Enterprise Modelling and Information Systems Architectures

Vol. 3, No. 2, December 2008

34

Majed AbuSafiya, Subhasish Mazumdar

Majed AbuSafiya, Subhasish Mazumdar

A Document-Based Approach to Monitor
Business Process Instances

Keeping track of business process instances is needed for better management, especially queriability and moni-
torability, of the enterprise as a whole. The business process instances’ unpredictable behaviour makes this tracking
even more necessary. Currently, this information is not completely or explicitly maintained. We propose a model that
captures the states of business process instances by keeping track of their informational access operations (within/
outside the scope of automated management). This model is based on an information model that views information
within the enterprise as a set of documents and keeps an up-to-date capture of this information model. These models
can then be the underlying models for an automated system that keeps track of the states of business process in-

stances and makes this information efficiently queriable.

1 Introduction

Business Process Instances (BPIs) represent the dy-
namic behaviour of the enterprise. Keeping track of
BPIs is required to monitor and control the behaviour
of the enterprise as a whole. To provide automated
management of business processes [AaHo+03], spe-
cial information technologies were developed. Two
main categories are: workflow management systems
([WFMO7], [GeSu+04]) and Enterprise resource plan-
ning (ERP) ([Dave98], [Glas98]). Workflow manage-
ment systems provide automated management of
workflows (i.e., automatable parts of business proc-
esses). ERP systems are massive software packages
that are customized to achieve information integra-
tion across the enterprise’s functional units. ERP sys-
tems provide many benefits like providing a reference
model and process templates that embody the cur-
rent best business practices. ERP systems enhance in-
tegration, availability, sharing of information that
highly improves the enterprise monitorability.

In spite of the benefits provided by these technolo-
gies, BPIs are not completely under the management
of these systems. The main reason is that these tech-
nologies manage automatable parts of business proc-
esses that can be precisely defined and whose
instances comply with these definitions. However, in
reality not all business processes satisfy these condi-
tions. In reality we find that BPIs (1) may include ac-
tivities that are manual and thus stay outside the
scope of automated management. They may also
need to access information outside the scope of auto-

mated management like documents (e.g., receive
student admission application), (2) the default behav-
iour of the BPI changes due to the continuous change
in business process definition. This happens because
of the external and internal changes and the need to
pursue strategic goals of the enterprise, while busi-
ness process definitions within the business process
management systems are not easy to update accord-
ingly, (3) some BPIs belong to business processes
that are vague and hard to define and hence cannot
be managed by these automated management sys-
tems. Consider for example a student that was sus-
pended, he appealed and a number of meetings and
correspondences took place to decide to readmit him.
Another example is managerial business processes.
In such business processes, there is a sequence of
correspondences and meetings, while no precise
structuring or definition of the business process is
pre-known, (4) BPIs frequently deviate from their de-
fault behaviour to deal with special unexpected sce-
narios, to deal with human errors, temporal changes
on the organizational structure, and special cases.
Consider for example (refer to as Example 1), the ad-
mission office coordinator who receives an admission
application for Alex who does not satisfy the minimum
grade point average (GPA) requirement. However,
the coordinator finds, along with the application, a
document showing that Alex won the science fair last
year. He considers this as a special case and sends a
memo to the department and the department replies
by requesting to admit Alex. Because of these fea-
tures, such BPIs need to be completely or partially
managed outside the scope of automated

Enterprise Modelling and Information Systems Architectures

Vol. 3, No. 2, December 2008

A Document-Based Approach to Monitor Business Process Instances

management. Consequently, subsequent querying of
the automated system will not reveal the details of
the communication and intervention that led to this
admission decision. In addition to this limitation,
these technologies are expensive to purchase, install,
deploy and maintain.

There is a tight association between business process-
es and information access operations. Many activities
are assumed be done only if there is some information
within the enterprise information base that proves
that. For example, a student is registered only if there
is a registration record in the registration database, a
student is assumed to be informed about his admis-
sion decision, only if there is an e-mail or a letter that
was sent to him, the admission office considers a spe-
cial case admission for a student only if a memo is re-
ceived from the department. On the other side,
information access operations usually occur as a re-
sult of some BPI activity (e.g., receiving an admission
application in paper form, sending an e-mail, and up-
dating a database record). It is unlikely or may be il-
legal to access or change the information base of the
enterprise without being a part of some BPI.

A second observation is that documents (paper or
electronic) compose that important part of the infor-
mation base of the enterprise that is tightly associat-
ed with the ill-behaving BPIs (i.e., those that cannot
be managed by current automated management so-
lutions). Documents are that component of the enter-
prise information base existing outside the scope of
automated management systems (databases). Docu-
ments are information containers that can easily be
created and communicated with any desired informa-
tional content for any emerging information or busi-
ness process management need (consider
Example 1). In addition to being the means to man-
age deviating unpredictable behaviour of business
processes, documents may become part of the default
behaviour of the business process in case the busi-
ness process definition itself changes and this change
cannot be easily applied in the business process man-
agement solutions adopted. Consider for example the
policy where a teaching assistant has to pay his/her
tuition fees in full before registering. A new change in
policy allowed the student to pay through instalments
over his stipend period. This change in policy can be
captured by an authorization from the student that
can be managed through a new form (document)
signed by the student without the need to change the
business process management system. Moreover,
some activities can only be done through documents
like communication within and outside the enterprise.
Also documents play an important role in vaguely de-
fined business processes since they are our means of
coordination, communication and documentation. To
summarize, documents play an important role in
managing those parts of business process instances

that cannot be managed by current business process
automated management solutions.

Based on the above observations, we propose to keep
track of BPIs by monitoring their effect on documents.
Although this may be less useful for automatable
parts of BPIs that exist within the scope of automated
management, this could be very useful in keeping
track of business process instances that are com-
pletely or partially outside the scope of automated
management. Since (1) documents are the informa-
tion component of the enterprise existing outside the
scope of automated management and (2) documents
are tightly associated with deviating and vaguely de-
fined business processes that exist outside the scope
of business process management solutions, we can
keep track of those parts of BPIs existing outside the
scope of automated management by keeping track of
their effect on documents. This is also useful for well-
behaving BPIs that do not leave a trail within informa-
tion and business process management solutions.
Keeping track of information within the scope of auto-
mated management accessed by BPlIs is also useful to
keep track of BIPs because a BPl may access and
span information in the two spaces: information with-
in and outside the scope of automated management
(i.e., documents). Retrieval of the latter and the con-
sequent enhancement in monitorability are added
benefits.

Although we can keep track of a BPI through logging
its activities, there are many advantages in monitor-
ing BPI through keeping track of documents: (1) doc-
uments are tightly associated with those parts of
business processes existing outside the scope of au-
tomated management. The attributes of the involved
documents (especially the informational content) are
very important to have a more detailed capture of
(and hence to reason about) the behaviour of BPIs
and hence better queriability and the monitorability of
BPIs. However, by logging the activities carried out in
the BPI without keeping track of documents, we only
keep track of what happened with less detail to reason
why a BPI showed certain behaviour, (2) there is a
potential of automation. If we can capture document
operations and bind them to the right BPI in a (par-
tially or completely) automated manner the overhead
of logging business process activities can be reduced,
(3) by considering documents, the logging can be
simplified by following the rule: any activity that does
not access documents is logged.

To keep track of information access operations, we
propose an information model that is based on view-
ing the information base of the enterprise as a set of
documents. BPI's deal with information either in the
form of documents (paper or electronic) or in the form
of views over information within automated manage-
ment (databases) that can also be viewed as docu-
ments (e.g., the student’s registration record

Enterprise Modelling and Information Systems Architectures

Vol. 3, No. 2, December 2008

36

Majed AbuSafiya, Subhasish Mazumdar

accessed through the screen as a view over the reg-
istration database). Based on this document view, we
can view the information base of the enterprise as a
set of documents and BPIs effect as a sequence of
document operations. In the rest of the paper, when
we refer to a document we will be referring to this ex-
tended definition, that is, views over databases are
also assumed to be documents and operations applied
on them to be document operations.

The proposed information model is a set of documents
that represent an up-to-date explicit capture of the
states of corresponding documents within the enter-
prise. The reality model D* correspond to the infor-
mation base of the enterprise viewed as a set of
documents. So a d* in D*, could be a student’s ad-
mission application in paper form, an e-mail sent to
the department, or the database view of the student
admission record. We propose the capture model D
that ideally represents an up-to-date synchronous
capture of D*. That is, for a d* in D*, there is a cor-
responding document document(d*) such that docu-
ment(d*) maintains explicitly an up-to-date
information about the state of d* (Figure 1) . For D to
be an up-to-date capture of D*, if a document oper-
ation is applied to a document d* a corresponding
document operation should be applied on docu-
ment(d*). For feasibility reasons, this strict synchro-
nization between D* and D may be relaxed.

G
D* (Reality Model) o D (Capture Model)
L4

Figure 1: The Capture of D* through D

Similarly we propose the capture model P for the re-
ality model P* (Figure 2). P* is the set of actual BPI’s.
The execution of a BPI p* in P* results in a sequence
of document operations on documents within D*. For
every p* in P*, we maintain a corresponding docu-
ment process(p*) in P. The document process(p*)
maintains up-to-date information about the sequence
of document operations that happened on D corre-
sponding to document operations that happened on
D* as part of p*. This is valid because D is a synchro-
nous capture of D* and for an operation applied to a
document d* in D*, there is a corresponding opera-
tion that is applied to document(d*) in D. So ideally,
P will maintain up-to-date information about P* by
keeping track of document operations that happened
as part of BPIs in P*.

The whole picture can be seen in Figure 3. We can see
a sequence of D* document operations that hap-
pened in reality as part of some BPI p* (the arrows

7
P* (Reality Model) o P (Capture Model)

Figure 2: The Capture of P* through P

show the sequencing of these document operations).
The capture model D maintains corresponding docu-
ment(d*) for every d* accessed by p* (the vertical ar-
rows). Also applying a document operation on d* will
result in a corresponding operation on document(d*)
such that document(d*) stays an up-to-date capture
of d*. process(p*) is a corresponding document that
keeps track of D documents that were accessed and
operations applied on these documents as a result of
operations applied on D* due to p*.

Capture P process(p*)
Models
Dand P |D_«f= A document(d*) = 2 |
Realit
ModeI); k///A
D*and P* /A
VAN
| —
A<d*/ Documents
Views over Inf. within space
automated management

Figure 3: The Capture of P* through P

D and P can then be the underlying model for a soft-
ware system that provides automation needed to (1)
maintain the capture models up to date by capturing
document operations that happen on D* due to P*
and update the D and P accordingly and (2) provide
automated queriability of these models and hence
make this information about the BPI states efficiently
available whenever needed. So, instead of querying
D* and P*, we can easier query about them through
D and P.

The rest of this paper is organized as follows: in sec-
tion 2 we will present the information models D* and
D. In section 3, we will present a document-based
process definition model and the BPIs model P. In
section 4, we discuss the implementability of the pro-
posed system followed by the advantages. We end
the paper with concluding remarks and future work.

Enterprise Modelling and Information Systems Architectures

Vol. 3, No. 2, December 2008

A Document-Based Approach to Monitor Business Process Instances

2 Information Model

2.1 The Reality Model D*

A document can be defined as a presentable informa-
tional container that has certain attributes on which
we can apply a certain set of operations. Any informa-
tion about the document represents an attribute of
the document (e.g., informational content, last ac-
cess, physical location, type). Also, associations with
other documents (e.g., version-of) or with other ob-
jects within the enterprise (e.g., owner-of which is a
participant) are attributes of a document. Documents
are objects on which we can apply simple or complex
document operation (update, annotate, route, take
admission decision). We will use object-oriented lan-
guage notation to refer to a document attribute or op-
eration, for example, d.physicalLocation represents
the physical location of the document d and d.print()
refers to print operation.

D* is a set of documents corresponding to the actual
information base of the enterprise within/outside the
scope of automated management viewed as a set of
documents. We have adopted this view because (1)
this is the natural view of information where a human
and BPI interact with information in the form of docu-
ments, (2) it is a homogenous view through which we
can view all information within/outside the scope of
automated management as documents, and (3) it can
be easily transformed into an electronic semi-struc-
tured constructs [AbBS00] that are supported by au-
tomated management systems ([JaAl+02],
[Meye02]).

D* is the target of the BPIs effect. That is, operations
that are applied to D* documents are due to some
BPI. D* documents can be viewed to exist in three
main classes: (1) paper documents: Paper docu-
ments are still there because electronic documents
are frequently printed for annotation, routing, person-
al use, and signature. Sometimes, only the original
paper document is considered to be authentic. Paper
documents are also important for communication
within/outside the enterprise, (2) synthesized docu-
ments: There are views over information within auto-
mated management, for example, the student
registration record from a database presented to the
registrar on his computer screen. Considering views
over databases to be documents is justified because
these views can also be seen as information contain-
ers having attributes and on which we apply opera-
tions and hence complying with our definition of a
document, (3) standalone electronic documents:
These are electronic documents that are not synthe-
sized documents (e.g., word processing files, e-mails,
audio or video files). Standalone documents are part
of the document space. Note that although electronic

documents (whether synthesized or standalone) are
presentable on a computer screen, the corresponding
d* is not the screen itself, but the electronic file or the
database view shown on the screen.

We restrict D* documents to those documents that
are accessed by some BPI. This is justified, because a
document is of value only if it is involved in some BPI.
In the rest of this paper, when we refer to a docu-
ment, we refer to any document from the three types
specified above except when explicitly specified oth-
erwise.

D* documents can be classified into classes where
documents having similar informational content
structure and hence are the target of the same set of
business processes are assumed to belong to the
same document type. A document type is a template
that defines a general structure of documents with
similar informational content structure and behavior.
For example, students’ admission applications are as-
sumed to be of the same type since they have the
same informational content structure and they are the
target of a given set of business processes (e.g., ad-
mission application processing business process). The
types of documents in D* are not explicitly defined,
but it is very easy for a human to classify documents
into types. We will assume the type of a document d*
to be an attribute of d* and we will refer to that type
as type(d¥*).

2.2 The Capture Model D

Our approach in capturing BPI's in P* is based on
keeping track of operations that happen on D* docu-
ments. We will define D to be an explicit up-to-date
capture of D*. For a d* in D*, document(d*) in D is
the corresponding document whose informational
content is an explicit representation of the attribute
values of d*. To simplify presentation, if t is an at-
tribute of d* that is captured by document(d*), then
we will call t to be an attribute of document(d*). The
explicit representation of the state of d* by the docu-
ment document(d*) makes this information about d*
easier to map and hence maintained and queried by
automated management.

We choose to model document(d*) as a semi-struc-
tured document that can be represented using XML
[AbBSO00]. This choice is justified because the semi-
structured data provide a flexible information model
yet supported by automated management technolo-
gies. An attribute value can be viewed as a composite
XML element or even a simple element composed of a
piece of text or a reference to another element. For
example, let d* be a memo received by the admission
office from the department that decided to admit
Alex. Assume that the attributes of d* that we need
to keep track of are the informational content and

Enterprise Modelling and Information Systems Architectures

Vol. 3, No. 2, December 2008

Majed AbuSafiya, Subhasish Mazumdar

physical location. We can capture these attributes of
d* by document(d*) as shown in Figure 4. Note that
(1) document(d*) is a document that is an explicit
representation of the attribute values of d*. That is,
document(d*) is not a duplication of d* (2) docu-
ment(d*) does not necessarily capture all the at-
tributes of d* (section 2.3.1), (3) how to represent an
attribute value depends on the attribute domain cho-
sen. For example, we chose to represent the physical
location through department and not building, (4) the
attribute values in the example are very simple, but
they can be more complex, (5) we will call attributes
of d* that are captured by documents(d*) to be an at-
tributes of document(d*). This will make it easier to
present document(d*) as an image for d*.

From: CS Dept <memo>
To: Admission Office <informationalContent>
Subject: Alex’s <from>
Application CS Department
</from>
The department decided <to>
to admit Alex. Please be Admission Office
informed. </to>
<subject>
Thanks, Alex’s application
</subject>
<body>
admit Alex
</body>

</informationalContent>
<physicalLocation>
Admission Office
</physicalLocation>
</memo>

Figure 4: d* and document(d*)

Same document operations applicable to d* are also
operations applicable to document(d*). If an opera-
tion is applicable to d* due to some business process,
we assume a corresponding document operation is
applicable to document(d*) such that it changes the
attributes of document(d*) exactly as the corre-
sponding operation changes the corresponding at-
tributes of d*. This is needed to keep document(d*)
as an up-to-date capture of d* (section 2.5)

2.3 Defining Types of D documents

We need to define D document types to ease and to
allow the automated construction of D documents and
to define business processes. In Section 2.1, we pre-
sented the notion of the D* document type. We define
a D document type Tp for a corresponding D* docu-
ment type Tp« by the following methodology: (1)
identify D* documents that belong to Tpx, (2) identify
important attributes that we need to keep track of for
documents of Tp«, and define corresponding at-
tributes for Tp, (3) identify those document opera-
tions applicable to documents of Tpx and define a
corresponding operations for Tp. In the following sub-
sections, we will discuss these steps in detail. Let d*

be a document of type(d*), then we can define a cor-
responding type for corresponding D documents (re-
fer to as type(document(d*)) as follows:

2.3.1 Define the Attributes

Before we show how to define attributes, we need to
identify which attributes of d* that we need to keep
track of by document(d*). Not every attribute of d*
needs to be captured, otherwise it would add a lot of
complexity in maintaining the model. We only need to
consider those attributes of type(d*) that are needed
to describe the effect of BPIs on the states of docu-
ments of this type. That is, business processes that
affect a given document type play a very important
role in identifying what attributes we need to main-
tain. For example, let route be a document operation
that is applied on paper admission applications as part
of the admission business process. To capture the ef-
fect of this operation we need to define physicalLoca-
tion as an attribute of type(document(d*)). As a
general rule, those attributes of type(d*) that need to
be considered as attributes of type(document(d*))
are those attributes needed to capture the effect of
the BPIs on the state of the document. Said in another
way, important attributes are those attributes needed
to precisely define the effect of document operations
applied on documents of this type as part of some
BPI. Documents of type(d*) could be involved in more
than one business process type. This means that an
attribute of type(d*) that is not needed to capture the
effect of one business process type may need to be
defined to capture the effect of another business proc-
ess type. Newly created business process types may
also require defining new attributes or change the
definition of an existing attribute, in this case, we can
extend the available document types to define new
document types (Section 2.3.3).

To define an attribute, we need to define an attribute
name and define its type. We choose to represent at-
tributes as semi-structured data. So an attribute type
can be defined by the corresponding hierarchical
structure (Figure 5).

For the informational content attribute, we need to
define an informational content structure for
type(document(d*)) using which we can map the in-
formational content of d* into the informational con-
tent of document(d*). A mapping from the

<lastAccess>
<time> 5:30PM </time>
<date> May 10 </date>
<by> George </by>
</lastAccess>

lastAccess
time date by
<teJ<t> <:.lext> <Jext>

(a) lastAccess attribute
value of d*

(b) attribute type

Figure 5: Attribute value and attribute type

Enterprise Modelling and Information Systems Architectures

Vol. 3, No. 2, December 2008

A Document-Based Approach to Monitor Business Process Instances

informational content of d* into the corresponding in-
formational content of document(d*) needs to be
clearly defined. The information objects in d*.infor-
mationalContent that need to be considered for map-
ping are those that are required to clearly define the
effect of the document operations of the BPIs on
d*.informationalContent. This is also justified be-
cause not all the informational content of d* needs to
be tracked. For example, for documents of type(d*)
where d* is an admission application, GPA needs to be
considered in defining the informational content at-
tribute of type(document(d*)) because the definition
of takeAdmissionDecision operation applied as part of
the admission business process depends on the GPA
(assume the business rule where a student is admit-
ted if his GPA>3.0). Also decision should be consid-
ered because it represents the informational content
effect of the admission business process on admission
application documents. However, the nationality of
the student in the admission application may be ne-
glected in defining the informational content attribute
of admission application type.

To support document-retrieval-based querying of d*
an electronic copy of d* can be maintained as an at-
tribute for document(d*) (e.g., a scanned admission
application, a copy of the electronic copy sent or a da-
tabase view corresponding to the student admission
record). Another important attribute is the log that
maintains a sequence of log records. When a docu-
ment operation is applied on document(d*) because a
corresponding operation happened on d*, a log record
is created and added to the log list. A log record keeps
track of information about the document operation
occurred (such as operation’s name, parameters,
time, participant, etc.). This is needed to keep track
of BPIs as we will see shortly. Note that many docu-
ments especially those used to manage deviating be-
havior of business processes (e.g., correspondences
in Example 1) are not frequently accessed, and hence
they don’t have large history.

We can also define attributes to capture associations
(between documents) that we need to keep track of.
Although associations can be defined as separate
types (especially, attributed associations), we chose
to maintain associations as attributes without the def-
inition of explicit types for them because (1) we allow
attributes to be complex information objects, so we
still can capture attributed associations (2) we would
like to maintain the symmetry between D* and D at
the conceptual level. However, we can define such
types when we realize D by implementation.

2.3.2 Define Operations

Operations to define for type(document(d*)) can be
identified by the following rule: if an operation is ap-
plied to documents of type(d*) as part of some BPI,
define a corresponding operation for type(docu-

ment(d*)) such that it affects the attributes of docu-
ment(d*) exactly as the corresponding operation
affects the attributes of d* (note that the attributes
here are only the captured attributes). Defining an
operation for type(document(d*)) is defining how the
attributes of a document of type(document(d*))
should change due to this operation.

For example, consider the takeAdmissionDecision op-
eration applied on D* documents of type admission
application as part of the admission application
processing business process. This operation updates
the informational content of d* by annotating the
word “accept” if GPA>3.0 or “reject” otherwise. So,
we need to define a corresponding operation
takeAdmissionDecision as an operation for type(doc-
ument(d*)). Note that we need to have GPA and de-
cision information objects to be defined as part of the
informational content of document(d*) such that we
can define takeAdmissionDecision operation. This op-
eration can be defined as follows: (assuming that get-
Value and setValue are primitive operations that are
already defined):

If (getvalue(/informationalContent/gpa)>3.0)
setValue(/informationalConent/decision, “accept”)

else
setValue(/informationalContent/decision,“reject”)

This shows the effect on the informational content at-
tribute. Any other attributes affected should be updat-
ed as well. For example if the last access is an
attribute of document(d*), then the definition of
takeAdmisisonDecion should define how this attribute
value should be updated.

2.3.3 Extending Other Types

Document type definition is a continuous activity due
to the unpredictable behaviour of business processes
and the evolving nature of the enterprise. We may
also need to refine an existing type to generate a new
type. Imagine for example, the need to define a new
attribute or operation. We can ease the creation of
new D document types by extending an already de-
fined type (similar to the concept of inheritance in ob-
ject-orientation paradigm [FoSc99]). The new
document type inherits the definitions of attributes
and operations of the extended document type. We
can then define new attributes and operations or up-
date the definitions of inherited ones.

2.4 Methodology to Build document(d¥*)

A methodology for constructing a document(d*) for
d*is

1 Bind document(d*) to a matching document type
2 If a matching type is not found

3 Create a new type for document(d*)

4 Bind document(d*) to that type

5 Instantiate document(d*) from d* and its type

Enterprise Modelling and Information Systems Architectures

Vol. 3, No. 2, December 2008

Majed AbuSafiya, Subhasish Mazumdar

Binding document(d*) to a document type is the first
step toward the construction of document(d*). If a
matching type is not found, define a new document
type and bind document(d*) to that type. By binding
document(d*) to a certain type, document(d*) will in-
herit all the attributes and operations defined for that
type. By binding document(d*) to a type, we define
its structure (i.e., structure of its attributes). Finally,
instantiation is needed where attribute values are ex-
tracted from d* and transformed into the correspond-
ing attribute values of document(d¥*).

2.5 Synchronizing D with D*

For D to be a capture of D*, D should be in synchro-
nization with D*, meaning that document(d*) should
maintain correct and up-to-date information about
the state of d*. Ideally, this can be achieved by main-
taining the following rule: if a document operation
was applied to d*, a corresponding document opera-
tion should be applied to document(d*) such that doc-
ument(d*) remains an up-to-date capture of d*. In
practice, this strict synchronization requirement may
need to be relaxed for feasibility and implementation
purposes. This relaxation may include not capturing
some document operations, or having a delay in ap-
plication of a document operation on a D document
because of the occurrence of an on a corresponding
D* document.

Note that maintaining the temporal order of the cap-
tured document operations is very crucial to maintain
D as a valid capture of D*. This is mainly because the
concurrent execution of (1) individual BPIs (concur-
rent paths of the same BPI) or (2) multiple BPIs ac-
cessing the same d*. We can maintain the correctness
of P model by maintaining the following rule: the op-
erations applied on D, due to operations captured on
D*, should be applied in the same temporal order in
which corresponding D* document operations hap-
pened. It is important to point out that concurrent ac-
cess of D* documents is safe. For synthesized
documents, the database systems will take care of
this issue. However, for paper or standalone docu-
ments, they are usually accessed exclusively.

25.1 The Correctness of D in Capturing D*

The synchronization between document(d*) and d*
might be broken mainly because an operation that
happened on d* was not captured. We can check for
inconsistencies between d* and document(d*) by
comparing them (maybe manually). Another way to
find inconsistencies between d* and document(d*) is
to reconstruct document(d*) from d* and compare
the new document(d*) with the existing docu-
ment(d*). If there is a difference, it can be fixed by
replacing the old document(d*) with the new docu-
ment(d*). That is, reconstruction is a straightforward

solution to return to synchronization state. In addition
to discovering discrepancies, another advantage of
comparing the newly constructed document(d*) with
already defined document(d¥*) is discovering changes
that happened on d* that were not captured.

In Figure 6, assume a document operation was ap-
plied on d* generating d*’. There are two ways to
have document(d*)’ up to date with d*’: (1) we know
which operation(s) that were applied to d* so we ap-
ply the corresponding operation(s) on document(d¥*),
(2) for some reason we could not capture the opera-
tion(s) that happened on d*. In this case we can re-
turn to synchronization by reconstructing
document(d*) from d*’ .

d* —————» gocument(d*)

1

' Operation(s) Update through applying
:applied on d* corresponding document
| operation(s)

gd*¥/---=----==--- » *)7
Reconstruction document(d*)

Figure 6: Synchronizing document(d*) and d*

3 Business Process Model

3.1 Business Process Definition Model

Based on D* view, we can model a business process
by defining a set of document operations and the flow
of control among them. This sequence may include
branching instructions, repetition or even concurrent
behavior. Since D is the capture model of D*, a busi-
ness process can be modeled by describing the docu-
ment operations that take place within the business
process and the flow of control among them using the
corresponding D document type definitions. We can
define a business process as an object-oriented pro-
gram using typical programming language constructs
and whose instructions correspond to document oper-
ation calls. In the program we can define variables (or
objects) from D document types (or classes) and de-
fine how the states of these variables should change
simulating the actual business process effect on these
documents. A document operation can be represent-
ed as a document operation call applied to a variable
bound to a certain document type. One example of an
instruction within a program could be admissionAppli-
cation.takeAdmissionDecision() where admissionAp-
plication is a variable bound to AdmisisonApplication
type. This statement will correspond to take admis-
sion decision on a student admission application. Re-
member that this operation is defined as part of the
AdmssionApplication document type definition. The
program may also use control flow constructs (e.g., if-
then and loops), concurrency structures (e.g., fork,
join) and data structures (arrays, lists, etc.).

Enterprise Modelling and Information Systems Architectures

Vol. 3, No. 2, December 2008

A Document-Based Approach to Monitor Business Process Instances

61

Although uncommon, there could be an activity that
is not associated with a document operation (e.g.,
make phone call). We can associate such an activity
with a document operation by logging, where the par-
ticipant carrying out that activity is required to log
that he did that activity on some D* document (and
hence on a corresponding D document). In this case
the logging operation will correspond to the informa-
tional access operation for such activity and hence,
our map of activity to a corresponding document ac-
cess will be complete.

3.2 P

P* is the reality model corresponding to the set of the
actual BPIs of the enterprise. P is a document model
that maintains for p* in P* the document proc-
ess(p*). In this section we will see how P maintains
an up-to-date model of P*.

3.2.1 process(p*)

process(p*) is a document that maintains an up-to-
date capture of the state of a BPI p* by keeping track
of (1) every document(d*) where d* was accessed by
p* by maintaining references to every such document
and (2) the sequence of document operations applied
to these documents as part of p*. Remember that
every document operation that happens to d* as part
of p* is supposed to be captured and a corresponding
operation is applied on the corresponding docu-
ment(d*) resulting in adding a log record to the log
attribute of document(d*). process(p*) maintains a
sequence of references to those log records that were
added to D documents as a result of document oper-
ations that happen on D* as part of p*. process(p*)
can be realized through an XML document.

Referring to Example 1, the admission coordinator
considered Alex’s application as a special case and de-
cided to contact the department by sending the doc-
ument (drequest) and the department replied with
(dyeply) to admit Alex. p* can be captured by proc-
ess(p*). For a non-deviating BPI, document(dappiica-
tion) and document(di anscript) are first constructed
and process(p*) is updated to maintain references to
these two documents and references to the receive
log records that were created as a result of applying
receive operation. For Alex’s case, we have another
document proving that he won the science fair (dg;j.
cenceFair)- Figure 7 shows process(p¥*) initially where it
maintains references to document(dappjication), docu-
ment(dyranscrip) and document(dsciencerair)- Proc-
ess(p*) also maintains a sequence of references to
the receive operation log record of each of these doc-
uments (Figure 8). The deviating behavior of this
business process is managed by sending the drequest
requesting input about this special case. process(p*)
is updated by constructing document(dyequest) and

maintaining references to this document. When a re-
ply (dyeply) from the department is received, proc-
ess(p*) will maintain a reference to document(dyepy)-

process(p*) process(p*) process(p*)
CAT AT A
P D AN

Figure 7: Process(p*) maintains references to D
documents corresponding to D* documents

Note that by capturing a BPI p* by a document proc-
ess(p*) composed of documents in D, we are actually
defining P on the top of D. Also capturing p* by the
document process(p*) will provide a flexible structure
for the capture of p* even if it deviates or belongs to
a vaguely defined business process type. Being a doc-
ument model, P can be managed using automated
management technologies to make information about
the states of business process instances queriable.

d ment(dappiication).10g

document(danscript).10g
E document(dsciencerair)-10g

E document(drequest)-10g
E document(dyepy).l0g

Figure 8: Process(p*) maintains a sequence of ref-
erences to corresponding log records

process(p*).log

3.3 Synchronization between P* and P

For P to be a valid capture of P*, P should be in syn-
chronization with P* (i.e., process(p*) should main-
tain an up-to-date capture of the state of p* in P*).
Part of the synchronization between P* and P is the
synchronization between D* and D (section 2.5). In
addition, process(p*) needs to be updated when a
document operation on d* document in D* is cap-
tured as part of p* as follows: (1) maintaining a ref-
erence to document(d*) if not already maintained by
process(p*), (2) updating the sequence of references
to log records by adding a new reference to the log
record in document(d*) that corresponds to the cap-
tured document operation.

Enterprise Modelling and Information Systems Architectures

Vol. 3, No. 2, December 2008

Majed AbuSafiya, Subhasish Mazumdar

4 Implementation Discussion

A natural implementation for D and P models is using
XML and XML databases ([JaAl+02], [Meye02]).
D and P will be the underlying models of an automat-
ed management system whose main requirements is
to provide the automation needed to (1) capture doc-
ument operations happening to documents in D*,(2)
update the underlying models D and P accordingly,
and (3) provide automated querying capabilities for
(D and P). If any of the above requirements cannot
be done completely in an automated manner, the sys-
tem should provide needed user interfaces to get in-
formation needed from participants. Note that the
proposed system does not replace existing automated
management systems (e.g., DBMSs and WFMSs), in-
stead, it will use them and integrate with them
(Figure 9). For example, we can use databases to
capture operations on synthesized documents and we
can utilize WFMSs to keep track of automatable parts
of BPIs. We can use these systems to maintain the in-
tegrity of D and P (e.g., a student with an admission
record in the department should have a correspond-
ing BPI in P). Interfacing is needed to provide the au-
tomation necessary to capture D* document
operations. The definition component should provide
the interfaces and automation needed to define docu-
ment and business process types. The synchroniza-
tion component is responsible for keeping D and P up
to date with D* and P*. It is supposed to process D*
document operations capture information to make
corresponding updates on D, and bind this document
operation to the corresponding process(p*). This
component needs to be interfaced with the enterprise
information base to capture information access oper-
ations within or outside the scope of automated man-
agement. Software and hardware resources are
needed to automate the capture of document opera-
tions and to reduce human overhead.

For paper documents, to keep track of the location of
the paper documents, automatically readable (or

Querying Component

process(p*)__

| Interfacing |

Document Automated management
Space systems

Figure 9: The proposed system

even sensible) identifying tags can be attached and
read whenever the document is accessed. Sensors
can be installed in important locations within the en-
terprise to keep track of the document’s physical lo-
cation [AbMa0O4] (desks and cabinets for example).
Cabinets can be supported with locks that open when
a participant with a badge is close to keep track of
who is accessing the document. By reading this tag of
a paper document d*, document(d*) can be automat-
ically retrieved and user interfaces can be generated
(based on document type definition) to allow the par-
ticipant to apply the required document operation
manually if cannot be captured in an automated man-
ner. However, if document(d*) is not already created,
user interfaces (based on the document type) can be
automatically generated to create document(d*).
Participants dealing with paper documents can be
supported with scanners to maintain images for paper
documents so that a copy of the d* can be maintained
through document(d*).

For synthesized documents, the automated manage-
ment services provided by the database systems can
be utilized to keep track of operations applied on
them. For example, triggers can be developed to cap-
ture operations on database views (e.g., detect the
creation of a new record or a change on an existing
record).

For standalone electronic documents, an integrated
standalone document development environment can
be developed through which different standalone doc-
ument development applications can be used (e.g.,
word processor or e-mail manager). This environment
provides available document types (defined by the
definition component) where the participant can
choose to build a standalone document from an al-
ready known type with informational content struc-
tured. It should also integrate with the definition
component to allow the definition of new types when-
ever needed. Constructing a standalone document
belonging to a specific type allows automatic genera-
tion of user interfaces that can be easily instantiated
and hence having a faster and more structured con-
struction of a standalone document’s informational
content. Generating special user interfaces to be filled
by a human (when a standalone document is first cre-
ated or accessed) to associate profile information to
the document is already supported by some technol-
ogies (e.g., [Word08]). These ideas can be extended
to capture more structured detailed information about
the document’s attributes.

These software and hardware technologies to capture
document operations should be interfaced with the
synchronization component to update the underlying
models. We also need to bind the operation applied on
document(d*) with the corresponding process(p*).
Information about the state of document(d*), the
captured document operation, business process defi-

Enterprise Modelling and Information Systems Architectures

Vol. 3, No. 2, December 2008

A Document-Based Approach to Monitor Business Process Instances

nitions and the states of BPIs in P could be used to au-
tomatically identify the corresponding process(p*). If
this binding cannot be done in automated manner, a
human intervention may be needed. In this case the
system should provide user interfaces needed to get
information required to resolve this binding.

The querying component should provide the needed
interfaces to create and evaluate queries over D and
P models. We choose XML database to be the core en-
gine to maintain and query underlying models D and
P. This is justified because of the semi-structured
choice to represent the D and P models.

5 Advantages of the Proposed
Solution

Compared with current automated business process
management solutions, the main advantage of the
proposed solution is that it keeps track of the states
of BPIs even if they deviate from their default behav-
ior, belong to business processes that are vaguely de-
fined, or access or deal with information outside the
scope of automated management. Such unpredictable
behavior of BPIs cannot be completely managed by
the current automated business process management
systems. By keeping track of information access op-
erations, and maintaining the underlying models up-
to-date, we can query and reason about unpredictable
business process behavior. Also because D maintains
information outside the scope of automated manage-
ment, we can query about information existing out-
side the scope of automated management by
querying D model. Our approach will complement
current IT solutions to provide capture of information
and business processes outside the scope of automat-
ed management that current IT solutions fails to cov-
er. This would better support process mining
[AgGu+98] since more information is available than
that is provided by automated management solutions.

6 Conclusions

To have better queriability, monitorability and control
of the behavior of the enterprise as a whole, we need
to keep track of BPIs. Even with the availability of au-
tomated business process management solutions,
BPIs are not completely under the management of
these solutions. An automated solution is needed to
maintain a better capture of BPI’s especially for those
residing completely or partially outside the scope of
current automated management solutions. In this pa-
per, we have proposed a model that keeps track of
BPIs by keeping track of their information access op-
erations (within and outside the scope of automated

management). We view information in the enterprise
(information within databases and documents) as a
set of documents. We proposed a synchronous cap-
ture information model where BPIs information access
operations can then be captured by their correspond-
ing effect on this information model. This BPIs model
can then be the underlying model for an automated
management solution that integrates with current au-
tomated management solutions and provides a better
capture of BPIs states because the document trail
makes it possible to query why something happened
in addition to what happened.

The main challenge of the automated solution is cap-
turing document operations. Creative software and
hardware solutions are needed to achieve this for pa-
per, standalone and synthesized documents. Binding
a document operation to the corresponding BPI is an-
other challenge. Also, smart solutions and techniques
are needed to provide efficient queriability of D and P
models.

References

[AaHo+03] W.M.P, van der Aalst; A.H.M., ter Hofstede; M.,
Weske: Business Process Management: A Survey. In:
Business Process Management, Proceedings of the First
International Conference, 2003, pp. 1-12.

[AgGu+98] R. Agrawal, D. Gunopulos, F. Leymann: Mining
Process Models from Workflow Logs. In: Sixth Interna-
tional Conference on Extending Database Technology,
1998, pp. 469-483.

[AbBS00] S., Abiteboul; P., Buneman; D., Suciu: Data on
the Web: From Relations to Semistructured Data and
XML. In: Morgan Kaufmann, 2000.

[AbMa04] M., AbuSafiya; S., Mazumdar: Accommodating
paper in document databases. In: Proceedings of the
ACM Symposium on Document Engineering, 2004,
pp. 155-162.

[Dave98] T., Davenport: Putting the Enterprise into the
Enterprise System, Harvard Business Review, 1998,
pp. 121-131.

[GeSu+04] U., Gelinas; S., Sutton; J., Fedorowicz: Business
Processes and Information Technologies. Thomson
Learning, 2004.

[Glas98] R., Glass: Enterprise Resource Planning—Break-
through and/or Term Problem, The Data Base for
Advances in Information Systems, 1998, pp. 14-15.

[JaAl+02] H., Jagadish, S., Al-Khalifa, A., Chapman, L., Lak-
shmanan, A., Nierman, S., Paparizos, J., Patel, D.,
Srivastava, N., Wiwatwattana, Y., Wu, C., Yu: TIMBER:
A native XML database December 2002 The VLDB Jour-
nal, 2002.

[Meye02] W., Meyer: eXist User’'s Guide. System Documen-
tation Version 0.71, 2002.

Enterprise Modelling and Information Systems Architectures

Vol. 3, No. 2, December 2008

64

Majed AbuSafiya, Subhasish Mazumdar

[FoSc99] M., Fowler; K., Scott: UML Distilled A Brief Guide to
Standard Object Oriented Modeling Language. Addison
Wesley, 1999.

[WFMO07] Workflow Management Coalition, Workflow refer-
ence model. URL: http://www.wfmc.org/standards/
docs/tc003v11.pdf, (21 Dec 2007).

[Word08] Worldox, http://www.worldox.com, (5 Nov 2008).

Majed AbuSafiya, Subhasish Mazumdar

Computer Science Department
New Mexico Tech

801 Leroy Place

Socorro, 87801

New Mexico

USA
{majed|mazumdar}@nmt.edu

