
Enterprise Modelling and Information Systems Architectures
Vol. 4, No. 1, June 2009
The Difference Between Graph-Based and Block-Structured Business Process Modelling Languages 3

Oliver Kopp, Daniel Martin, Daniel Wutke, Frank Leymann

The Difference Between Graph-Based
and Block-Structured Business Process
Modelling Languages

The most prominent business process notations in use today are BPMN, EPC and BPEL. While all those languages
show similarities on the conceptual level and share similar constructs, the semantics of these constructs and even
the intended use of the language itself are often quite different. As a result, users are uncertain when to use which
language or construct in a particular language, especially when they have used another business process notation
before. In this paper, we discuss the core characteristics of graph-based and block-structured modelling languages
and compare them with respect to their join and loop semantics.

1 Introduction

Workflow technology is a central aspect of Business
Process Management (BPM) and an important tech-
nology in both industry and academia. Workflows are
instances of workflow models, which are representa-
tions of real-world business processes [LeRo00],
[Wesk07]. Basically, a workflow model consists of
activities and the ordering amongst them. Workflow
models can serve different purposes: on the one
hand, they can be employed for documentation of
business processes itself, e.g., for facilitating business
process modelling by business analysts; on the other
hand, workflow models defined by IT experts can
serve as input for Workflow Management Systems
(WfMS) that allow their machine-aided execution. The
problem of facilitating the creation of executable
business process models based on abstract business
process descriptions, e.g., through enhancing them
with enough information to facilitate their automated
execution, is known as the Business-IT gap [DuAa05].
A number of workflow languages exists for the spe-
cification and the graphical representation of pro-
cesses. One important aspect is the control flow,
which specifies the execution order of the activities.
Conceptually, workflow languages can be classified
according to whether their control flow modelling
style is centered around the notion of blocks or the
notion of graphs. In block-structured languages,
control flow is defined similar to existing pro-
gramming languages by using block-structures such
as if or while. In contrast, process control flow in

graph-oriented workflow languages is defined
through explicit control links between activities.

The intended use of a workflow language places a
number of requirements and restrictions on the kind
of language employed; whether used primarily for
documentation purposes (abstract processes) or
whether it is used to provide a detailed process model
that can be deployed on a WfMS for automatic exe-
cution (executable processes) highly depends on the
process to be modelled and the intended use of the
resulting model. Moreover, certain languages even
allow for modelling abstract processes as well as exe-
cutable processes. As a result, guidelines have to be
provided to process modellers to allow them choosing
the “right” language for their purpose.

In this paper, a number of workflow languages are
compared with respect to their intended use, their
notation and serialisation, their basic modelling
approach (block-structured vs. graph-oriented vs.
hybrid), their supported structure of loops (structured
loops vs. arbitrary cycles) and their support for
expressing explicit data flow. Block-structured and
graph-oriented workflow languages differ in their rep-
resentation of loops, splits and joins. We see these
aspects as the main distinction between these lan-
guages. Therefore, this paper focuses on the com-
parison of loops, splits and joins.

The compared workflow languages comprise Event-
driven Process Chains (EPC, [ScTh05], [KeNü+92])
and the Business Process Modelling Notation (BPMN,
[OMG09]) on the side of languages targeted primarily
on modelling processes for documentation purposes

Enterprise Modelling and Information Systems Architectures
Vol. 4, No. 1, June 2009

Oliver Kopp, Daniel Martin, Daniel Wutke, Frank Leymann4

and the Web Service Business Process Execution Lan-
guage (BPEL, [OASIS07]) and the Windows Workflow
Foundation (WF, [Micr09]) as languages for modelling
(also) executable processes.

1.1 Related Work

In this paper, we compare modelling languages with
respect to their support of block-structured and
graph-based modelling constructs. Other approaches
to compare modelling languages are based on pat-
terns. Currently, there exist control flow patterns
[AaHo+03], [Kiep03], process instantiation patterns
[DeMe08], correlation patterns [BaDe+07], data
handling patterns [RuHo+05], exception handling
patterns [RuAa06] and service interaction patterns
[BaDu05]. Workflow patterns focus on the
expressiveness of the control flow constructs and do
not explicitly distinguish between graph-based and
block-structured modelling. The other patterns do not
focus on the control flow, but on the capability of the
language to specify process instantiation, process
instance correlation and the handling of data, excep-
tions and interactions with other services, which are
not captured in this work.

Different intentions of different process languages
have been addressed in the context of BPMN and BPEL
in [ReMe06] and [Palm06]. They address mainly the
intention of these modelling languages and do not
focus on the constructs to model control flow. The
suitability of BPMN for business process modelling is
investigated in [WoAa+06]. However, BPMN is not
compared to other languages in this work.

Besides the presented languages, there are several
other graph-based and block-structured languages
and formalisms. A prominent formal graph-based lan-
guage is the Petri-net based workflow nets [Aals98].
Pi-calculus is block-based, since it offers a parallel and
a split construct. However, due to its capabilities to
generate channels, it can also be used to capture the
semantics of graph-based languages [PuWe05]. An
overview of all formalisms used in the workflow area
is presented in [BrKo06].

There is research whether visual programming or
textual programming is more suited to model and
understand programs. The experiments presented in
[CuTa87], [ChKu01] show that “visual representa-
tions [outperform] the textual program”. In the case
of flow-charts the same result is presented in
[Scan89] and the experience report presented in
[BaHa95] shows that the productivity of visual pro-
gramming outperforms textual programming.
[KiAu97] shows that “graphics may be better for tech-
nical, non-programmers than they are for pro-
grammers because of the great amount of experience
that programmers have with textual notations in

programming languages”. Finally, the studies pre-
sented in [GrPe91, GrPe92, MoMa+93] show that
“graphics [is] significantly slower than text” [Petr95].
All in all, it is not finally proofed that visual pro-
gramming is (in all cases) more suitable than textual
programming. There are no studies specific to the lan-
guages compared in this paper and no research,
whether modellers are more effective in modelling
and in understanding models expressed in graphs or
in block-structures.

1.2 Structure of the Paper

The paper is organised as follows: in Section 3 we
present a business process example, which is mod-
elled using both, graph-based and block-structured
languages. In graph-based languages, there are dif-
ferent rules of how to join control flows during exe-
cution. In Section 4 we present an overview of the
problem and the current solutions. An overview of
techniques to model loops is given in Section 5. Sub-
sequently, we present a comparison of the workflow
languages in Section 6. Finally, we provide a con-
clusion in Section 7.

2 Exemplary Process

In this section, we present a process that shows dis-
tinct features which we will discuss in the sections to
follow. The process itself serves as a running
example, being re-modelled in BPEL, EPC and BPMN
to exemplify the use of graph-based and block-struc-
tured modelling approaches.

2.1 Graph-based Modelling using
BPEL <flow>

The process we use is a modified version of the “Loan
approval” example process from [OASIS07], mod-
elled using the graph-based constructs provided by
BPEL. This graph-based part of BPEL originates from
BPEL’s predecessor WSFL [Leym01]. WSFL is based
on the Flow Definition Language (FDL), formalized in
[LeRo00] as PM-Graphs.

BPEL allows to define a workflow model using nodes
and edges inside a <flow> element. Nodes are activi-
ties and edges are called “links”. The logic of decisions
and branching is solely expressed through transition
conditions and join conditions. Transition conditions
and join conditions are both Boolean expressions. As
soon as an activity is completed, the transition condi-
tions on their outgoing links are evaluated. The result
is set as the “status of the link”, which is true or false.
Afterwards, the target of each link is visited. If the
status of all incoming links is defined, the join con-

Enterprise Modelling and Information Systems Architectures
Vol. 4, No. 1, June 2009
The Difference Between Graph-Based and Block-Structured Business Process Modelling Languages 5

dition of the activity is evaluated. If the join condition
evaluates to false, the activity is called “dead” and the
status of all its outgoing links is set to false. If the join
condition evaluates to true, the activity is executed
and the status of each outgoing link is evaluated.
Regardless of the activity being executed, the target
of each link is visited. The propagation of the dead
status via false as link status is called dead-path elim-
ination (DPE). DPE is conceptually detailed in
[LeRo00], specified for BPEL in [OASIS07] and
explained in detail in [CuKh+03].

The process is presented in Figure 1: Figure 1(a)
presents extracts of the BPEL code and 1(b) the
graphical representation of the process. The process
is initiated by the reception of a loan request at
activity receive request. This loan request is checked
in parallel by two external credit rating services
(activities S1 and S2) and a company internal rating
service IS. If the company internal rating service
reports “low risk”, the subsequent activity is a risk
assessment by a human assessor that manually
checks the request, otherwise this step is skipped. In
our case, we want to take conservative decisions, i.e.,
the loan request must only be accepted if either both
external rating services report low risk or both the
internal rating service and the subsequent human
assessor report low risk. Of course we also accept the
loan if all services report low risk—both external
services and the internal rating service and assessor.
The loan is to be rejected in any other case.

We implement these requirements using transition
conditions on the links following each of the rating
services which evaluate to false if anything else than

“low risk” is reported. In case “high risk” occurs, the
state of the link evaluates to false. The AND-Join fol-
lowing the two external rating services means that
the join condition is a conjunction over the state of the
links leaving from S1 and S2, thus the link going from
the AND-Join to the OR-Join evaluates to true only if
both external rating services returned “low risk” and
therefore implements the first part of our require-
ments. Similarly, the result of the OR-Join is only true
if one or both of its incoming links are true. Again, this
is only the case if either both external or the internal
assessment have returned “low risk”. The only part
left from the requirements is to reject the loan
request if it cannot be accepted. This is modelled by
link l9, which is annotated with the default transition
condition true. The join condition on activity “reject”
is a negation of the link status of link l9 (not l9). In
that way, “Reject Loan” is only executed iff “Accept
Loan” is not executed: l9 is set to true if “Accept Loan”
is executed. Thus, not l9 evaluates to false and
“Reject Loan” is not executed. If “Accept Loan” is not
executed, the status of l9 is set to false and not l9
evaluates to true, leading to the execution of “Reject
Loan”.

2.2 Graph-Based Modelling using BPMN
and EPC

In this section, we present the “Loan approval”
process introduced above, modelled using BPMN and
EPC as examples of a graph-oriented modelling lan-
guage. The resulting BPMN graph (Figure 2) looks
considerably different compared to the BPEL model

<process>
 <flow>
 <links>
 <link name="receive-to-S1">
 <link name="S1-to-AND" />
 ...
 </links>
 <receive name="ReceiveRequest">...</receive>
 <invoke ...>...</invoke>
 <empty name="AND">
 <targets>
 <joinCondition>
 $S1-to-AND AND $S2-to-AND
 </joinCondition>
 <target name="S1-to-AND" />
 <target name="S2-to-AND" />
 </targets>
 <sources>
 <source name="AND-to-OR" />
 </sources>
 </empty>
 ...
 </flow>
</process>

Human
Assessor

Receive
Request

AND

r1 ==
"low risk"

S1 S2 IS

Accept
Loan

r2 ==
"low risk"

r3 ==
"low risk"

OR Reject
Loanl9

not l9

s ==
"accept"

(a) BPEL code (b) Graphical representation

Figure 1: Loan approval process in BPEL

Enterprise Modelling and Information Systems Architectures
Vol. 4, No. 1, June 2009

Oliver Kopp, Daniel Martin, Daniel Wutke, Frank Leymann6

presented in Section 3.1. This is mainly due to the dif-
ferent way of modelling joins: through arbitrary
Boolean expressions in the BPEL case, or through
additional explicit join constructs such as AND, OR,
XOR in BPMN. A complex join was chosen instead of a
literal translation of the process using BPMN AND-
Joins and OR-Joins: the “Reject Loan” activity that has
to be executed only if “Accept Loan” was not exe-
cuted. This behaviour cannot be modelled without
being able to refer to the state of a control flow link in
the join condition. In BPMN, the solution for that is to
use a complex gateway that refers to variables con-
taining the state of each of the assessment services,
updated by each of the services after their com-
pletion. These variables are then used to decide which
outgoing sequence flow is to follow, e.g., either reject
or accept the loan request.

Since EPCs do not provide support for arbitrary join
conditions, the paths of all decisions have to be
merged using an OR-Join. Afterwards, the decision
whether to accept or reject is taken at the subsequent
function “Take Final Decision” (Figure 3). The con-
crete semantics has to be specified using additional
text, which may be included in the diagram.

For the same reason, decisions in BPMN have to be
modelled explicitly: i.e. in the BPEL graph model, we
relied on dead-path elimination to skip the “human
assessor” activity if the internal assessment returned
“high risk”. In BPMN, this has to be modelled explicitly
using a dedicated sequence flow.

To summarise, the main difference between the BPEL
graph-model and the BPMN model is the way how
conditions are modelled: as a combination of expres-
sions on control flow links and join conditions in the
case of BPEL; or as a complex gateway in the case of
BPMN. In the BPEL case, decision logic is distributed
among links and activities, whereas it is represented
in compact form as a complex gateway in BPMN.

2.3 Block-Structured Modelling using
BPEL

Besides BPEL, the Windows Workflow Foundation
(WF, [Micr09]) and “normal” programming languages
support block-structured modelling. For better reada-
bility, we use a simplified version of the BPEL syntax
in Figure 4. We use the names of the activities as
function names and abstract from their XML syntax by
representing their XML attributes by function param-
eters. Note that our way of representing the block-
structured part of BPEL emphasises on the similarity
of block structured modelling languages with regular,
procedural programming languages such as C. At the
expense of a different representation using pro-
gramming concepts such as variables, function calls
and nested block structures, this kind of modelling
however provides clear semantics to every modeller

Check Risk
Using S1

Check Risk
Using S2

Check Risk
Internally (IS)

Approval by
Human

Assessor

Accept Loan Reject Loan

low risk

Figure 2: Loan approval modelled using BPMN

Figure 3: Loan approval modelled using EPC

Check Risk
Using S1

V

Check Risk
Internally

Approval
by Human
Assessor

V

Check Risk
Using S2

Loan
Request
Received

Risk
Checked

Risk
Checked

Approval
Finished

High Risk Low Risk

XOR

Loan
Request
Handled

Take Final
Decision

Reject

Reject
Loan

Accept

Accept
Loan XOR

XOR

Enterprise Modelling and Information Systems Architectures
Vol. 4, No. 1, June 2009
The Difference Between Graph-Based and Block-Structured Business Process Modelling Languages 7

familiar with basic computer programming languages.
Furthermore, since the representation already is in a
form similar to a “real” program, transformation into
executable code typically is easier to achieve [Ecli09].

Since WS-BPEL is essentially a hybrid language that
was derived from a block-structured ancestor XLANG
[That01] and a graph-oriented ancestor WSFL
[Leym01], it allows users to freely choose between
both approaches. It is even possible to mix both con-
cepts, by allowing graphs to be freely drawn within
the <flow> element. This element may in turn may be
used as a block element nested within other blocks.
However, the BPEL <flow> can also used as a block
structure only to allow for parallelism; each element
it contains is executed in parallel. Using the BPEL
<flow> as a block structure simply means not using
control flow links within the block, so that each
decision is represented using explicit branch or loop
constructs such as <if> or <while>.

On the other hand, the way a business process typi-
cally is drawn comes very close to graph form, with
nodes as activities and directed edges as control flow
dependencies between them. As shown in scientific
literature, it is hard to assign clear and distinct
semantics to these languages (e.g. [WyEd+05],
[Mend07], [Wehl07]) mainly due to the ambiguous
way to interpret loops as well as the joins and splits
they are constructed of. Sometimes a specific lan-
guage even explicitly refrains from defining clear
semantics (e.g. BPMN). Thus, transformation of
graph-based workflow descriptions into executable
form generally can be considered harder to achieve.

3 Join Condition

As mentioned before, the way how control flow joins
are implemented in a workflow modelling language

heavily influences how the semantics of a certain
process are expressed in the model. This section
therefore revisits the examples from Section 2 and
highlights different join semantics of each approach.

3.1 Kind of Join Conditions

Generally, two main types of control flow joins can be
distinguished in todays workflow languages:

Restricted Choice Languages such as EPC [ScTh05],
[KeNü+92] and YAWL [AaHo05] only allow to join dif-
ferent threads of control flow using a restricted set of
operators, typically in the form of AND, OR and XOR
elements as part of their modelling language. An
important property of these languages is that it is not
possible to refer to negative link state, i.e., modelling
a situation as depicted in Figure 1 is not possible; a
modeller has to work around this issue, possibly cre-
ating a much more complex model. If the set of join
types in a language allowing only restricted choice
joins is functionally complete, a Boolean expression
representing a complex join condition can be con-
structed using combinations of multiple join oper-
ators.

Arbitrary Expression Languages allowing to define
arbitrary Boolean expressions over the state of
incoming links belong to this category. BPEL however
is the only candidate that allows expressions over link
state only, while BPMN allows to refer to process state
(in form of process variables) in its join expressions.
This has a noteworthy consequence: since it is very
common to refer to process state as part of a join con-
dition, complex join logic in BPEL has to be split
among transition conditions of incoming links where
process variable access is allowed, and the join con-
dition as a Boolean expression over the state of all
incoming links (and therefore the result of each of the
transition conditions). In contrast to “join condition
fragmentation” as in BPEL, other languages allow to
model complex join conditions as one single,
“compact” statement since process variable access is
allowed.

BPMN is a hybrid in this case: While it offers a
restricted choice (AND, OR, XOR and complex
gateway), the “complex gateway” allows for defining
arbitrary expressions. Naturally, restricted choice join
operators are mostly used in languages whose
primary intend is human-human communication of a
certain process. In this case, a join refers to the avail-
ability of control flow only, in contrast to human-
machine (i.e. executable) languages where joins need
to be expressed in a very specific manner referring to
process state and control flow and thus must be mod-
elled in the form of a Boolean expression.

Figure 4: Loan approval modelled in block-
structured BPEL

sequence {
 receive(C, loan_request);
 flow {
 flow {
 extRes1 = invoke(S1, loan_request);
 extRes2 = invoke(S2, loan_request);
 }
 sequence {
 intRes = invoke(IS, loan_request);
 if (intRes=='OK') {
 intRes = invoke(assesor, loan_request);
 }
 }
 }
 if ((extRes1=='OK' && extRes2=='OK') ||
 (intRes=='OK')) {
 invoke(CS, accept_loan);
 } else {
 invoke(CS, reject_loan);
 }
}

Enterprise Modelling and Information Systems Architectures
Vol. 4, No. 1, June 2009

Oliver Kopp, Daniel Martin, Daniel Wutke, Frank Leymann8

3.2 Complexity of Join Evaluation

The complexity of join evaluation has already been
discussed extensively in literature. Especially, the
semantics of the OR-Join in EPCs have raised many
discussions and lead to different proposals for con-
crete executable semantics. An extensive presen-
tation and comparison of the proposed semantics can
be found in [Mend07], [MeAa07], [AaHo05],
[Wehl07]. The inherent problem of the OR-Join gen-
erally is that it is hard to decide how long it should
block the control flow. It is especially hard in proc-
esses containing cycles [Kind06]. Most discussions
debate whether this should be resolved through local
knowledge, i.e., by introducing additional arcs in the
model or “negative control tokens” (as it is done by
dead-path elimination) that make it possible to
unblock and evaluate the join condition when it is
clear that no more tokens can arrive. On the other
hand, execution engines have been proposed that
decide—by looking at the global state of the process—
if a join can be unblocked since no more tokens will
arrive on the input arcs. Naturally, these “global
semantics” of join nodes introduce a significantly
higher complexity of the evaluation of a join
[MeAa07], [DuGr+07]. Languages that depend on
such “global semantics” for join evaluation are BPMN
and EPC.

“Local join” semantics means that the execution relies
on dead-path elimination (see Section 3.1) or on the
introduction of additional arcs to tell the join node that
no control flow will arrive on a certain path. BPEL
realises local join semantics by dead-path elimination.
In that way, no additional arcs are introduced. Addi-
tional arcs are problematic when it comes to auditing
the deployed process: the model deployed differs
from the model finally executed by the engine.

4 Loops

A loop refers to a set of activities that are executed
either while a certain loop condition holds or until a
certain exit condition is reached. Two forms of loops
can be found in common workflow languages: block-
structured and graph-based loops. Block-structured
loops, such as the while or repeat until loop, are char-
acterised by an explicit loop construct and an exit con-
dition at either the top or the bottom of the construct.
From the process definition languages analysed in the
paper, BPEL, BPMN and WF provide support for struc-
tured loop constructs. In BPEL and WF, exit conditions
can be specified to be evaluated either at the top of
the loop through the <while> activity or at the bottom
through the <repeat until> activity. BPMN distin-
guishes repeat until and while loops by attributes of
the looping activity.

In contrast to block-structured languages, loops are
modelled in graph-based languages without a dedi-
cated loop construct by defining control flow links
between activities. Typically, these links are asso-
ciated with so-called transition conditions that define
under which condition the corresponding link is to be
followed by the navigator of the workflow man-
agement system. While the absence of the necessity
of an explicit loop construct conceptually allows for
the definition of arbitrary loops with multiple incoming
and outgoing control links, such patterns are charac-
terised by a number of problems. For instance, con-
sider the example of a loop represented through
control links between activities presented in Figure 5.
In this example, link u denotes the loop entry and link
y denotes the loop exit. Node B denotes the activity
that evaluates the exit condition of the loop which
repeatedly triggers execution of the loop activities C
and D until the exit condition of the loop is reached
and the loop is exited through link y.

The process presented in Figure 5 can only be exe-
cuted under certain assumptions. While e.g. BPEL
allows for graph-based definition of process control
flow within the BPEL <flow> construct, it does not
allow for definition of graphs containing cycles; which
restricts BPEL to block-structured loops. This is due to
the dead-path elimination algorithm employed by
BPEL [OASIS07]. This algorithm essentially demands
each join operation—in case of the example activity B
which joins the incoming links u (the loop entry) and
x (the final link of the loop body)—to be synchro-
nising, i.e., to block execution of the join activity until
the link status of each incoming link has been propa-
gated to the join activity and hence the value of the
join condition can be evaluated. As a result, execution
of the loop can never be started, since the start of the
loop depends on a defined link status of u which can
only be produced after evaluation of activity B. Other
approaches [MeAa07] have solved the

Figure 5: Example for a graph-oriented loop,
modelled without an explicit loop

A

XOR

B

C

D

w

x

vy

u

E

F

z

Enterprise Modelling and Information Systems Architectures
Vol. 4, No. 1, June 2009
The Difference Between Graph-Based and Block-Structured Business Process Modelling Languages 9

aforementioned problem for EPCs by introducing a
non-synchronising (XOR) join construct and an
extended form of dead/wait status propagation.

The example presented in Figure 5 also shows a
second problem related to dead-path elimination in
cyclic graphs in combination with arbitrary split
behaviour [LeRo00]. Node B not only links to node C
(which is inside the loop) but also to the loop external
node E (which in turn links to node F) through the loop
exit link y. Assume that B is an OR-Split. In this case,
after B is executed, it is possible that both its outgoing
links are activated; as a result activities C and E are
executed. Assume that execution of activity C takes
more time than execution of E. After successful exe-
cution of E, its outgoing link z is activated and activity
F is executed. Given OR-Split semantics in B, the
already executed path E, F would be executed again,
which might or might not be desired by the modeller.
This ambiguity can be solved by restricting exit nodes
on a cycle to XOR semantics, meaning that either the
loop is exited (through one of potentially a number of
exit conditions) or the loop is continued with the next
cycle/iteration.

It is important to note that unstructured loops can be
mapped to structured loops, using a method proposed
in [ZhHa+06]. The presented approach derives a
finite automaton from the unstructured loop, applies
reduction rules and then generates a set of semanti-
cally equivalent, non-reducible structured control flow
statements. These statements can then be repre-
sented by block-structured statements in the
respective process execution language. In the pre-
sented BPEL example for instance, combinations of
<sequence>, <if>, <while> and <switch> are used.
As a result, languages that only support structured
loops can still support unstructured loops as well,
given they support the structured control flow state-
ments necessary to express the result of the loop
transformation.

Of the analysed languages BPMN and EPCs allow def-
inition of arbitrary cycles.

5 Comparison

In Table 1, a summary of the comparison of the
workflow languages BPEL, BPMN, EPC and WF is pre-
sented with respect to their intention, standardised
rendering and serialisation, modelling paradigm, sup-
ported loops, splits, joins and whether they support
explicit data flow. Many of the decisions are com-
mented later in this section and referenced by Cxx,
with xx standing for the number of the comment. The
criteria are explained in the following. Intention
expresses whether the respective language has been
designed primarily for human-human or human-
machine communication. While languages classified
as human-human are used mostly for business
process documentation purposes, languages clas-
sified as human-machine are used for automatic exe-
cution of business processes. As such, they require a
clearly defined execution semantics that gives precise
and unambiguous instructions on how a process must
be executed. Note that while BPEL’s abstract process
profiles also facilitate its use as a modelling language,
it has been classified as human-machine, since its
primary focus is on executable processes (C01).
Standardised rendering and standardised serialisation
refer to whether the language standard defines a
graphical notation or a machine-processable textual
representation, respectively. Note that XPDL [Wor08]
is the proposed standard serialisation format for
BPMN diagrams (C02). The WF is a proprietary lan-
guage and thus does not provide a standardised seri-
alisation; process models are directly translated to
executable code (C03). Apart from WF, all compared
languages support graph-oriented modelling of
process control flow with a restriction to acyclic
graphs in BPEL due to the reasons outlined in
Section 5. WF is restricted to purely block-structured
modelling (C04). Languages that only allow well-
formed process models restrict consecutive split and
join operations to the same type are referred to as
well-formed [Aals98]. Well-formed means for
example that if control flow is split using a XOR-Split
it must be joined through a XOR-Join; joining a XOR-

Table 1: Summarised comparison of BPEL, BPMN, EPC and WF

Criteria BPEL BPMN EPC WF

Intention human-machineC01 human-human human-human human-machine

Standardised

Rendering

- + + -

Standardised

Serialisation

+ +C02 - -C03

Graph Modelling + + + -C04

Well-Formed Only -C05 - - +

Block Modelling + +C06 -C07 +C04

Structured Loops + + + +

Arbitrary Cycles -C08 + + -C09

Parameterised Split +C10 + +C11 n/a

Parameterised Join +C12 +C13 + n/a

Join Semantics local (DPE) various various synchronisation

Explicit Data Flow -C14 + + -

Enterprise Modelling and Information Systems Architectures
Vol. 4, No. 1, June 2009

Oliver Kopp, Daniel Martin, Daniel Wutke, Frank Leymann10

Split with an AND-Join is disallowed. In BPEL arbitrary
Boolean join conditions on the status of incoming links
can be specified (including in particular those
resulting in non well-formed process models, C05),
BPMN and EPC themselves do not define any restric-
tions on the types of consecutive split/join pairs.
Block-structured modelling constructs are supported
by BPEL and to a limited extent also by BPMN: BPMN
supports a while construct and sub-processes as the
only block-structured constructs (C06). EPCs offer to
emulate a block construct by a pairing of connectors,
but do not offer first-class block-constructs (C07). All
compares languages allow for structured loops; while
BPMN allows for modelling loops both as graphs and
through blocks, modelling structured loops in BPEL is
limited to blocks (due to the aforementioned required
acyclicity of graphs in BPEL, C08). For similar reasons
BPEL does not allow modelling of arbitrary cycles (see
Section 5); as a result loops have to be modelled
using blocks. In WF arbitrary cycles have to realised
using state machine-based modelling (C09), which is
also possible in the case of BPEL. Parameterised split
refers to the ability to specify the link status individ-
ually for each of potentially multiple outgoing links of
an activity. In BPEL this can be achieved through dif-
ferent transition conditions on the individual links
(where an exclusive split needs mutually exclusive
transition conditions, C10). EPCs are restricted to
AND-Splits, OR-Splits and XOR-Splits (C11). The
same restrictions hold for EPCs with respect to their
support of parameterised join operations, i.e., the
ability of defining a join condition (see Section 4). Join
conditions in BPEL are restricted to Boolean expres-
sions over the status of incoming links of the join
activity (C12); BPMN allows for defining join condi-
tions also on process instance data (C13). Note that
this functionality of BPMN can be emulated in BPEL by
defining appropriate transition conditions on the
incoming links themselves. BPEL, as an executable
process language, has a precisely defined join
semantics while BPMN and EPC as languages focused
primarily on process modelling do not. However, a
number of execution semantics (including join
semantics in particular) have been proposed for BPMN
and EPC to fill this gap [MeAa07], [Wehl07],
[DuGr+07], [BöSö+09]. In order to be more generic,
we use the semantics described in the respective
specification of the language for comparison, not the
various proposed executable interpretations or
restrictions. WF only provides a block construct for
parallel execution which completes its execution once
each enclosed activity is completed. All compared lan-
guages express activity ordering through modelling
process control flow. BPMN and EPC offer associations
with data objects and thus allow to specify explicit
data flow. In [KhLe06], BPEL-D has been proposed as
an extension of BPEL that allows defining explicit data
flow (C14).

6 Spectrum of Process Modelling
Languages

Figure 6 depicts the spectrum of process modelling
languages, ranging from custom languages for docu-
mentation purposes to languages that allow for auto-
matic execution of processes in so-called Workflow
Management Systems. The presented languages can
be classified into three groups according to their
intention: schema-less process documentation,
process documentation based on a defined process
model, and executable processes. The decision which
process modelling language to chose for describing
certain process models depends on their intended use
and whether they serve primarily documentation pur-
poses or should be used for automatic execution.

Languages for schema-less ad-hoc process documen-
tation, as shown on the left-hand side of Figure 6,
allow for rich and flexible annotation of process
models with arbitrary information and thus provide
greatest flexibility with regard to the chosen repre-
sentation of the process model. However, this flexi-
bility requires modellers to precisely define the
semantics of their annodations. Similar to the Entity-
Relationship Model for describing the structure of
relational databases, pre-defined process modelling
languages, such as BPMN and EPC, assist process
modellers by providing them with a set of elements
with a defined syntax (and/or graphical represen-
tation) and semantics. On the one hand this results in
a loss of flexibility when documenting processes,
while on the other hand it may (i) lead to reduced doc-
umentation effort due to the use of graphical process
modelling tools, (ii) reduce the ambiguity of the
defined process models due to the restriction to a set
of well-defined process modelling elements, and is
(iii) less error-prone due to the suitability for process
model validation techniques. The languages depicted
on the right-hand side of the spectrum, BPEL and WF,
are languages for describing automatically executable
processes and are characterised by the most
restrictive set of language rules and unambiguous
execution semantics.

For scenarios in which a particular process should be
documented as well as automatically executed, a
number of so-called model transformations between
processes described using pre-defined modelling lan-
guages and languages for describing executable proc-
esses exist. Reasons for model transformation include
scenarios in which a process has been initially mod-
elled on an abstract level using a language such as
BPMN or EPC and the process should be refined for
automatic execution in a later stage in the business
process lifecycle or for visualisation purposes. An
example use-case for the latter is the rendering of
BPEL processes in BPMN stencils as shown in
[ScKa+09], [WeDe+08]. A taxonomy for model

Enterprise Modelling and Information Systems Architectures
Vol. 4, No. 1, June 2009
The Difference Between Graph-Based and Block-Structured Business Process Modelling Languages 11

transformations is provided in [MeGo06]. The most
important criteria is the distinction between horizontal
and vertical transformation. In a horizontal transfor-
mation, the model is transformed to another model on
the same abstraction level. In a vertical transfor-
mation, the target model resides on a different level
of abstraction. A number of approaches for transfor-
mation between different non-executable and exe-
cutable process modelling languages exist
[OuDu+07], [StKü+08]. Generally, such transforma-
tions are problematic since e.g. BPEL and BPMN have
different target communities (technical analysts vs.
business analysts) and are employed on different
stages on the BPM lifecycle [ReMe06]. Another
example is the mapping of EPCs to BPEL, a general
overview of all available transformations and their
classification using the taxonomy of [MeGo06] is
given in [StKü+08].

Transformation strategies between block-structured
and graph-based languages as well as their limita-
tions are presented in [MeLZ08]. In general, all
graph-based models can be mapped to block-struc-
tured models and vice versa. Typically, a mapping
from a model A to a model B and mapping the model
B back results in a different model A’. The main
reason is that there are different strategies for the
mapping and that arbitrary cycles are not supported
by block-structured languages and thus have to be
“emulated” by constructs offered by the block-
structured language. Such “emulation” is sketched in
Section 5 and described in detail in [ZhHa+06].

7 Conclusion

In the paper we presented a comparison of four
common languages for modelling business
processes—BPEL, BPMN, EPC, and WF—with different
fields of application and different modelling
approaches. We specifically showed that BPEL sup-
ports both, block-structured and graph-based mod-
elling. The implications of graph-based and block-
structured modelling have been discussed by pro-
viding examples that highlight the languages’ key
characteristics. Special attention has been paid to dis-
cussing problems related to joining multiple execution
paths and loops as well as identifying differences of
graph-oriented and block-structured modelling lan-
guages.

A summary of the comparison was given in Table 1.
Based on these results, we classified these languages
according to their execution capability in a spectrum
that ranges from schema-less documentation to auto-
matic execution.

The most interesting point in the spectrum of lan-
guages is the position between BPEL and BPMN. While
BPEL is a language geared towards automated exe-
cution of process models, BPMN is used mainly for
process documentation but the one closest to the
verge of executability amongst all process documen-
tation languages. Interestingly, this is also acknowl-
edged by the BPMN committee where executability is
one area of development for the upcoming BPMN 2.0
specification [OMG08].

Figure 6: Spectrum of Business Process Languages and Features

Plain Text

Unstructured Figures
EPK BPMN BPEL WF

DocumentationOnly ExecutionOnly

Explicit Data Flow

Standardised Rendering

Various Join Semantics

Restricted Join Semantics

Standardised Serialisation

GraphModelling

BlockModelling

Well formed only

Structured Loops

Arbitrary Cycles

Parameterised Split

Parameterised Join

Enterprise Modelling and Information Systems Architectures
Vol. 4, No. 1, June 2009

Oliver Kopp, Daniel Martin, Daniel Wutke, Frank Leymann12

Acknowledgements

This work is an extended version of [KoMa+08] and is
supported by the BMBF funded project Tools4BPEL
(01ISE08B) and the EU funded project TripCom
(FP6-027324).

References

[AaHo+03] van der Aalst, W. M. P.; ter Hofstede, A. H. M.;
Kiepuszewski, B.: Workflow Patterns. In: Distributed
and Parallel Databases 14 (2003) 1, pp. 5–51.

[AaHo05] van der Aalst, W. M. P.; ter Hofstede, A. H. M.:
YAWL: Yet Another Workflow Language. In: Information
Systems 30 (2005) 4, pp. 245–275.

[Aals98] van der Aalst, W. M. P.: The Application of Petri
Nets to Workflow Management. In: The Journal of Cir-
cuits, Systems and Computers 8 (1998), pp. 21–66.

[BaDe+07] Barros, A. P.; Decker, G.; Dumas, M.: Correla-
tion Patterns in Service-Oriented Architectures. In: Pro-
ceedings of the 9th International Conference on
Fundamental Approaches to Software Engineering
(FASE), LNCS (2007), pp. 245–259.

[BaDu05] Barros, A.; Dumas, M.; ter Hofstede, A. H. M.:
Service Interaction Patterns. In: Proceedings of the 3rd
International Conference on Business Process Manage-
ment, LNCS (2005), pp. 302–318.

[BaHa95] Baroth, E.; Hartsough, C.: Visual programming in
the real world. In: Visual object-oriented programming:
concepts and environments, Manning Publications Co.
1995.

[BrKo06] van Breugel, F.; Koshkina, M.: Models and Verifica-
tion of BPEL. http://www.cse.yorku.ca/~franck
/research/drafts/tutorial.pdf, retrieved on 2009-04-22.

[BöSö+09] Börger, E.; Sörensen, O.; Thalheim, B.: On
defining the behavior of or-joins in business process
models. Journal of Universal Computer Science (2009).

[ChKu01] Chattratichart, J.; Kuljis, J.: Some Evidence for
Graphical Readership, Paradigm Preference, and the
Match-Mismatch Conjecture in Graphical Programs. In:
Psychology of Programming Interest Group (PPIG 2001)
2001.

[CuKh+03] Curbera, F.; Khalaf, R.; Leymann, F.: Exception
Handling in the BPEL4WS Language. In: International
Conference on Business Process Management, LNCS
(2003), pp. 276–290.

[CuTa87] Cunniff, N.; Taylor, R. P.: Graphical vs. textual
representation: an empirical study of novices’ program
comprehension. In: Empirical Studies of Programmers:
Second Workshop, Ablex Publishing Corp., Norwood,
NJ, USA 1987, pp. 114–131.

[DeMe08] Decker, G.; Mendling, J.: Instantiation Semantics
for Process Models. In: Proceedings of the 6th Interna-
tional Conference on Business Process Management
(BPM), LNCS (2008), pp. 164–179.

[DuAa05] Dumas, M.; van der Aalst, W. M. P.; ter Hofstede,
A. H. M.: Process Aware Information Systems: Bridging

People and Software Through Process Technology.
Wiley-Interscience 2005.

[DuGr+07] Dumas, M.; Grosskopf, A.; Hettel, T.: Semantics
of Standard Process Models with OR-Joins. In: Proceed-
ings 15th International Conference on Coopartive Infor-
mation Systems (CoopIS), LNCS (2007), pp. 41–58.

[Ecli09] Eclipse Foundation: BPEL to Java (B2J) Subproject.
2009, URL: http://www.eclipse.org/stp/b2j/
(22 April 09).

[GrPe91] Green, T R G.; Petre, M.; Bellamy, R K E.: Compre-
hensibility of visual and textual programs: a test of
superlativism against the ’match-mismatch’ conjec-
ture. In: Empirical Studies of Programmers, Fourth
Workshop, Open University, Computer Assisted Learn-
ing Research Group 1991.

[GrPe92] Green, T. R. G.; Petre, M.: When visual programs
are harder to read than textual programs. In: Sixth
European Conference on Cognitive Ergonomics
(ECCE-6) 1992.

[KeNü+92] Keller, G.; Nüttgens, M.; Scheer, A.-W.: Seman-
tische Prozeßmodellierung auf der Grundlage Ereignis-
gesteuerter Prozeßketten (EPK). Veröffentlichungen des
Instituts für Wirtschaftsinformatik 1992.

[KhLe06] Khalaf, R.; Leymann, F.: Role-based Decomposi-
tion of Business Processes using BPEL. In: Proceedings
of the IEEE International Conference on Web Services
(ICWS ’06), IEEE Computer Society 2006, pp. 770–780.

[KiAu97] Kiper, J. D.; Auernheimer, B.; Ames, Charles K.:
Visual Depiction of Decision Statements: What is Best
for Programmers and Non-Programmers? In: Empirical
Softw. Eng. 2 (1997) 4, pp. 361–379.

[Kiep03] Kiepuszewski, B.: Expressiveness and Suitability of
Languages for Control Flow Modelling in Workflows. Dis-
sertation, Queensland University of Technology, Bris-
bane, Australia 2003.

[Kind06] Kindler, E.: On the Semantics of EPCs: A Frame-
work for Resolving the Vicious Circle. In: Data and
Knowledge Engineering 56 (2006) 1, pp. 23–40.

[KoMa+08] Kopp, O.; Martin, D.; Wutke, D.: On the Choice
Between Graph-Based and Block-Structured Business
Process Modeling Languages. In: Modellierung betriebli-
cher Informationssysteme (MobIS 2008). Saarbrücken,
Germany, November 27 - 28, 2008., Bd. P-141 von
Lecture Notes in Informatics, Gesellschaft für Informa-
tik e.V. (GI) 2008, pp. 59–72.

[LeRo00] Leymann, F.; Roller, D.: Production Workflow:
Concepts and Techniques. Prentice Hall PTR 2000.

[Leym01] Leymann, F.: Web Services Flow Language (WSFL
1.0). 2001, IBM Software Group.

[MeAa07] Mendling, J.; van der Aalst, W. M. P.: Formaliza-
tion and Verification of EPCs with OR-Joins Based on
State and Context. In: Proceedings of the 19th Interna-
tional Conference on Advanced Information Systems
Engineering (CAiSE 2007), LNCS (2007), pp. 439–453.

[MeGo06] Mens, T.; van Gorp, P.: A Taxonomy of Model
Transformation. In: Electronic Notes in Theoretical
Computer Science 152 (March 2006), pp. 125–142.

[MeLZ08] Mendling, J.; Lassen, K. B.; Zdun, U.: On the
Transformation of Control Flow between Block-Oriented

Enterprise Modelling and Information Systems Architectures
Vol. 4, No. 1, June 2009
The Difference Between Graph-Based and Block-Structured Business Process Modelling Languages 13

and Graph-Oriented Process Modeling Languages. In:
International Journal of Business Process Integration
and Management (IJBPIM) 3 (September 2008) 2.

[Mend07] Mendling, J.: Detection and Prediction of Errors in
EPC Business Process Models. Dissertation, Vienna Uni-
versity of Economics and Business Administration 2007.

[Micr09] Microsoft: Windows Workflow Foundation. 2009,
URL: http://www.microsoft.com/net/WFDetails.aspx
(22 April 09).

[MoMa+93] Moher, T. G.; Mak, D. C.; Blumenthal, B.: Com-
paring the comprehensibility of textual and graphical
programs: The case of Petri nets. In: Empirical Studies
of Programmers: Fifth Workshop, Ablex 1993.

[OASIS07] Organization for the Advancement of Structured
Information Standards (OASIS), Web Services Business
Process Execution Language Version 2.0 – OASIS
Standard. 2007, URL: http://docs.oasis-open.org/wsb-
pel/2.0/wsbpel-v2.0.html (22 April 09).

[OMG08] Object Management Group. Business Process Mod-
eling Notation, BPMN 2.0 RFP revised submission (BMI/
08-09-04), URL: http://www.omg.org/cgi-bin/doc?bmi/
2008-09-04 (22 April 09).

[OMG09] Object Management Group, Business Process Mod-
eling Notation, V1.2. 2009, URL: http://www.omg.org/
spec/BPMN/1.2/PDF (22 April 09).

[OuDu+07] Ouyang, C.; Dumas, M.; ter Hofstede, A.H.M.:
Pattern-based translation of BPMN process models to
BPEL web services. In: International Journal of Web
Services Research (JWSR) (2007).

[Palm06] Palmer, N.: Understanding the BPMN-XPDL-BPEL
Value Chain. In: Business Integration Journal (Novem-
ber/December 2006).

[Petr95] Petre, M.: Why looking isn’t always seeing: reader-
ship skills and graphical programming. In: Commun.
ACM 38 (1995) 6, pp. 33–44.

[PuWe05] Puhlmann, F.; Weske, M.: Using the pi-Calculus
for Formalizing Workflow Patterns. In: Proceedings of
the 4th International Conference on Business Process
Management (BPM 2006), LNCS (2005), pp. 414–419.

[ReMe06] Recker, J.; Mendling, J.: On the Translation
between BPMN and BPEL: Conceptual Mismatch
between Process Modeling Languages. In: CAiSE 2006
Workshop Proceedings – Eleventh International Work-
shop on Exploring Modeling Methods in Systems
Analysis and Design (EMMSAD 2006) 2006.

[RuAa06] Russell, N.; van der Aalst, W. M. P.; ter Hofstede,
A. H. M.: Workflow Exception Patterns. In: Advanced
Information Systems Engineering (AISE), Bd. 4001 von
LNCS 2006, pp. 288–302.

[RuHo+05] Russell, N.; ter Hofstede, A. H. M.; Edmond, D.:
Workflow Data Patterns: Identification, Representation
and Tool Support. In: 24th International Conference on
Conceptual Modeling (ER 2005), Bd. 3716 von LNCS
2005.

[Scan89] Scanlan, D. A.: Structured Flowcharts Outperform
Pseudocode: An Experimental Comparison. In: IEEE
Software 6 (Sep 1989) 5, pp. 28–36.

[ScKa+09] Schumm, D.; Karastoyanova, D.; Leymann, F.:
On Visualizing and Modelling BPEL with BPMN. In: Pro-

ceedings of the 4th International Workshop on Work-
flow Management (ICWM2009), IEEE Computer Society
2009.

[ScTh05] Scheer, A.-W.; Thomas, O.; Adam, O.: Process
Aware Information Systems: Bridging People and Soft-
ware Through Process Technology. Wiley-Interscience
2005.

[StKü+08] Stein, S.; Kühne, S.; Ivanov, K.: Business to IT
Transformations Revisited. In: MDE4BPM 2008.

[That01] Thatte, S.: XLANG Web Services for Business Proc-
ess Design. Microsoft Corporation, 2001.

[WeDe+08] Weidlich, M.; Decker, G.; Großkopf, A.: BPEL to
BPMN: The Myth of a Straight-Forward Mapping. In:
Proceedings of the 16th International Conference on
Cooperative Information Systems (CoopIS 2008), LNCS
(2008).

[Wehl07] Wehler, J.: Boolean and free-choice semantics of
Event-driven Process Chains. In: Geschäftsprozessman-
agement mit Ereignisgesteuerten Prozessketten
(EPK 2007) 2007, pp. 77–96.

[Wesk07] Weske, M.: Business Process Management: Con-
cepts, Languages, Architectures. Springer, Berlin 2007.

[WoAa+06] Wohed, P.; van der Aalst, W. M. P.; Dumas, M.:
On the Suitability of BPMN for Business Process Model-
ling. In: Fourth International Conference on Business
Process Management (BPM), LNCS (2006),
pp. 161-176.

[Wor08] Workflow Management Coalition, XML Process Defi-
nition Language Version 2.1. 2008, URL: http://
www.wfmc.org/xpdl-developers-center.html (22 April
09).

[WyEd+05] Wynn, M. T.; Edmond, D.; van der Aalst, W. M.
P.: Achieving a General, Formal and Decidable
Approach to the OR-Join in Workflow Using Reset Nets.
In: Applications and Theory of Petri Nets, Bd. 3526 von
LNCS 2005, pp. 423–443.

[ZhHa+06] Zhao, W.; Hauser, R.; Bhattacharya, K.; Bryant,
R. B.; Cao, F.: Compiling business processes: untan-
gling unstructured loops in irreducible flow graphs. In:
International Journal of Web and Grid Services 2 (Feb.
2006), pp. 68–91.

Oliver Kopp, Daniel Martin,
Daniel Wutke, Frank Leymann

Institute of Architecture of Application Systems
University of Stuttgart
Universitätsstrasse 38
70569 Stuttgart
Germany
{kopp|martin|wutke|leymann}@iaas.uni-stuttgart.de

