
Enterprise Modelling and Information Systems Architectures
Vol. 4, No. 1, June 2009
Service Oriented Security Architecture 39

Cristian Opincaru, Gabriela Gheorghe

Service Oriented Security Architecture

As Service Oriented Architectures (SOA) and Web services are becoming widely deployed, the issue of security
is far from being solved. In an attempt to address this issue, the industry proposed several extensions to the SOAP
protocol that currently reached different levels of standardization. However, no architectural guidelines have yet
been proposed. In this paper we first outline the security challenges and the specifications that address these chal-
lenges and then present our concept the Service Oriented Security Architecture—SOSA. We argue that the different
security functions (authentication, authorization, audit, etc.) should be realized as different stand-alone Web services
These security services can then be chained together by means of Enterprise Application Integration (EAI) techniques
such as message routing on Enterprise Services Buses (ESB). Next, we will present a prototypical implementation of
this framework and describe our experiences so far. We show that by distributing the security functions, a more
flexible architecture can be designed that would lower the costs associated with implementation, administration and
maintenance.

1 Introduction

While Web services were designed to lower inte-
gration costs and to open new ways of doing business,
many organizations are still reluctant to opening their
businesses to Web services although standards like
SOAP and WSDL are in place for almost a decade. One
of the major factors for this is the inadequate under-
standing of the security risks involved and the false
belief that they will have to make costly reinvest-
ments in their security infrastructures [GFMP04]. In
an attempt to make Web services a secure ground,
OASIS [OASIS] has standardized a number of exten-
sions to SOAP messaging which address different
security issues related to Web services. These exten-
sions are WS-Security, WS-Trust, WS-Federation,
WS-SecureConversation and WS-Policy. In addition to
the SOAP extensions, other security specifications can
be used in combination with Web services—XACML
[OAS05a], SAML [OAS05b] or the Digital Signatures
Services [OAS07a] are some examples.

These specifications define how security techniques
and mechanisms should be applied for individual
SOAP messages (encodings, message exchanges,
etc), but they do not define architectural guidelines
for possible implementations. In this paper we
address this issue by proposing an architecture for the
realization of Web services security systems: the
Service Oriented Security Architecture, SOSA. This
architecture is based on the now popular Enterprise
Services Bus (ESB) architecture. The idea behind it is
to build modular security services that address well-
defined security functions (i.e. authentication,

authorization, etc.). Message routing techniques can
be then used to combine these security services and
to develop complex security solutions. SOSA builds on
the idea that rather than creating a “fat” security
component which is integrated in the application or in
the messaging middleware (and therefore not
portable and hard to reuse), it is more appropriate to
build security into modular services that are platform
independent, easier to test and document, and have
a high degree of reusability. The remainder of this
paper is structured as follows: Section 2 describes the
main security issues that must be addressed in the
context of Web services (references to the specifica-
tions that address these issues are made where
appropriate), Section 3 presents architectural
approaches for the implementation of security
systems, Section 4 introduces the proposed archi-
tecture and describes its most relevant elements—
communication between security services, service
composition and possible security services, and in
Section 5 we comment on some similar approaches.
After this we present our prototype implementation,
the SOS!e framework, in Section 6, make a functional
as well as a performance analysis in Section 7 and
finally present our conclusions.

2 Security Requirements for Web 
Services

The main security issues to be addressed by Web
services, as also discussed in [GFMP04, WSF+03,
W3C04], are enumerated below. Because



Enterprise Modelling and Information Systems Architectures
Vol. 4, No. 1, June 2009

Christian Opincaru, Gabriela Gheorghe40

Web services are all about interoperability, we
provide references to the specifications that address
these security issues, where appropriate. Please note
that, relative to the OSI network stack, Web services
are located at the application layer. Therefore, in this
paper we are only addressing application layer
security; security at the lower layers is out of scope.

Authentication
The requester might be asked to provide credentials
prior to accessing a Web service. Authentication is a
key issue, since without knowing the requester’s
identity, other security functions cannot be accom-
plished—i.e. you cannot charge someone for using a
service without knowing who he is. Authentication is
addressed by various specifications, most importantly
by WS-Security and SAML [OAS05b] (single sign on).

Authorization
Access to Web services should be restricted based on
authorization policies, that is, clear conditions should
be satisfied in order to allow an entity to access
certain Web services. Authorization is addressed in
XACML.

Confidentiality
The information flow between services must be pro-
tected. Special thought should be given to the fact
that SOAP messages often pass through multiple
servers before reaching their destination. Confidenti-
ality is addressed in XML-Encryption and WS-Se-
curity.

Integrity
The information received by a Web service must be
the same as the one sent by the requester. Messages
must not be altered along the path. Integrity is
addressed in XML-Signature and WS-Security.

Non-repudiation
The service provider should be able to prove that a
requester used a certain Web service (requester non-
repudiation) and the requester should be able to
prove that the information he has originates from a
certain service rovider (provider non-repudiation).
Non-repudiation is addressed in XML Digital Sig-
nature.

Privacy
Both, service requester and provider should be able to
define privacy policies. Both of them should agree on
these policies prior to the actual delivery of the
service. Privacy is addressed in WS-Policy and
WS-SecurityPolicy.

Audit
User access and behavior should be traced in order to
ensure that the established obligations are respected.
Audit is enforced by audit guards, that can be both
active and passive [W3C04].

Trust
Service requester and service providers should be
able to determine if they trust one another. Both
direct and brokered trust relationships should be
taken into consideration. Trust is addressed in
WS-Trust.

Accounting, Charging
These two aspects are not primarily concerned with
the security of the system, but are nevertheless
tightly coupled with the other security functions
described above (i.e. charging requires the service to
know the identity of the requester). Most eBussiness
applications require a complete A4C1 system.

3 Security Implementation 
Approaches

When it comes to implementing the previously intro-
duced security functions in the context of Web
services, several architectural approaches are pos-
sible. These are graphically presented in Figure 1 and
described in the following.

Embedded in the Application
In this case the security implementation is coded in
the application itself (Figure 1A). The developer of the
Web service is responsible for writing the code that
represents the security logic. For this task he will
probably chose to implement some of the function-
ality himself, while reusing code from third party
libraries to implement other security aspects.
Example of such libraries include the Java
Authentication and Authorization Service (JAAS) and
the security features found in Web Services Enhance-
ments (an extension to Microsoft .NET platform).
Because communication between the security system
and the application is done by APIs, the performance
is very good in this case. However, this approach
lacks scalability and results in implementations which
are complex, hard to document and which have a low
degree of reusability and extensibility. These findings
are backed by [Bro03].

Embedded in the Middleware
In this case security is provided by the middleware
system where the Web service is executing
(Figure 1B). This is the case with most application
servers such as the Systinet Server for Java [SSJ] or
Apache AXIS [Axis]. Here, the security aspects are
handled by the application server. Before and after
the Web services hosted by the middleware are
invoked, the messages are inspected and the security
policies are enforced. In comparison with the previous

1. A4C is an acronym for Authentication, Authorization, 
Audit, Accounting and Charging.



Enterprise Modelling and Information Systems Architectures
Vol. 4, No. 1, June 2009
Service Oriented Security Architecture 41

approach, a noticeable improvement here is the fact
that the security implementation is separated from
the application logic. This leads to less complex imple-
mentations which are easier to document.
Furthermore, it is possible to define security policies
that cover several services which run inside the same
instance of the middleware system. Nevertheless,
porting the security implementation to a further mid-
dleware system is a major effort—if it can be accom-
plished at all. More, it is a remarkable challenge to
define and enforce policies for services distributed on
different middleware systems.

External
In this case security is implemented outside the mid-
dleware system (Figure 1C). The Web service is
loosely-connected to the security implementation
through a messaging interface. This approach is taken
for example by XML firewalls—these are deployed at
the network perimeter and enforce security policies
by processing incoming and outgoing messages.
[DGFRLP04] elaborates on application firewalls. Com-
pared to the previous two approaches, there are two
major differences: the security is decoupled from the
application and the two communicate by means of
messages. This makes the security implementation
independent of the middleware system where the
protected Web service runs and results in more
understandable implementations (the security
aspects are not mixed with the rest of the appli-
cation). Furthermore, because the security system is
essentially a Web service, it comes with the advan-
tages a Web service brings: scalability, portability,
higher degree of reusability. A decrease in per-
formance is a possible disadvantage related to this

approach, because there is a significant computa-
tional effort associated with message processing,
especially if the messages are XML (as is the case of
SOAP).

Mixed
Of course it is possible to have mixed approaches
where some security aspects are implemented in the
application, some in the middleware, while others are
externalized.

4 The Proposed Architecture

In this paper we build on the external security
approach described earlier and propose an archi-
tecture for security systems where the security func-
tions are realized as small modular services. We call
these services security services. In order to have a
simple, understandable and verifiable design, the
principle of separation of concerns is applied.
According to this principle, the security system is
functionally divided into services. These services can
be regarded as infrastructure services, as they can be
shared by applications living in the same network.
This makes the design highly reusable. Additionally,
through the use of standardized messaging inter-
faces, overall system portability is ensured. A tax-
onomy of possible security services will be presented
hereafter.

Enterprise Application Integration (EAI) techniques
are used to “glue” the security services together with
the Web services which they are supposed to protect.
Because of its flexibility, the Enterprise Services Bus

Figure 1 Approaches for the Implementation of Security Features in Web Services

Middleware System

Web Service

Security Implemenation

Middleware System

Web Service

Security Implemenation

Security Implemenation

Middleware System

Web Service

A. Embedded in the 

application

B. Embedded in the

middleware
C. External



Enterprise Modelling and Information Systems Architectures
Vol. 4, No. 1, June 2009

Christian Opincaru, Gabriela Gheorghe42

model is used. ESBs support both service
orchestration and service choreography and
implementations usually come equipped with simple-
to-use orchestration editors and runtime environ-
ments which can easily be used to architect a security
solution from security services. Probably two of the
most important features of an ESB are message
routing and the mediation pattern, which allow
functionality to be built in the system in a totally
transparent fashion.

In this paper, we consider that security services are
realized as ESB mediations and that they are chained
together by means of message routing. Other possi-
bilities exist (such as for example BPEL or WS-CDL),
however these are out of the scope of this paper.
Mediations and message routing are enough to design
scalable, extensible and easily congurable security
systems.

The realization of such a system is illustrated in
Figure 2. A message reaching the endpoint will be
routed by the ESB through several security services
before reaching the protected service. Each of these
security services implements some security function
and will enforce some portion of the security policy.
The response message is also routed through several
security services before being returned to the
requester. In the proposed model, we consider that
the security services trust one another and that they
are located in a trusted network; scenarios such as
service hijacking are out of the scope of the paper.
Nevertheless, by using encryption and digital signa-
tures, the model can be extended to include scenarios
where the security services are only partially trusted
(they are trusted to perform their task, but not
trusted for anything else). However, this is not dis-
cussed here. Because this model is applied to Web
services and Service Oriented Architectures (SOA)
and because the core idea is to think of security in
terms of reusable services, the model was named
Service Oriented Security Architecture or SOSA. The

following subsections present the main elements of
this model, namely how security services commu-
nicate, how they are coupled together and what
security functions can be implemented as services.

4.1 Communication between Security 
Services

Each of the security services will process incoming
messages in order to accomplish its task. Some tasks
may require several services to cooperatively process
one message (for example authorization normally
requires the identification of the requester). It is clear
that in this case intermediary processing results (in
the previous example, the identity of the user) need
to be exchanged between services. Following the pat-
terns described in [HW03], there are two possibilities
of service intercommunication. The first approach is
to have the two services communicate by means of a
shared database: after processing a message, the
first service stores the intermediary results in a
database, while the second one later queries this
database. The second approach employs annotations:
the first service appends the intermediary processing
results to the message before dispatching it to the
next service; we call this an annotated message. For
the particular case of security services, this latter
approach is more appropriate because the interme-
diary processing results normally refer to the proc-
essed message (i.e. identity attributes, authorization
decisions, obligations, accounting information, etc.)
and can be therefore transported together with the
message. To get an idea about how annotations work,
think about a document-based work flow in a
company: assume that Bob (an employee) wants a
new computer. For this purpose, he prepares a
written request and mails it to his boss. The boss will
first analyze Bob’s reasons, approve the request,
perhaps annotate it, and forward it to the financial
department. The financial department will verify the

Figure 2 Security system composed of several security services

Enterprise Services Bus (ESB)

Web Service

Requester

P
ro

te
c
te

d

W
e

b
 S

e
rv

ic
e

E
n

d
p

o
in

t

Security Services

Private Network (Trusted)Public Network



Enterprise Modelling and Information Systems Architectures
Vol. 4, No. 1, June 2009
Service Oriented Security Architecture 43

request, if there are enough funds (perhaps annotate
it), and send it to the Infrastructure department. Here
the computer is ordered and a reply is sent to Bob
informing him that his new computer is on its way.
The persons involved in this work flow act similar to
the mediation services: first inspect the request they
receive, then they approve it (they can also reject it),
they may annotate it, and finally forward it along the
chain.

4.2 Possible Security Services

In Section 2 of this article, the security requirements
for Web services were presented. Most of these
requirements can be implemented as standalone Web
services. In fact, several service interfaces for
security services have already been standardized by
OASIS as part of the WS-* specifications. Examples
for this include WS-Trust [OAS07b], WS-Federation,
XACML [OAS05a] or the newer DSS [OAS07a]. All
these services are defined through WSDL documents
and follow a request-reply pattern. In this article, as
stated earlier, we are looking instead at implementing
security as ESB mediation services. With this idea in
mind, we argue that the following requirements can
be wrapped into possible security services:

Authentication
Two types of authentication services are possible:
verification and identification. The first one will verify
the credentials (keys, passwords, etc.) found in a
message, while the second one is responsible for pro-
viding identity attributes. An identification service will
annotate messages with these attributes so that the
other services along the chain (i.e. authorization,
audit, charging) can use this information.

Authorization
If we follow the XACML [OAS05a] service model,
three types of authorization services are possible:
Policy Information Point (PIP), Policy Decision
Pointn (PDP) and Policy Enforcement Point (PEP). The
task of a PIP is to annotate messages with additional
attributes that the PDP may require in the decision
making process. The task of the PDP is to evaluate the
message, produce an authorization decision and
annotate the message with this decision and with any
obligations, if requested. The task of the PEP is to
enforce the decisions of the PDP services and to dis-
charge obligations.

Audit
Two types of audit services can be envisioned
according to [W3C04]: services that perform passive
audit such as a logging service and services that
perform active audit such as a notification service.

Cryptographic Services
Encryption and digital signing are tasks that require

significant computational power. Therefore, distri-
buting them on more powerful processors will often
be a good choice.

Accounting
If accounting represents a complex task, it makes
sense to realize it as a standalone service. The task of
an accounting service is to meter service usage and to
provide input for the charging service (in the form of
annotations).

Charging
If charging is done immediately (i.e. not on a peri-
odical basis), the task of the charging service is to
charge the requester according to the information
provided by the accounting service.

Infrastructure Services
In addition to the above mentioned services, other
mediation services might be useful, especially if we
think about coupling different security services
together. [Cha04] identifies the following three:
orchestration services, message transformation
services and message storage services.

This list of services is not complete: depending on the
concrete deployment scenario, other services may be
required. Furthermore, the granularity of the services
is also an issue to be considered: concrete implemen-
tations may incorporate several of the above-men-
tioned requirements into a single service (for example
instead of PIP, PDP and PEP one single authorization
service), for performance reasons. Alternatively, in
complex systems consisting of different realms, mes-
sages may be routed through several PDP services,
each one enforcing the policy of its realm. A detailed
analysis of these issues is not within the scope of the
article. However, in Section 7.1 we analyze the per-
formance of our prototype implementation and
comment on the relation between the number of
security services and message delay.

4.3 Putting it all together: Message 
Routing Patterns

The next design step is to connect the security
services with the application Web service. Because
the security services are realized as mediation
services on an ESB, message routing patterns can be
applied in architecting the security solution. Some
common patterns applicable here are the following
([HW03] elaborates on message patterns):

Content-Based Routing
Messages are routed between services based on their
content (for example, incoming messages are routed
to appropriate identification services depending on
the authentication token they contain).



Enterprise Modelling and Information Systems Architectures
Vol. 4, No. 1, June 2009

Christian Opincaru, Gabriela Gheorghe44

Itinerary Routing
A routing slip describing the itinerary is attached to
the message. This is then forwarded according to the
slip (for example a route may be authentication –
authorization – audit – protected Web Service).

Splitter / Aggregator
The message flow does not necessarily need to be
linear. One single request can be split (i.e. forwarded
to several services that process it in parallel) and
these parallel flows can be synchronized by means of
an aggregator which combines the results. Imagine a
message being sent in parallel to several decision
services and then the authorization decisions being
combined by means of AND / OR logic.

In order to illustrate how the proposed architecture
fits together, an example is presented in Figure 3:
after reaching the endpoint, an itinerary is attached to
all incoming messages. According to this itinerary
messages get first authenticated, then authorized,
then logged and only then reach the Protected Web
Service. On their way back, response messages are
logged, digitally signed and only then returned to the
requester. Please notice how services are reused: the
same instance of the log service is used twice in the
itinerary.

5 Similar Approaches

There are several similar approaches where security
functions are implemented as standalone services. To
begin with, the SOAP protocol specification [W3C03]
describes intermediaries which can be either for-
warding intermediaries (they forward the inbound
message with minimal modifications) or active inter-
mediary (they modify the outbound message in ways
not described in the inbound message). Examples of
intermediaries performing security tasks are also
given in [W3C03]: a logging service is an example of
a forwarding intermediary while an encryption service
is an example of an active intermediary.

[Bro03] describes an architecture where security
functions are implemented into proxies. A single
security proxy acting as a gateway is used to secure
several Web services deployed in a network. The
paper compares this approach to library-based
approaches. [AKT+06] enumerates the threats in the
context of Web services and describes another
external security approach. Here, incoming messages
first pass through a perimeter gateway which secures
several services within a network (similar to [Bro03]),
then pass through a service agent which is attached
to a particular Web service, and only then reach the
protected Web service.

The security functions are divided in this case
between the gateway and the agent: the first one
enforces security at a coarser level (for the entire
network), while the latter one does it at a finer level
(for individual services).

While the above mentioned approaches do separate
between security functions and the Web service to be
protected, their design is not modular. In our
approach, security functions are embedded within
modular services, in their turn designed according to
the principle of separation of concerns—different
security functions should be implemented as different
security services. The advantages of this approach
are presented in Section 7.

An approach where security requirements are
modeled into different services is presented in
[HHH05]. Here, the services are combined by means
of an ESB to form a security gateway. However, only
authentication, authorization and cryptographic
services are taken into consideration and no commu-
nication between security services is designed (in our
approach security services communicate by means of
annotated messages). Furthermore, no architectural
analysis is made, no implementation is presented and
hence, neither practical experiences nor performance
analysis are described.

Figure 3 Security Services combined by means of message routing patterns

Enterprise Services Bus (ESB)

Web Service

Requester

P
ro

te
c
te

d

W
e

b
 S

e
rv

ic
e

E
n

d
p

o
in

t

Authentication Authorization

Digital Signing

L
o

g

Itinerary Router

Private Network (Trusted)Public Network



Enterprise Modelling and Information Systems Architectures
Vol. 4, No. 1, June 2009
Service Oriented Security Architecture 45

6 Implementation 

In order to show the feasibility to this architecture, a
prototype implementation was built: the SOS!e2

framework. The implementation is open-source and
was realized in Java. It relies on a number of open-
source tools, including Apache Tomcat, Apache Axis,
Apache Ant, WSS4J, OpenSAML and the Mule ESB
[Mule]. It was designed for SOAP Web services and
takes advantage of the SOAP processing model
(security services are realized as intermediaries) and
several SOAP extensions (most notably WS-Security).
The framework implements message routing and the
annotation-based processing model described above.
On top of SOS!e several common security services
have been developed.

Security services are realized as regular Web
services based on the popular Apache Axis platform.
The framework provides APIs for the manipulation of
annotations. They allow the creation of new annota-
tions, as well as the retrieval, modification and
deletion of existing annotations from a message.

Annotations have been realized as SAML Attribute
Assertions [OAS05b]. These can store several
attribute-value pairs together with information about
the author of the annotation, timestamp and other
fields. SAML assertions have the advantage of being
XML encoded. They are easy to attach to SOAP
message headers (through the WS-Security SAML
Token Profile [OAS06]) and have built-in support for
digital signatures.

Message routing For this, the Mule ESB [ESB] was
used. This is a 100% Java based Enterprise Services
Bus implementation which supports a variety of
transport mediums, message types and routing pat-
terns. It also provides a very convenient and simple
way to specify orchestration scripts and to expose
these orchestrations as an endpoint.

In our implementation (refer to Figure 2), a proxy to
the protected Web service is exposed in the public
network. The Mule ESB is configured to route
incoming messages through the necessary security
services, before finally invoking the protected Web
service. If a request-reply message exchange pattern
is used (i.e. the call is not asynchronous), the same
happens to the response message.

On top of the SOS!e framework, several security
services have been prototypically built:

• Two authentication services which are able
to authenticate users based on username,
password and X509 certificates. If the verifi-
cation is successful, an LDAP repository is
contacted, user attributes are retrieved and
the message is annotated with these
attributes.

• A simple authorization service which per-
forms authorization based on simple rules.

• Two audit services: one logging service and
one alert service. The first one stores mes-
sages persistently (in whole or only parts of
them), while the second one can be con-
figured to send emails if certain criteria are
met (these are specified through XPath
expressions relative to the SOAP envelope).

• Two cryptographic services, one for
encryption and one for digital signing. The
parts of the message to be encrypted / dig-
itally signed are also specied through XPath
expressions relative to the SOAP envelope.

• Currently an accounting and a charging
service based on PayPal [PayPal] are under
development.

7 Analysis and Evaluation

It is well known that complexity is security’s biggest
enemy: as a system becomes more complex, it is
more difficult to observe the flaws and back door
opportunities that are created. SOSA splits security
into small functional components that can be sepa-
rately developed, thus reducing the complexity and
allowing the components to be better tested (unit
tests can be used). Moreover, having these compo-
nents decoupled one from another triggers the ease
of their reuse in different applications. Services are
combined by means of message routing patterns. This
allows for a clear design which is also easy to docu-
ment. Because services are running inside an Enter-
prise Services Bus, orchestrating the security services
is a matter of configuration which does not require an
expert, as most ESBs are equipped with graphical
editors and specialized tools for such purposes.

Additionally, the fact that the security services are
completely decoupled makes the upgrades to the
security system faster and less costly. New services
can be introduced without affecting the existing ones,
by simply altering the path of messages. It is not even
necessary to stop the system, the modifications can
be done at runtime, by simply temporarily redirecting
the message flow (a technique often used when
upgrading web servers).

2. SOSIE – Service Oriented Security, an Implementation 
Experiment. The name is inspired from the French word 
sosie (look-alike in English), because a proxy of the 
protected service is exposed through the framework.



Enterprise Modelling and Information Systems Architectures
Vol. 4, No. 1, June 2009

Christian Opincaru, Gabriela Gheorghe46

Since the security services are not bound to the appli-
cation that they guard and also independent one from
another, they can be developed in any programming
language and can run on any operating system. This
will reduce the costs associated with implementation
because programmers will be able to choose the APIs
and platforms which are most suitable for their
project. For example, in an application where user
information is stored in Microsoft Active Directory and
authorization is based on XACML, the authentication
service might be developed in C# (because C# has
better support for Active Directory), while the author-
ization service might be implemented in Java
(because Sun offers a free XACML implementation on
SourceForge).

Another advantage of this architecture is that the
same instance of a service can be used in several
applications, thus making the administration and
deployment of new services simpler. Figure 3 shows
how the same instance of a security service can be
invoked several times in an itinerary. Moreover,
Figure 4 shows how the same security service can be
used in two different deployments: in this example
the same authorization service is used for both
services A and B (the other security services, like the
authentication, are different).

Furthermore, sharing security services also solves
some well known security issues: sharing the authen-
tication service leads to single-sign-on and sharing
the authorization service leads to federated access
control.

7.1 Performance Analysis

As a possible disadvantage to SOSA we see a
decrease in throughput and higher latencies due to
additional network traffic and overhead resulting from
XML parsing (each security service must process the
message content). In order to determine the
feasibility of SOSA, performance tests were carried
out against the SOS!e prototype implementation.

For tests, mid-class computers were used (Pentium 4
2.8GHz CPU, 2GB RAM, connected via 100MBit
network). The results of these tests, together with the
testing environment are displayed in Figures 5 and 6.
We tried to determine the influences of the number of
security services on the most relevant performance
parameters—the throughput (TP) and the round-trip-
time (RTT) for one message.

Our testing methodology is similar to the one
described in [UT06]. In order to only measure the
overhead introduced by our framework, “dummy”
security services were used these are services that
implement no security functionality. The protected
Web service was a very simple one: the purpose was
to have this one respond faster than the security
framework (otherwise this one would have influenced
the results).

For the measurements we used Apache JMeter. We
considered two different configurations:
Configuration A, where all the security services were
hosted on the same machine as the Mule ESB and
Configuration B where each security service was
hosted on a different machine. For each of these con-
figurations, we tested two use-cases: one where the
services were only forwarding the messages and one
where the services were processing the annotations
existing in the message and adding new annotations.

Throughput
As seen in Figure 5b, the TP decreases significantly
when the security framework was introduced between
the client and the protected service (almost 60%).
This is due to latencies introduced by the Mule
middleware. However, if the number of security
services is increased, the effect on TP is little. Fur-
thermore there is no difference if annotations are
used or not. This shows us that annotations have no
visible influence on throughput.

Round Trip Time
As expected (see Figure 6), the RTT increases linearly
with the number of security services introduced

Figure 4 Security service being shared by two security system deployments

Enterprise Services Bus (ESB)

W
e

b
 S

e
rv

ic
e

A

E
n

d
p

o
in

t

A

Authentication

W
e

b
 S

e
rv

ic
e

B

E
n

d
p

o
in

t

B

A
u

th
o

ri
z
a

ti
o

nAuthentication



Enterprise Modelling and Information Systems Architectures
Vol. 4, No. 1, June 2009
Service Oriented Security Architecture 47

between the requester and the protected service. The
processing of annotations leads to a slight increase in
latency.

In conclusion, we see that the framework has signi-
ficant influence on the performance (both TP and
RTT). The decrease in performance increases with the
number of security services introduced between the
requester and the protected service.

Whether or not the SOS!e framework is appropriate
for a given scenario depends on the particular per-
formance requirements of this scenario. In those
cases where the RTT must be low, the SOS!e
framework is inappropriate. However, in those cases
where the RTT may be higher or if the interactions are
asynchronous, SOS!e fits well.

Furthermore, we have to take into consideration that
SOS!e is only a prototype implementation, which is
not optimized. We are aware that more efficient
implementations can be envisioned for the proposed
architecture.

8 Conclusions

In this paper we presented an architecture for
security systems protecting Web services the Service
Oriented Security Architecture. We showed that real-
izing the security functions into modular, stand-alone
security services results in less complex and more
flexible designs for security systems. In addition to
this, the presented approach has several other advan-
tages (see Section 7).

We also presented a prototype, open-source imple-
mentation to SOSA , the SOS!e framework, and
showed our experiences with this framework so far. In
Section 7.1 we presented the results of performance
tests that were run against our implementation, and
showed that even though both RTT and throughput
are affected by the fact that messages are routed
through several security services, there are numerous
application scenarios in which such an architecture
fits well.

Figure 5 a.Testing environment b.Throughput for the SOS!e framework

Throughput for SOS!e

0

100

200

300

400

0 1 2 3 4 5

Number of Security Services

T
h
ro
u
g
h
p
u
t
[r
e
q
u
e
st
s/
s]

No Annotations With Annotations

J
M

e
te

r

P
ro

te
c
te

d

W
e

b
 S

e
rv

ic
e

Security Services

1
s
t 
S

e
c
u
ri
ty

 

S
e
rv

ic
e

2
n
d
 S

e
c
u
ri

ty

S
e
rv

ic
e

3
rd

 S
e

c
u

ri
ty

S
e
rv

ic
e

4
th

 S
e
c
u
ri
ty

S
e
rv

ic
e

5
th

 S
e
c
u
ri
ty

S
e
rv

ic
e

Testing Environment

Figure 6 Round Trip Time for the SOS!e framework

Round Trip Time for SOS!e

0

20

40

60

80

100

120

140

0 1 2 3 4 5

Number of Security Services

R
o
u
n
d
T
ri
p
T
im

e
,
A
v
e
ra
g
e
[m

s]

Configuration A, No Annotations

Configuration B, No Annotations

Configuration A, With Annotations

Configuration B, With Annotations



Enterprise Modelling and Information Systems Architectures
Vol. 4, No. 1, June 2009

Christian Opincaru, Gabriela Gheorghe48

References

[ACT+06] Mohamad Afshar, Nickolaos Kavantzas, Ramana
Turlapati, Roger Goudarzi, Barmak Meftah, and Prakash
Yamuna. Best Practices for Securing Your SOA: A
Holistic Approach. Java Developer’s Journal, June 2006.

[Bro03] G. Brose. Securing Web Services with SOAP Security
Proxies. Proc. Int’l Conf. Web Services (ICWS’03),
pp. 231–234, 2003. [Cha04] David A. Chappell. Enter-
prise Service Bus. O’Reilly, 2004.

[DGFRLP04] N. Delessy-Gassant, E.B. Fernandez, S. Rajput,
and M.M. Larrondo-Petrie. Patterns for application fire-
walls. In Proceedings of the Pattern Languages of
Programs (PLoP) Conference, 2004.

[GFMP04] C. Gutierrez, E. Fern´andez-Medina, and M. Piat-
tini. Web Services Security: is the problem solved?
Information Systems Security, 13, pp. 22–31, 2004.

[HHH05] Heather Hinton, Maryann Hondo, and Dr. Beth
Hutchison. Security patterns within a service-oriented
architecture. IBM white paper, November 2005.

[HW03] Gregor Hohpe and Bobby Woolf. Enterprise Integra-
tion Patterns: Designing, Building, and Deploying
Messaging Solutions. Addison-Wesley, 2003.

[OAS05a] OASIS. eXtensible Access Control Markup
Language v2.0, February 2005.

[OAS05b] OASIS. Security Assertions Markup Language V2.0
-Core, March 2005.

[OAS07a] OASIS. Digital Signature Service Core Protocols,
Elements, and Bindings Version 1.0, February 2007.

[OAS07b] OASIS. WS-Trust 1.3, March 2007. 

[UT06] K. Ueno and M. Tatsubori. Early Capacity Testing
of an Enterprise Service Bus. Proceedings of the IEEE
International Conference on Web Services (ICWS’06)-
Volume 00, pages 709–716, 2006. 

[W3C03] World Wide Web Consortium W3C. SOAP Version
1.2 Part 1: Messaging Framework, June 2003. [W3C04]
World Wide Web Consortium W3C. Web Services Archi-
tecture, February 2004.

[WSF+03] V. Welch, F. Siebenlist, I. Foster, J. Bresnahan, K.
Czajkowski, J. Gawor, C. Kesselman, S. Meder, L. Pearl-
man, and S. Tuecke. Security for Grid services. High
Performance Distributed Computing, 2003. Proceed-
ings. 12th IEEE International Symposium on, pp. 48–
57, 2003.

[OASIS] Organization for the Advancement of Structured
Information Standards -http://www.oasis-open.org (20
June 2007)

[SSJ]Systinet Server for Java, http://www.systinet.com/
products/ssj/overview (12 June 2007)

[Axis] Apache Axis, http://ws.apache.org/axis (11 March
2007)

[Mule] Mule Enterprise Service Bus, http://mulesource.com
(10 July 2007)

[PayPal] PayPal, http://www.paypal.com (20 June 2007)

[Jmeter] Apache JMeter, http://jakarta.apache.org/jmeter/
(20 June 2007)

Cristian Opincaru

University of the German Armed Forces
Werner-Heisenberg-Weg 39
85577 Neubiberg
Germany
cristian@opincaru.ro

Gabriela Gheorghe

University of Trento
ICT International Doctorate School
Via Sommarive 14
38100 Povo
Italy
gabriela.gheorghe@disi.unitn.it


