2008). So, we see a service oriented architecture

(SOA) as a consistent and coherent set of design

principles that need to be taken into account in

the development process of services. Erl (2007)

provides an overview of such principles. Note

that we use the term ‘SOA’ here in a narrow

sense: it refers to a particular architecture. SOA

in the broad sense could better be replaced by SO

(Service-Orientation), since the ‘A’ designates a

rather vague concept.

The contribution of this paper is to present a

clear terminology for SOA and SoD based on the

Generic SystemDevelopment Process (GSDP) (Di-

etz 2008; Hoogervorst and Dietz 2008). After-

wards, we position seven state-of-the-art method-

ologies for service-orientation based on their cov-

erage of the development process, i.e., we look

to what extent the different methodologies cover

all activities within our GSDP-based process, and

Enterprise Modelling and Information Systems Architectures

Vol. 5, No. 1, July 2010

A Framework for Clarifying Service-Oriented Notions 27

on the depth with which this is done. The GSDP

has been devised for the sake of understanding

the mental activity of designing systems of any

kind more profoundly than it is commonly the

case.

The remainder of this paper is structured as fol-

lows. Section 2 presents the GSDP and its spe-

cialisation for service-orientation. In section 3

we discuss several methodologies while section 4

presents their position in relation to the GSDP.

We give a brief summary of the methodologies

by applying them to an insurance company case

description in section 5. Finally, we draw our

conclusions in section 6.

2 The Service-Oriented Development
Process

The GSDP (cf. Figure 1) applies to the develop-

ment of systems of any type. Whether the system

is a software system, a car, or an enterprise, two

different perspectives can and must always be

distinguished: the function perspective and the

construction perspective (Dietz 2006, 2008). The

GSDP has been chosen for two reasons. First, it

provides very precise definitions of very funda-

mental notions regarding system development,

in particular the clear and useful distinction be-

tween function and construction. Second, it is

the only framework the authors know of that

contains a clear, appropriate, and unambiguous

notion of architecture.

The GSDP defines the most basic steps in a devel-

opment process. The starting point is the need

by some system, called the using system (US),

of a supporting system, called the object system

(OS). A clear distinction between the US and the

OS is often neglected, leading to blurred discus-

sions about the functionality of the OS. From

the white-box model of the US one determines

the functional requirements for the OS (function

design). These requirements are by nature formu-

lated in terms of the construction and operation

of the US. Consequently, they need to be fully

independent on the construction of the OS. The

next basic design step is to devise specifications

for the construction and operation of the OS, in

terms of a white-box model of the OS (construc-

tion design). For this design phase, the US may

provide constructional requirements, often also

called non-functional requirements.

A thorough analysis of the white-box model of

the OS must guarantee that building the OS is

feasible, given the available technology. In addi-

tion to the functional and constructional require-

ments, there may be functional and construc-

tional principles respectively. These design prin-

ciples are the operational shape of the notion of

architecture, as discussed in section 1. They gen-

erally hold for a class of systems. An example of a

functional principle is that man-machine dialogs

must comply with some standard. An example of

a constructional principle is that the applications

must be component-based. Ideally the construc-

tion design phase results first into an ontological

model of the OS, i.e., a white-box model that is

completely independent of its implementation.

Gradually this ontological model is transformed

into more detailed (and more implementation de-

pendent) white-box models, the last one being

the implementation model. This process is called

engineering (in the narrow sense). If the OS is

a software application, then the implementation

model would be the source code in some pro-

gramming language. The act of implementing

consists of assigning appropriate technological

means to the implementation model, e.g., run-

ning the source code on an appropriate platform.

2.1 Service Design

Both the black-box model and the white-box

model of an application are relevant to service-

orientation: the first for specifying and using

services and the second for building or changing

services. The design phase consists of two steps:

function design and construction design. Func-

tion design results into a black-box model. The

first, and highest level, white-box model that is

produced during the construction design is the

Enterprise Modelling and Information Systems Architectures

Vol. 5, No. 1, July 2010

28 Linda I. Terlouw and Jan L.G. Dietz

Figure 1: The generic system development process (Dietz 2006)

ontology or ontological model of the OS. The

term ontology originates from the field of philos-

ophy having the meaning ‘essence or existence’.

In our context we define ontology as follows (Di-

etz 2006): the ontology of a system is the under-

standing of the system’s operation that is fully

independent of the way in which it is or might be

implemented. Applying this to services we see

two phases in SoD: Service-oriented Function De-

sign (SoFD) and Service-oriented Construction

Design (SoCD). SoFD deals with identifying and

specifying the function of a service. Service iden-

tification is in our view the first step in SoFD. It

deals with identifying candidate services. The

central question is ‘What services are required

in the scope of the enterprise (or enterprise net-

work)?’. The process of service specification (in-

cluding Quality-of-Service requirements) is part

of SoFD as well, since it specifies the external

behaviour of a service without caring about its

internals. Once the specification is available one

can design the construction of a service.

SoCD thus starts with producing the ontological

model of the service. A service needs to be con-

structed in such a way that it conforms to the

constructional principles of the applicable archi-

tecture. A common classification of services is

that of atomic and composite services. For the

service consumer there is no notable difference in

which way the service provider constructs a ser-

vice. Composite services can be constructed by,

for instance, orchestration (e.g., BPEL) or assem-

bly (SCA Open SOA 2007). Since there is no lan-

guage for modelling services at the highest (on-

tological) level, one might consider a (high-level)

class diagram to do this job for object-oriented

modelling.

2.2 Service Implementation

The implementation of the object system is the

assignment of technology to the lowest-level

white- box model (the implementation model).

Hoogervorst and Dietz (2008) use technology

in the broadest possible meaning, e.g., human

Enterprise Modelling and Information Systems Architectures

Vol. 5, No. 1, July 2010

A Framework for Clarifying Service-Oriented Notions 29

beings, software systems, electronic machines.

Service Implementation (SI) deals with mapping

the implementation model to computer systems.

This is the phase in which the services are de-

ployed. Most enterprises have at least two test

environments to deploy to after the service has

been developed: a test environment for verifica-

tion (checking whether the service matches the

specifications) and one for validation (checking

whether the service is useful to potential ser-

vice consumers). So both the developers and the

end-users have their own, independent test envi-

ronment to suit their own purposes. Both tests

can lead to repeated execution of previous steps

in the design process and redeployment to the

test environment. Finally, the service is deployed

to the production environment.

2.3 Service-Oriented Architecture

As said before, the architecture of a system con-

sists of the design principles that have been or

are going to be applied in designing the system.

As stated in section 1 we define SOA as a con-

sistent and coherent set of design principles that

need to be taken into account in the development

process of services. The functional principles

deal with the external function and behaviour of

a service, e.g., ‘A service must directly support

an activity within a business process’ or ‘A ser-

vice must be compliant with the Dutch law’. The

constructional principles deal with the internal

construction and operation of the service, e.g.,

‘A service must be constructed with commercial-

of-the-shelf components’ or A composite service

must be created by using BPEL. Table 1 sum-

marises the terminology explained in this sec-

tion.

3 Methodologies

This section presents the state-of-the-art method-

ologies for service-orientation. We selected seven

methodologies that are described in scientific pa-

pers or books (i.e., not in confidential business

documents). In our eyes these are the service-

oriented methodologies that are discussed in most

detail, but we do not imply that this is a limita-

tive list. These methodologies appear to be either

generic, i.e., having a broad scope and focusing

mainly on which steps to take and not how to

execute the steps, or specialised, i.e., focusing on

a specific part and covering it in-depth. In this

section we apply the terminology as used by the

authors of the papers describing the methodolo-

gies. In section 4 we will map the design steps of

these methodologies to those of the GSDP.

3.1 SOAF

The consulting company Infosys Technologies de-

veloped the Service Oriented Architecture Frame-

work (SOAF) (Erradi et al. 2006). The goal of

SOAF is to devise a systematic and repeatable

process for implementing SOA. SOAF combines

top-down modelling of business processes with

the bottom-up analysis of the existing applica-

tions. The authors do not mention the origins of

SOAF explicitly, except for past experiences with

SOA in practice.

SOAF describes a number of activities that need

to be performed for migrating to a service-orien-

ted environment. Also, it describes the inputs

required by a certain activity and the deliverables

created by it. The activities are grouped into

several phases. From the total of 19 deliverables,

6 are marked being most important. Not all of the

activities are discussed in the article. The phases

of SOAF are:

1. Information Elicitation
2. Services Identification and Matching
3. Services Realisation
4. Roadmap and Planning

3.2 P&H

Papazoglou and Van den Heuvel (University of

Tilburg) propose the SoD and Development me-

thodology (Papazoglou and Heuvel 2006), which

from now we call P&H. The authors not only pro-

vide an overview of the activities required to mi-

grate to a service-oriented environment, but they

Enterprise Modelling and Information Systems Architectures

Vol. 5, No. 1, July 2010

30 Linda I. Terlouw and Jan L.G. Dietz

Table 1: Terminology derived from applying GSDP to services

Term Meaning End result

SOA a coherent set of design prin-
ciples that need to be taken
into account in development
process of services

all services in scope con-
forming to the same princi-
ples

Service-Oriented Function
Design

deals with the design of the
function of the service

the service specification of
an identified service

Service-Oriented Construc-
tion Design (including Ser-
vice Engineering)

deals with the design of
the highest-level white-box
model and with the de-
composition of the highest-
level white-box model to
the lowest-level white-box
model

the full design of the inter-
nals of the service

Service Implementation deals with the mapping of
the lowest-level white-box
model to technology, i.e., the
deployment of services

the deployed service

also explain some of the architectural principles

that apply to the functional and constructional

design of services, e.g., functional service cohe-

sion, communicational service cohesion, identity

coupling, and communication protocol coupling.

This methodology is partly based on other re-

lated development models, such as the Rational

Unified Process (RUP), Component Based Devel-

opment and BPM. The authors’ starting point

is the idea that a good methodology for service-

orientation is based on an iterative and incremen-

tal process and that it concentrates on business

processes. The phases of P&H are:

1. Planning
2. Analysis
3. Service Design
4. Service Construction
5. Service Test
6. Service Provisioning
7. Service Deployment
8. Service Execution
9. Service Management and Monitoring

3.3 SOMA

IBM proposes Service-Oriented Modeling and

Architecture (SOMA) as a methodology. The first

version was presented in 2004. SOMA is an exten-

sion to existing IBM analysis and design method-

ologies, including the Global Services Method, a

methodology used by IBM Global Services, and

the Rational Unified Process, a method for soft-

ware development widely adopted in industry.

SOMA started out as an IBM Global Services

Method. Meanwhile IBM was working on SOA

specific extensions to the Rational Unified Pro-

cess. In 2006 the people working on both ini-

tiatives joined forces. In 2006 an overview of

the method (Arsanjani and Allam 2006), consist-

ing of three phases, was published. Recently

(2008), a more detailed article (Arsanjani et al.

2008) on SOMA has been published. Two addi-

tional phases were added. As far as we know,

SOMA has no strong theoretical basis. Instead

it is based on a large number of project expe-

Enterprise Modelling and Information Systems Architectures

Vol. 5, No. 1, July 2010

A Framework for Clarifying Service-Oriented Notions 31

riences over 2002–2004 (Arsanjani 2006). SOMA

distinguishes between the following five major

phases:

1. Identification
2. Specification
3. Realisation
4. Implementation
5. Deployment, Monitoring, and Management

3.4 BCI3D

Business Component Identification 3D (BCI3D)

(Albani and Dietz 2005) is a methodology for iden-

tifying business components, i.e., software com-

ponents that directly support the business pro-

cesses, using clustering algorithms. Also, it iden-

tifies the services by which the business compo-

nents interact. The calls between these business

components are regarded as the highest level ser-

vices an organisation requires. BCI3D comprises

the following phases:

1. Enterprise Ontology modelling
2. Relationship Weight Definition
3. Application of Clustering Algorithm

3.5 Business Element Approach

McGovern et al. (2006) describe the Business Ele-

ment Approach in their book ‘Enterprise Service

Oriented Architectures’. Its main goal is to make

it possible to trace changes to business processes

or rules quickly and unambiguously to one or

more specific components. The Business Element

Approach has it roots in Component Based De-

velopment methodologies. The following phases

belong to the Business Element Approach:

1. Requirements Definition.
2. Business Element Analysis
3. Mapping to Components

3.6 Goal-driven approach

The goal-driven approach (Levi and Arsanjani

2002) derives services from business goals. The

services are depicted in a Goal Service Graph

and they are allocated to enterprise components.

This Goal Service Graph provides traceability of

IT services to business goals. These enterprise

components are identified by clustering highly

interdependent (coupled) use cases. One of the

authors of the article on the goal-driven approach

also co-authored the article on SOMA we used

in our paper. The goal-driven approach finds

its basis in the world of Component Based De-

velopment and Object-Oriented analysis and de-

sign methods. Also, it builds upon formal gram-

mar specification to define domain-specific lan-

guages. SOMA (Arsanjani et al. 2008) mentions

this method as one of the possible methods for

service identification. The goal-driven approach

consists of:

1. Domain Decomposition
2. Subsystem Analysis
3. Creation Goal Model
4. Service Allocation
5. Specification of Enterprise Components
6. Structuring Enterprise Components

3.7 SMART

The Service-Oriented Migration and Reuse Tech-

nique (SMART) (Lewis et al. 2005) is a methodol-

ogy that describes in detail on how to construct

services from legacy systems. SMART takes into

account that in practice it is often not easy to con-

struct services from legacy systems. Since almost

no organisation has the luxury to build up its

entire IT-environment from scratch, it is impor-

tant to recognise the risk involved in migrating

to a service-oriented environment. According

to SMART an organisation needs to thoroughly

assess the capabilities of its legacy systems and

carefully analyse the risk of migrating. SMART

is developed by the Software Engineering In-

stitute (SEI). The US DoD sponsored the work.

SMART was derived from the Options Analy-

sis for Reengineering (OAR) method (Smith et

al. 2002). The phases of SMART are (Lewis et al.

2005):

1. Establish Stakeholder Context
2. Describe Existing Capabilities

Enterprise Modelling and Information Systems Architectures

Vol. 5, No. 1, July 2010

32 Linda I. Terlouw and Jan L.G. Dietz

3. Analyse Gap between Service-Based State and

Existing Capabilities
4. Develop strategy for service migration

4 Positioning the Methodologies

In this section we investigate to what extent the

different methodologies cover the GSDP-based

service-oriented development process. Table 2

exhibits the mapping of seven methodologies,

in alphabetic order, to the service-oriented de-

velopment process derived from the GSDP. The

vertical axis consists of the phases of the method-

ologies as described in section 3. The horizontal

axis comprises the phases of the specialised ver-

sion of the GSDP.

BCI3D deals with SoFD only. It identifies services

working from business models but it does not

deal with how the business components offering

these services are constructed. The same thing

holds for the specialised methodologies Business

Element Approach and Goal Driven Approach.

The only specialised methodology that has a dif-

ferent focus is SMART. This methodology focuses

on the whole SoCD phase (including Service En-

gineering (SE)), since it looks at how legacy sys-

tems can implement the identified candidate ser-

vices. It assumes other methodologies are ap-

plied for acquiring these candidate services. The

SMART phase of establishing stakeholder con-

text is not really a design activity; it takes place

before the actual development process starts.

Looking at the generic methodologies, we see

that P&H and SOMA have the broadest scopes.

SOAF does not cover the SI phase. Let us have a

closer look at these three methodologies.

SOAF’s information elicitation and its service

identification and matching phase both deal with

service function design. The latter, however, also

deals with service construction design as the ease

of composition is also taken into account. The

SOAF realisation phase places more emphasis

on SoCD and the decomposition of the highest-

level white-box model into lower-level white-box

model, viz. SE. The planning of the deployment

of the service takes place in the SOAF Roadmap

and Planning phase. The phase does not deal

with the deployment itself.

In the planning phase of P&H some decisions

about the function and construction of the ser-

vices are taken like the business processes they

need to support and the existing systems that

can be used for implementation. The thorough

function design of the services takes place in the

analysis and service design phases, after which

the construction takes place in the service con-

struction phase. Testing belongs both to the SoFD

and to the SoCD phase as it is concerned with

testing the function as well as the construction

(links between the components) of a service. The

methodology explicitly mentions the service de-

ployment step (the SI phase).

In the paper from 2006 (Arsanjani and Allam

2006) SOMA consists of three phases: identifi-

cation, specification, and realisation. In later

work (Arsanjani et al. 2008) two phases are added:

(i) implementation, and deployment, and (ii) mon-

itoring, and management. However, these two

phases are not discussed in detail in the new pa-

per (they are said to be out of scope). SOMA’s

identification phase as well as its specification

phase both map to the SoFD phase of the GSDP.

The SOMA realisation phase as well as its imple-

mentation phase deal with the construction of

services (SoCD). Finally, the deployment, moni-

toring, and management phase deals with SI.

In both SOMA and P&H the authors speak of

activities like ‘monitoring’ and ‘management’.

However, we do not consider these activities to

be part of the development process for services

as defined in the GSDP. These activities deal with

the operation of the system instead of with its

development. The amount of detail in which

the phases of the generic methodologies are de-

scribed is the largest in P&H. Also, this method-

ology does not only deal with the steps that need

to be performed in the service design process, but

also emphasises the principles applied during the

Enterprise Modelling and Information Systems Architectures

Vol. 5, No. 1, July 2010

A Framework for Clarifying Service-Oriented Notions 33

design process. These six design principles focus

on minimising the coupling between services.

5 A Brief Summary of the
Methodologies

In this section we analyse the methodologies us-

ing an insurance company case. For this com-

pany, called Protector, we provide examples on

how the different methodologies would work.

The business models from these case are derived

from a real-world insurance company. For the

sake of simplicity, we only show part of the mod-

els.

5.1 Introduction

Protector, an insurance company, sells three types

of life insurance products. The first type of prod-

uct, the term life insurance, protects the bene-

ficiaries of a policy from the financial damage

they suffer in case the insured dies during the

policy term. The second type, pension insurance,

can be seen as an insurance that protects the in-

sured from a large income loss if he reaches his

pension age or that protects his life partner and

young children from large income loss after the

insured (would have) reached his pension age in

case of the insured’s death. The third type, the

capital sum insurance, is an insurance for build-

ing up capital. When the end date of the policy

is reached, then the benefit will be paid in a sin-

gle payment. This product type is, for instance,

suitable for saving money to pay off a mortgage.

Protector offers multiple products of each type.

Figure 2 depicts the relationship between the rele-

vant information objects in UML notation. When

a certain insured person would cause a high risk

for Protector, because for example the insured

amount is high, then the policies are reinsured by

a reinsurer. This means that a part of the insured

amount is insured by the reinsurer in order to

spread the risk.

Protector has two main business goals for the

next 5 years: (i) standardising their product port-

folio and (ii) increasing customer satisfaction.

Currently, the company tends to create new prod-

ucts for almost every corporate client, which re-

sults in huge policy management problems. The

company wants to improve its product manage-

ment process and restrict the freedom of sales

employees in defining their own new products.

Customer satisfaction is low because it takes a

long time to process changes to a policy. Also,

clients are complaining about the lack of support

of self service through the Internet. The client

has to contact the company by phone or mail.

Table 3 exhibits the six main software systems of

Protector. Protector is considering replacement

of the legacy systems.

5.2 SoFD in BCI3D

Recalling subsection 2.1, we decompose the SoFD

phase into service identification and service spec-

ification. They respectively deal with determin-

ing what services are required and with doc-

umenting the external behaviour of a service.

BCI3D has the Enterprise Ontology as a starting

point. Figure 3 shows parts of the so-called Ac-

tor Transaction Diagram (ATD) and Transaction

Result Table (TRT) of the Enterprise Ontology of

Protector.

The ATD depicts the actor roles and the trans-

action kinds. For example, CA03 is the initiator

of transaction kind T05, of which A05 is the ex-

ecutor (indicated by the small black colored box).

A05 is also initiator of T26 and T27. The TRT

lists the transaction kinds and their result types

(in which a word in iltalics denotes a variable).

BCI3D uses the state model (an information ob-

ject model) of the Enterprise Ontology. The state

model is denoted in an ORM-based language. It

combines the information objects as defined in

Figure 2 with the result types of transactions. For

instance, the object ‘Policy’ would be associated

with the result type of the transaction ‘Policy

Quotation’, i.e., policy pol is quoted. It would go

too far to explain the complete DEMO methodol-

ogy that is used for creating this models. Its main

Enterprise Modelling and Information Systems Architectures

Vol. 5, No. 1, July 2010

34 Linda I. Terlouw and Jan L.G. Dietz

Table 2: Classification of methodologies for service-orientation

Methodology Phase SoFD SoCD SI

BCI3D Enterprise Ontology modelling O - -
Relationship Weight Definition O - -
Application of Clustering Algorithm O - -

Business Element Approach Requirements Definition O - -
Business Element Analysis O - -
Mapping to Components O - -

Goal Driven Approach Domain Decomposition O - -
Subsystem Analysis O - -
Creation Goal Model O - -
Service Allocation O - -
Specification of Enterprise Components O - -
Structuring Enterprise Components O - -

SOAF Information Elicitation O - -
Services Identification and Matching O O -
Services Realisation - O
Roadmap and Planning - - -

P&H Planning - - -
Analysis O - -
Service Design O - -
Service Construction - O -
Service Test O O -
Service Provisioning O - -
Service Deployment - - O
Service Execution - - -
Service Management and Monitoring - - -

SOMA Identification O - -
Specification O - -
Realisation - O -
Implementation - O -
Deployment, Monitoring, and Management - - O

SMART Establish stakeholder context - - -
Describe existing capabilities - O -
Describe the future service-based state - O -
Analyse the gap - O -
Develop strategy for service migration - O -

Enterprise Modelling and Information Systems Architectures

Vol. 5, No. 1, July 2010

A Framework for Clarifying Service-Oriented Notions 35

Figure 2: Information Object Diagram for Protector

idea is to make two types of abstractions in busi-

ness models. The central notion of the enterprise

ontology is the transaction, which is a pattern of

coordination acts required to achieve a produc-

tion result. Capturing these acts together in one

transaction, because they constitute a universal

pattern, leads to the first reduction in the size of

the models. The second reduction of the size is

achieved by considering only the so-called onto-

logical production acts, leaving out infological

and datalogical ones. The models most relevant

for BCI3D are the interaction model, of which

the ATD is a notation, and the state model.

Based on architectural principles the user of the

method can set weights to the relationship be-

tween transactions, between transactions and

information objects, and between information

objects. An example of such a principle is ‘infor-

mation objects with a parent-child relationship

should reside in one component’. This principle

would result in a very high weight for the re-

lationship between information objects having

a parent-child relationship. Let us assume that

payment management and policy management

are recognised as components. In that case ‘Com-

mission Payment’ could be a service offered by

the payment management component to the pol-

icy management component, because this policy

management component needs to issue a com-

mission payment to an agent after a policy bind-

ing. BCI3D does not deal with service specifica-

tion.

5.3 SoFD in the Business Element
Approach

The Business Element Approach does not require

the business goals as input. It only uses the in-

formation objects model and the process model.

The criteria for identifying Resource Business El-

ements (RBE’s) are whether they are ‘real’ and

‘independent’. ‘Real’ means that a Subject Matter

Expert (SME) both uses and understands it. An

‘independent’ resource is one that somebody can

talk about without first saying to what it belongs.

As our information object model is constructed

together with SME’s all objects in it are ‘real’.

The policy object is an ‘independent’ resource,

the benefit payment, insurance benefit, and in-

Enterprise Modelling and Information Systems Architectures

Vol. 5, No. 1, July 2010

36 Linda I. Terlouw and Jan L.G. Dietz

Transaction Result type

T01 Product advising product advice adv is created
T04 Policy quotation policy pol is quoted
T05 Policy binding policy pol is bound
T06 Premium payment premium is paid for policy pol for premium period

per
T07 Voluntary deposit voluntary deposit is made for policy pol
T17 Reinsurance of policies policy collection pco is reinsured for period per
T18 Reinsurance premium payment reinsurance premium is paid for policy collection

pco for period per
T26 Commission payment commission com is paid
T27 Policy underwriting underwriting for policy pol has been done

Figure 3: ATD and TRT of Protector

surance premium objects are not. In the example

given by the authors, roles are also explicitly

modeled as objects, which is not the case in our

model. We can, therefore, also consider the fol-

lowing objects as auxiliary resource elements:

insurant, insured, and beneficiary. This leads to

the RBE depicted in Figure 4.

Now the services are identified by process de-

composition. We look at the top-level immediate

steps defined in the process model (i.e., a step

‘that is required to complete as soon as possible,

Enterprise Modelling and Information Systems Architectures

Vol. 5, No. 1, July 2010

A Framework for Clarifying Service-Oriented Notions 37

Table 3: Software Systems of Protector

System Purpose

Siebel A CRM for managing data related to
reinsurers, insurants, beneficiaries,
and insured persons

InterAgent A custom-made system for manag-
ing data related agents, the advices
they provide, and the commission
they receive

OmniPayment A custom-made system for paying
insurant benefits to beneficiaries,
for paying reinsurance premium to
the reinsurer, and for pay commis-
sion to agents

DirectPolicy A newly acquired commercial sys-
tem suitable for pension and capital
sum policy administration. This sys-
tem can be used for self-service over
the internet.

DinoPolicy A legacy system for pension pol-
icy administration that can only be
used by employees of Protector

TermPolicy A legacy system for term life and
capital sum policies that can only
be used by employees of Protector

and whose intermediate states are of no concern

to the business in that they are not required to

be remembered after the process has completed’).

After that, the subsidiary immediate steps are de-

fined. Finally, the services are grouped in SBE’s

by grouping the steps by RBE. In our case this

lead to the results exhibited in Table 4.

A DBE is ‘a grouping of Service and Resource

Business Elements that together deliver a busi-

ness solution to a business problem, and which

provides services to requesters’. In our case ex-

ample DBE’s are Product Management, which

contains the Product Service SBE and the Prod-

uct RBE, and Policy Management, which contains

the Policy Service SBE and the Policy RBE, the

Person RBE, and the Company RBE.

The method does not deal with service specifica-

tion.

5.4 SoFD in the Goal-Driven Approach

When applying the goal-driven approach, we

first define the component boundaries in terms of

business processes. A possible business process

division is:

• Product Portfolio Management
• Customer Relationship Management
• Quotation
• Policy Management
• Reinsurance

In the E-bazaar example (Levi and Arsanjani

2002) given by the authors, these major business

process areas are broken down into lower level

business processes. E.g., product portfolio man-

agement can be decomposed as follows: Product

Portfolio Management = {Product Development,

Product Addition, Product Removal}.

Once the structure of the components is identi-

fied through domain composition and subsystem

analysis, we can identify services using Goal Ser-

vice Graphs. Working from the two business

goals mentioned in the case description, we con-

struct the Goal Service Graph as depicted in Fig-

ure 5. We decompose these business goals until

we get a set of services that will achieve a certain

goal.

In the service allocation step we assign services

to the components. We can map the ‘Calculate

risk for product’ and the ‘Check for duplicate

products’ services to the ‘Product Portfolio Man-

agement’ component. In the process of develop-

ing a new product, we need to calculate the risk

involved in a certain product (mostly by statisti-

cal analysis). The second service is used in the

process of adding new products to the portfolio

to decide whether it is sensible to start working

on a new product.

Enterprise Modelling and Information Systems Architectures

Vol. 5, No. 1, July 2010

38 Linda I. Terlouw and Jan L.G. Dietz

Table 4: Two of the SBE’s of Protector

SBE Service Subsidiary Immediate
Steps

Policy Service Request Quotation Validate Client Data
Record Client Data
Validate Policy Related Data
Record Policy Related Data
Send Receival Confirmation
Letter

Change Policy Validate Requested Changes
Calculate Risk Involved
With Changes
.....

.....
Product Service Add Product to Portfolio Check for Duplicate Prod-

ucts
Insert Product

Remove Product from Port-
folio
.....
Develop Product Make Initial Product Design

Calculate risk for product
Make Product Final
.....

.....

When looking at the second step of SoFD (ser-

vice specification), the authors speak about En-

terprise Component Specification. They address

the following three key ingredients of such a

specification: services (interfaces), contracts, and

manners. Services (interfaces) specify ‘what ca-

pabilities the component provides to support the

business goals and processes, what it requires to

do so, and an abstract specification of the design

of how the services realise goals’. Contracts refer

to the specification of pre- and post-conditions

of each service and the sum total of which ser-

vices are provided and required by the compo-

nent. Manners specify ‘how the component in a

given state should behave within a given context;

which subset of rules to check once an event has

been triggered’.

5.5 SoFD in SOAF

SOAF positions service identification as an it-

erative process for arriving at an optimal set

of services. The authors propose a hybrid ap-

proach combining top-down domain decomposi-

tion along with bottom-up application portfolio

analysis. The activities result in a list of candi-

date services that further needs to be rationalised

and consolidated. The activities are not discussed

in sufficient detail for enabling us to apply the

ideas to our case.

Service specification is called service description

in SOAF. The following aspects are considered to

be part of the service specification: the service

interfaces and data types of exchanges messages,

the behavioural model of the service including

the supported message exchange patterns (e.g.,

one-way / notification or request-response), the

Enterprise Modelling and Information Systems Architectures

Vol. 5, No. 1, July 2010

A Framework for Clarifying Service-Oriented Notions 39

Figure 4: One of the RBE’s of Protector

1. Standardise product portfolio
a) Migrate expired policies to new standard-
ised products based policies
• ConvertPolicy

b) Apply strong product management
• Check for duplicate products

• Calculate risk for product

2. Increase customer satisfaction
a) Decrease change processing time
• Search for policy

• Calculate effects of change

b) Enable self service through the Internet
• Request quotation

• Request policy

• Change policy

Figure 5: Goal Service Graph

supported conversation and temporal aspects of

interacting with the service, and the service pol-

icy. The service ‘BindPolicy’ might comprise the

specification elements exhibited in Table 5.

5.6 SoFD in P&H

P&H deals with service identification, though not

in much detail. We were not able to identify ser-

Table 5: Example of part of a service specification in
SOAF

Bind Policy

Exchange pattern Request-response
Input Id of policy data object
Output DateTime of the moment

of binding
Preconditions Policy pol has been cre-

ated
Policy pol has been un-
derwritten

Effect Policy pol is bound
Availability 99,5%
Required protocols XML Encryption

XML Signature

vices from our case using this methodology. The

authors, quoting Johnston (2005), mention the fol-

lowing service specification elements: structural

specification, behavioural specification, and pol-

icy specification. Structural specification refers

to how the interface, specified in the Web Ser-

vice Definition Language (WSDL), is structured,

e.g., messages, port types, and operations. The

paper does not discuss how this relates to service-

oriented environment that do not use Web ser-

vices. The behavioural specification deals with

understanding the effects and side effects of the

services (called ‘operations’ by the authors) and

the semantics of input and output messages. In

our case the behavioural specification of the ser-

vice ‘Bind Policy’ could state how the consumer

cannot be used if the policy is not created and un-

derwritten first. The policy specification denotes

policy assertions and constraints on the service.

These assertions may cover security, manageabil-

ity, etc. In our case policy specifications might

be that the Bind Policy services (i) uses XML

Encryption and (ii) is available 99,5% of the time.

5.7 SoFD in SOMA

For the process of service identification SOMA

mentions three main complementary techniques:

Enterprise Modelling and Information Systems Architectures

Vol. 5, No. 1, July 2010

40 Linda I. Terlouw and Jan L.G. Dietz

goal service modelling, domain decomposition,

and existing asset analysis. For the domain de-

composition the authors refer to a technique

called variation-oriented analysis and design (VO-

AD). Existing asset analysis takes a bottom-up

approach; it looks at the existing application port-

folio and other assets and standards that may

be used in identifying good candidate services.

We already explained the goal-driven approach

in subsection 5.4. In the paper we used as a

source for writing this subsection, the mentioned

goal service modelling and domain decomposi-

tion techniques were combined. When applying

the existing asset analysis approach, we could

suggest candidate services like ‘Pay Reinsurance

Premium’ offered by the OmniPayment applica-

tion and ‘Create Term Life Policy’ offered by the

TermPolicy application.

SOMA addresses the importance of service speci-

fication. The specification describes the follow-

ing aspects of a service (called ‘operation’ in the

paper): non-functional requirements, input, out-

put, and error messages. Also, the authors men-

tion a context diagram, i.e., ‘the service ecosys-

tem for a group of related services illustrating

service consumers and service providers and in-

dicating the flow of messages between services

and the various underlying systems that imple-

ment them’. In our eyes the underlying systems

that implement the services would not belong to

the service specification.

5.8 SoCD in SOAF

SOAF does not describe in detail what steps to

take for SoCD, but it does present a taxonomy of

service realisation approaches. The precise steps

depend on the approach taken. The taxonomy

distinguishes between non-invasive and invasive

approaches. Non-invasive service enablement is

defined as ‘a tactical approach to align existing

systems to business needs through wrapping by

using new layers of flexible technologies such

as Enterprise Application Integration (EAI) so-

lutions, messaging tools, and recently with stan-

dardised interfaces using web services’. Invasive

transformation is defined as ‘a strategic approach

that aims to revitalise and streamline the appli-

cation portfolio to ease maintenance, extension,

and interoperability’. In our Protector case this

means the following. Let’s say we need a service

for ‘Policy Quotation’. A non-invasive approach

would be constructing a service by screen scrap-

ing a legacy application like DinoPolicy or by

creating a Java DataBase Connectivity (JDBC)

adapter for an existing database to get some addi-

tional required data. In an invasive approach, one

would reconsider the current application land-

scape. Examples are to reengineer Dinopolicy to

include the additional data or to buy a COTS sys-

tem that comprises the complete functionality.

5.9 SoCD in P&H

The authors discuss the following possibilities

for creating a service: (i) starting from scratch,

(ii) use an existing application to construct the

service, and (iii) compose a new service from

other services. They discuss green-field devel-

opment, top-down development, bottom-up de-

velopment, and meet-in-the-middle development.

Green-field development assumes that first the

service is constructed and then the service inter-

face is generated. Top-down development starts

with a service interface after which the service

is constructed. Bottom-up development assumes

the service interface is developed from an exist-

ing application. Meet-in-the-middle refers to the

mapping of an already existing service interface

(for which the service is already constructed) to

a new service definition.

5.10 SoCD in SOMA

In the paper from 2006 (Arsanjani and Allam

2006) SOMA consists of three phases: identifi-

cation, specification, and realisation. In later

work (Arsanjani et al. 2008) two phases are added:

(i) implementation and deployment, and (ii) mon-

itoring, and management. However, these two

phases are not discussed in detail in the new pa-

Enterprise Modelling and Information Systems Architectures

Vol. 5, No. 1, July 2010

A Framework for Clarifying Service-Oriented Notions 41

per (they are said to be out of scope). We can con-

clude from the paper that the following activities

in the Realisation phase belong to SoCD: Refine

and detail components, Establish realisation deci-

sions, Perform technical feasibility exploration.

Also, the construct, generate and assemble ser-

vices step of the Implementation phase belongs

to SoCD. During the technical feasibility step

prototypes are built that exercise the realisation

decisions and that have the highest potential im-

pact and risk to the non-functional requirements.

In our case we could imagine that an important

decision for a Policy Quotation Service is secu-

rity, since the client has to deliver confidential

data to Protector. The result of the Construct,

generate and assemble service step is verified

in the steps Execute unit test and Execute inte-

gration and System test (also belonging to the

implementation phase).

5.11 SoCD in SMART

SMART is a technique that ‘helps organisations

analyse their legacy systems to determine wheth-

er their functionality, or subsets of it, can rea-

sonably be exposed as services in an SOA’. It

describes in a large amount of detail which steps

are required to analyse legacy systems. Some of

the techniques used are code analysis and archi-

tecture reconstruction. Let us assume OmniPay-

ment is an application written in an object ori-

ented language. Example results from the legacy

analysis are exhibited in Table 6.

5.12 SI in P&H

The authors make a clear distinction between

development and deployment. They define de-

ployment as ‘rolling out new processes to all the

participants, including other enterprises, appli-

cations and other processes’ (a process being a

BPEL process). The phase is not discussed in

detail, so we cannot apply it to our case.

Table 6: Example results from the legacy analysis in
SMART

OmniPayment

of services covered 6
Total # of lines of code 13,284
of classes affected 22
of lines of code affected 5,392
Level of difficulty Medium
Level of risk Low
Use of coding guidelines Strictly followed
Use of design patterns Many violations

found

5.13 SI in SOMA

As we already mentioned, the articles we used as

sources do not describe the deployment, monitor-

ing, and management phase. Though the concept

of service deployment is mentioned, the authors

do not give any suggestions on how to deal with

it. Therefore, we were not able to apply it to our

case.

6 Conclusions

Currently, most methodologies for service-orien-

tation fail to make a clear distinction between the

notions of SOA and SoD. The main contributions

of this paper are first, an elucidation of these no-

tions based on the Generic System Development

Process (GSDP), and second, a positioning of sev-

eral methodologies for service-orientation. SOA

has been defined as a consistent and coherent set

of design principles that need to be taken into

account in the development of services. We have

defined SoD as the design part of a development

process, according to the GSDP. It consists of

producing successive conceptual models of the

object system under consideration, starting from

the ontological model. In SoD, this object system

is a service.

We introduced the following phases in the devel-

opment process for services: Service-Oriented

Function Design, Service-Oriented Construction

Enterprise Modelling and Information Systems Architectures

Vol. 5, No. 1, July 2010

42 Linda I. Terlouw and Jan L.G. Dietz

Design (including Service Engineering), and Ser-

vice Implementation. Using this high-level dis-

tinction of phases we have determined the scopes

of the investigated methodologies for service-

orientation.

Two of them cover the whole development pro-

cess, namely P&H and SOMA. However, they do

not describe all phases very thoroughly. Some

of the specialised methodologies provide an in-

depth contribution to specific steps of the de-

velopment process, like BCI3D for the Service-

Oriented Function Design phase (including ser-

vice identification), and SMART for the Service-

Oriented Construction Design phase.

We applied all the methodologies on the same

small case. From these exercises we draw the

next conclusions. The strength of BCI3D is that

it is based on the well-defined notions of busi-

ness process and business object of DEMO. An-

other strength of BCI3D is that it uses algorithms

for the identification of services, thus requiring

minimal human effort and ensuring objectivity.

What is still lacking, however, are guidelines for

choosing weights. Like it is the case for BCI3D,

the strength of the Business Element Approach

is that the identification of services is based on

business (information) objects and business pro-

cesses. However, there is no clear notion of busi-

ness process nor of information object. Clus-

tering requires human insight, thus it is more

subjective than BCI3D. Applying the goal-driven

approach to the Protector case yielded that it is

even more subjective than the Business Element

Approach. In particular, we think it’s a naive and

erroneous idea that the identification of services

can directly be based on the goals of an enter-

prise. One then neglects the intermediate level of

the construction of the using system (as defined

in the GSDP). When applying SOAF, SOMA, as

well as P&H to the case, we were left with some

questions. All three methodologies prescribe the

steps to be executed, but not clearly and com-

pletely. In contrast, SMART is very precise in

how to perform the service construction phase.

Because SMART is the only method we found

that deals with service construction in detail, we

were unable to compare it thoroughly.

All in all, the GSDP has been very helpful in dis-

cussing the coverage of the investigated method-

ologies, and to elucidate and sharpen the core

notions in service-orientation. Next, the applica-

tion of the methodologies to the same case has

shown the differences in the depth in which the

activities are described. None of methodologies

combines full coverage and full depth.

References

Albani A., Dietz J. (2005) Basic Notions Regard-

ing Business Processes and Supporting Infor-

mation Systems. In: Requirements Engineer-

ing 10(3), pp. 175–183

Arsanjani A., Ghosh S., Allam A., Abdollah

T., Gariapathy S., Holley K. (2008) SOMA: a

method for developing service-oriented solu-

tions. In: IBM Syst. J. 47(3), pp. 377–396

Arsanjani A. (2006) Best Practices in Service-

oriented Architecture. http://www.ibm.com/

developerworks/blogs/page/-AliArsanjani.

Last Access: 2009-10-03

Arsanjani A., Allam A. (2006) Service-Oriented

Modeling and Architecture for Realization of

an SOA. In: SCC ’06: Proceedings of the IEEE

International Conference on Services Com-

puting. IEEE Computer Society, Washington,

DC, USA, p. 521

Dietz J. (2006) Enterprise ontology - under-

standing the essence of organizational op-

eration. In: Enterprise Information Systems

VII, pp. 19–30

Dietz J. (2008) Architecture - Building strategy

in design. Academic Service, Amersfoort, The

Netherlands

Erl T. (2007) SOA Principles of Service Design

(The Prentice Hall Service-Oriented Comput-

ing Series from Thomas Erl). Prentice Hall

PTR, Upper Saddle River, NJ, USA

Erradi A., Anand S., Kulkarni N. N. (2006) SOAF:

An Architectural Framework for Service Def-

inition and Realization. In: IEEE SCC. IEEE

Enterprise Modelling and Information Systems Architectures

Vol. 5, No. 1, July 2010

A Framework for Clarifying Service-Oriented Notions 43

Computer Society, pp. 151–158

Hoogervorst J., Dietz J. (2008) Enterprise Ar-

chitecture in Enterprise Engineering. In: En-

terprise Modelling and Information Systems

Architectures 3(1), pp. 3–13

Johnston S. (2005) Modeling service-oriented

solutions. http : / / www . ibm . com /

developerworks / rational / library / jul05 /

johnston/. Last Access: 2009-10-03

Levi K., Arsanjani A. (2002) A goal-driven ap-

proach to enterprise component identifica-

tion and specification. In: Communications

of the ACM 45(10), pp. 45–52

Lewis G. et al. (2005) SMART: The Service-

Oriented Migration and Reuse Technique.

Technical Note, CMU/SEI-2005-TN-029. http:

/ /www.sei . cmu .edu/pub/documents /05 .

reports/pdf/05tn029.pdf

Maier M. W., Emery D., Hilliard R. (2001) Soft-

ware Architecture: Introducing IEEE Stan-

dard 1471. In: Computer 34(4), pp. 107–109

McGovern J., Sims O., Jain A., Little M.

(2006) Enterprise Service Oriented Architec-

tures: Concepts, Challenges, Recommenda-

tions. Springer-Verlag New York, Inc., Secau-

cus, NJ, USA

OASIS (2006) Reference Model for Service Ori-

ented Architecture, Committee Draft 1.0..

http://www.oasis- open.org/committees/

download.php/16587/wd- soa- rm- cd1ED.

pdf. Last Access: 2009-10-03

OMG (2006) Service Oriented Architecture Spe-

cial Interest Group (SIG). http://soa.omg.org/.

Open SOA (2007) Service Component Architec-

ture. http://www.osoa.org/display/Main.

Papazoglou M., van den Heuvel W.-J. (2006)

Service-oriented design and development

methodology. In: International Journal of

Web Engineering and Technology 2006 2(4),

pp. 412–442

Smith D. B., Brien L. O., Bergey J. (2002) Using

the OAR Method for Mining Components for

a Product Line. In: SPLC 2: Proceedings of the

Second International Conference on Software

Product Lines. Springer-Verlag, London, UK,

pp. 316–327

The Open Group (2006) Service Oriented Archi-

tecture. http://www.opengroup.org/projects/

soa/.

The Zachman Institute for Framework Ad-

vancement (2007) Enterprise Architecture: A

Framework

Linda I. Terlouw

ICRIS B.V.

Martinus Nijhoffhove 2

Nieuwegein

The Netherlands

linda.terlouw@icris.nl

Jan L.G. Dietz

Department of Information Systems

Delft University of Technology

Mekelweg 4

Delft

The Netherlands

j.l.g.dietz@tudelft.nl

