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Thouraya Bouabana-Tebibel 

Object Dynamics Formalization Using 
Object Flows within UML State Machines 

UML, the de-facto standard for object-oriented modeling, currently still lacks a rigorously defined semantics for 
its models. This makes formal analysis and verification of model properties extremely difficult. OCL, the Object 
Constraint Language is part of UML for the expression of system properties. To validate formally these properties, 
we first present a technique for transforming a UML object life cycle model into Object Petri nets. We are 
especially interested in the modeling of communicating systems and for this purpose we use the state machines as 
models of the object behaviour. Secondly, we resort to the object and sequence diagrams which provide 
respectively identified objects and events for initializing the Petri nets derived from the state machines. Thirdly, 
validation of OCL invariants which are translated into temporal logic properties to be checked on the Petri nets 
derived from the UML models, requires integration of object flows within the state machines. These object flows 
express the dynamic creation and deletion of objects in the class association ends. Our interest in the association 
ends is motivated by the fact that they constitute the most important constructs of OCL expressions. A case study 
is provided throughout the paper to illustrate the methodology. 

 

1 Introduction 

The Unified Modeling Language UML [UML03a] is 
currently considered as the universal notation for 
object-oriented specification of complex system 
artefacts, in graphic and documented form. Unfortu-
nately, it suffers from continuing criticism on the 
precision of its semantics at a time when the verifi-
cation of the correctness of models has become a 
key issue. UML 2.0 [UML04] brings more precision to 
its semantics, but it remains informal and lacks tools 
for automatic analysis and validation.  

On the other hand, Petri nets [Jens92] are a formal 
language that relies on a mathematical theory which 
permits abstract proof activities. They can express 
most of the object behaviours and consequently, 
seem to be a natural technique for modeling the 
object dynamics [BeDM02]. Their drawback, in con-
trast to the UML notation, is their high learning cost 
and their failure to model large-scale applications.  

The communicating systems (Internet, satellites …) 
are composed of entities which continuously interact 
with each other or with their environment [Berr00], 
[HaPn85]. The dynamics of an object interacting 
with other objects is highlighted in UML by means of 
state machine diagrams. The latter model the object 
life cycle emphasizing the object interactions which 

are expressed by means of exchanged messages. 
Indeed, state machines describe the different states 
of an object where the transitions from one state to 
another are generally induced by event triggers. As 
for the static representation of the interactions 
among the objects of the system, it is specified 
using collaboration diagrams. The latter focus on the 
modeling of the communicating classes and the 
messages they exchange. 

To fill gaps in the UML notation and Petri nets for 
modeling object interactions, we presented in 
[BoBe04] a technique for transforming the UML state 
machines into Object Petri Nets, OPNs for short. The 
latter are then connected using the collaboration 
diagram structure and information, see figure 1. The 
OPNs are a generalization of ordinary Petri nets 
relying on the basic principles of the object-oriented 
approach and supporting convenient definition and 
manipulation of object values. Lakos demonstrates 
in [Lako01] that OPNs constitute a natural target 
formalism for object-oriented modeling languages 
since they provide a clean integration of the static 
(class) and dynamic (lifecycle and interactions of a 
class) models. He applies his theory to the Rum-
baugh’s OMT notation [RBL+91].  

In the present paper, we extend the work presented 
in [BoBe04] by developing a technique for dealing 
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with the verification process. It appears from our 
investigations that the research so far has tackled 
only the formalization of models with anonymous 
objects and there is no research yet which targets 
the analysis of models by considering objects identi-
fied by identities and attribute values. Thus, the 
main idea of this paper is to validate the UML state 
machines of communicating classes by proposing a 
methodology which on one hand, exploits the object 
and sequence diagrams to initialize the derived OPNs 
and on the other hand, uses the system properties 
expressed in the Object Constraint Language (OCL) 
[UML03b] to validate the models, see figure 1. 

Object diagrams describe possible configurations. 
Also called instance diagrams, they show the links 
between the instantiated objects and their attribute 
values, at a given time. They will be used to initialize 
the OPNs marking with objects named by identities 
and attribute values. As for the sequence diagrams, 
they constitute an attractive visual formalism, widely 
used to capture system scenarios [PiJé04]. They 
describe interactions by focusing on the sequencing 
of the exchanged messages among a group of ob-
jects. They will be used to define the OPN’s initial 
marking with the events of the scenario that will be 
verified.  

Once initialized, the OPNs are analyzed by means of 
PROD [PROD04], a model checker tool for predi-
cate/transition nets. To avoid the high learning cost 
of the model checker, we suggest that the designer 
specifies the system properties in OCL which is part 
of UML. OCL permits the formulation of restrictions 
over UML models, in particular, invariants. We 
automate after that, the translation of these invari-
ants to temporal logic properties so that they can be 
verified by PROD during the Petri net analysis.  

OCL invariants are specified on class diagrams. The 
latter model the static structure of a system in terms 
of classes and relationships between classes. A class 
describes a set of objects encapsulating attributes 
and methods. An association abstracts the links 
between the class instances. It has at least two 
ends, named association ends, each one represent-
ing a set of end objects with a size limited by a mul-
tiplicity. 

However, a simple translation of OCL invariants into 
Linear Temporal Logic (LTL) and Computation Tree 
Logic (CTL) properties is not sufficient for realizing a 
property checking. Indeed, the association ends rank 
among the most important constructs of OCL ex-
pressions. Unfortunately, they do not appear on the 
object life cycle diagram (state machine). In order 
that the OCL expressions composed of association 
end constructs can be verified on the derived OPNs 
after they have been translated into temporal logic 
properties, the association ends should be modeled 
on the state machines. This modeling should show 
the object flow regarding the roles the object plays, 
in other words, the activity of creation/ deletion of 
objects in/from the association ends. So, to achieve 
a systematic formal verification of OCL invariants, 
we propose an approach for the integration of the 
association end update within the state machines. 
This is realized using the link actions [UML01] which 
are translated into Petri nets while transforming the 
state machine. 

In short, our most relevant contribution aims at a 
value-oriented validation of UML state machines. For 
this purpose, we first use the object and sequence 
diagrams to initialize the specification. Then, we 
resort to the OCL invariants which allow an evalua-
tion of the system properties by using UML concepts. 
However, the formal validation of these properties 

Figure 1: Methodology of modeling and analysis 
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requires a specific object flow specification on the 
state machines by using the association end con-
structs. This approach has not been so far the object 
of research in which the model initialization is gen-
erally based on anonymous objects and the object 
flows are never modeled on the state machines. 

The remainder of the paper starts with a brief over-
view on the mapping of UML state machines to Petri 
nets. This mapping constitutes the background of 
the present work. In sections 3 and 4 the proposed 
approach is presented and the techniques upon 
which it is based are developed. These techniques 
are illustrated throughout the paper using a case 
study. Some results on the model analysis are given 
and commented in section 5. We provide in section 6 
the reasons that motivate our work and show its 
novelty and relevance by comparison with related 
works. We conclude with some observations on the 
obtained results and recommendations for future 
research directions.  

2 Background 

We summarize in this section the work that we pre-
sented in [BoBe04] to transform UML state machines 
into Object Petri nets. This work supports the ap-
proach that we develop in the present paper. 

2.1 State machines 

A state machine relates to the behaviour of a class 
describing its states and the messages it exchanges 
with other state machines classes. This behaviour 
starts from one initial state and terminates in one 
final state such that every intermediate state is on a 
path from the initial to the final state. An intermedi-
ate state models a situation during which some 
invariant condition holds. The invariant may repre-
sent a static situation such as an object waiting for 
some external event to occur. However, it can also 
model dynamic conditions such as the execution of 
an action. This execution is modeled by using the 
keyword do which introduces an activity (called do 
activity) that is performed as long as the object is in 
the state.  

Other actions, defined as atomic, may be specified 
within the state, namely those introduced by the 
keywords entry and exit. The entry action is per-

formed at the entry of the state whereas the exit 
action is performed upon exiting the state, see fig-
ure 2. 

The states are linked by means of transitions anno-
tated with the event that triggers the transition 
(event trigger) and atomic actions produced by the 
triggered transition. An empty event indicates that 
the transition can fire spontaneously, while an 
empty action indicates that the transition produces 
no action. 

Due to their atomicity, the entry, exit and transit 
actions are in fact, generated events respectively 
called: entry, exit or transit events. 

Events are of two types: send events and call 
events. The call event includes the particular events 
create and destroy. Events are mentioned on the 
state machine as follows: «send» class(), «call» 
operation(), «create» class() or «destroy» class(). 
Examples of these events are given in the case 
study of figure 4. 

2.2 Case study 

We illustrate our study and first of all, the state 
machine models, through an interactive application 
that is mainly characterized by a great number of 
exchanged messages between its components. This 
application concerns a message server whose main 
role is to manage the communication between the 
connected stations. All of the exchanged messages 
must go through the server, to be forwarded to the 
receivers. The corresponding class diagram is pre-
sented in figure 3, where the server is modeled by 
the Server class, the stations by the Station class 
and the exchanged messages by the Message class. 
The stereotyped class Command models the used 
signals. It supports four types: Connection, Okcon-
nection, Disconnection and Okdisconnection. 

Figure 4 presents the state machine of a station 
which connects itself to the server after it has per-
formed a self diagnostic (check activity). Its connec-
tion request is realized by using the «send» connec-
tion event. The server confirms the station connec-
tion using the «send» okconnection event. When 
connected, a station can notify a message, receive a 
message or disconnect itself. It creates a message 

Figure 2: Events and activity of the state machine 
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using a «create» message event and then notifies it 
by means of a «send» message event.  

After it has received a forwarded message from the 
server by means of a «send» message trigger, the 
station saves it using a «call» save event. Its dis-
connection is requested by the «send» disconnection 
event and confirmed by the «send» okdisconnection 
event. 

2.3 Object Petri Nets 

UML is an object-oriented notation well-suited to 
model complex systems due to its modularity. Petri 
nets offer an appropriate formalism for dynamics 
and concurrency; however, ordinary Petri nets lack 
thorough modularization techniques. So, to merge 
UML and Petri nets, it is appropriate to move to-
wards OPNs which support object-oriented structur-
ing, thus allowing the definition of clean interfaces 
for object interactions. Furthermore, OPNs can be 
transformed into behaviourally equivalent Colored 
Petri Nets [Lako94], thus providing the basis for 
applying traditional analysis techniques. 
 

OPNs have been formally [Lako96] and informally 
[Lako01] defined by Lakos. In the OPNs, classes are 
represented by subnets that can be instantiated as 
many times as needed to obtain objects. This instan-
tiation is realized using tokens, in the form of n-
tuples, as class instances. This is the most important 
feature of the OPNs since it is the way they support 
the dynamic creation of objects. In accordance with 
the object-oriented approach, the subnet encapsu-
lates the attributes and methods of a class. The 
attributes are expressed as components of the token 
which represents the object. As for the methods, 
they describe the object life cycle (state machine) in 
the form of a bunch of places, functions and transi-
tions. The places are of two types: simple and super. 
The simple places hold tokens of simple type (inte-
ger, real, boolean, ..), class type or a multiset of the 
above. The super place generates these tokens. It 
can act as a source or sink of tokens. 

The functions define the token consumption while 
the transitions modify the net state according to the 
usual Petri net semantics. As for the super transi-
tion, it corresponds to a set of internal actions. 
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Figure 4: State machine of the station class 
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More formally, we define an OPN by the 7-tuple <P, 
T, A, C, Pre, Post, M0> where: 

 P = {p} is a set of places.  

 T = {t} is a set of transitions. 

 A  P  T  T  P, is a set of arcs. 

 C = {c} is a set of colours where c = {<v1,  
v2,,  …, vk>} and vj is a variable or a con-
stant. 

 Pre : P  T  P(C) is a precondition function 
to the transition firing such that                
Pre(pi, ti) =  ck. 

 Post : P  T  P(C) is a postcondition func-
tion to the transition firing such that 
Post(pi, ti) =  ck. 

 Mo : P  C is the initial marking function, 
such that Mo(p) =  ck. 

2.4 Overview of the derivation approach 

After defining in the previous sections the notation 
and formalism of interest, we provide in this section 
an overview of the derivation approach that we 
presented in [BoBe04]. Because of UML’s and OPN’s 
suitability for the object-oriented modeling, we pro-
posed the transformation of each state machine 
modeling interactive class behaviour into an object 
subnet called Dynamic Model or DM (see figure 5). 
To construct the DM, each state s  S is converted 
to a place p  P and each transition tr  Tr is con-
verted to a transition t  T with an arc at its input 
and an arc at its exit. As for the do activity, it is 
translated into a pair of transition-place with an arc 
at the input and the exit of the transition. These 
transformations are shown on figure 6 through the 
mappings M1, M2 and M3. 

To deal with Petri net simulation, we address the 
Petri net initial marking which may be of two types: 
static and dynamic. The static initial marking pro-
vides the class instances and their attribute values. 
These instances are extracted from the object dia-

gram to initialize the Object place with tokens of 
object type. The dynamic initial marking provides 
the exchanged messages among the interactive 
objects. These messages are extracted from the 
sequence diagram to initialize the Scenario place 
with tokens of event type.  

The event triggers occur on the DM through the 
Input place. They are represented by arcs from the 
Input place to the transition on which they occur 
(see mapping M7 on figure 6). With the places Ob-
ject, Scenario and Input, the DM constitutes an 
Object Petri net Model that we call OPN. To connect 
the different OPNs, we use the Link place through 
which all exchanged messages should pass. Thus, 
for each OPN, a directed transition from the Link 
place to the Input place is built. The transition firing 
is conditioned by the events that are inputs to the 
class (whose dynamics is specified by the DM) rep-
resented on the collaboration diagram.  

As for events generated on the state machine, they 
are converted to an arc from the Scenario place to 
the transition to which they are related and an arc 
from this transition to the Link place (see mappings 
M4, M5, M6 on figure 6).  

Figure 6 gives an overview of the semantics map-
ping of the state machine basic constructs into their 
counterparts in Petri nets. The dashed symbols rep-
resent associated constructs not concerned by the 
translation. 

In figure 7, we show the OPN resulting from the 
conversion of the station state machine.  

3 Initialization technique 

To deal with the model simulation, starting from 
state machine diagrams, two types of arguments 
must be initialized, namely, the system objects and 
the exchanged messages among these objects. 
Thus, we proceed to two types of initialization that 
we call static and dynamic. 

Figure 5: Petri nets interconnection architecture 
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3.1 Static initialization 

For the requirements of our initialization approach, 
we distinguish between two types of objects: active 
and passive. Active objects interact using messages, 
whereas passive objects are exchanged among the 
active objects. For example, in the server message 
application, the server and station objects are active 
while the message and command objects are pas-
sive. 

For the static initialization, only the active objects 
are concerned. These objects are formalized by 
coloured tokens of the form: <obj, attrib> where obj 
designates their identity and attrib the set {attrib1, 
…, attribk} of their attribute values. For the object 
identity, we adopt the UML notation which identifies 
an object by its name and its class name as follows: 
object:Class.  

The objects and their attribute values are specified 
on the object diagrams. The active objects initialize 
Petri net marking by providing the tokens that move 
on the DM. Thus, all objects instantiated from the 
same class on an object diagram are inserted in the 
Object place of the OPN translating the state ma-
chine of the class. 

Figure 8 shows an object diagram of the message 
server application before any action (there are no 
links between the objects). For each station, the IP 
address is given.  

3.2 Dynamic initialization 

Sequence diagrams allow the modeling of specific 
scenarios. They show exchanged messages among 
lifelines. The lifelines represent the participants in 
the interaction where each participant is identified 

by its name concatenated to the class name as fol-
lows: 

object:Class. The messages reflect events specified 
with their attribute values, as follows: «send» 
class(attrib), «call» operation(attrib), «create» 
class(attrib), «destroy» class(attrib), see figure 8. 
This specification enables the events that are dy-
namically generated on the state machine.  

The sequence diagram of figure 8 shows a scenario 
related to the server message application presented 
in section 2.2. Two stations st1 and st2 request a 
connection from a server s after performing a self 
diagnostic. When done, st1 creates a message m1, 
transmits it and then, disconnects itself. m1 is for-
warded by s to st2. st2 saves it and then, discon-
nects itself. 

We formalize an interaction on a sequence diagram 
by the 5_tuple (ev, srce, targ, xobj, attrib). The 
component ev identifies the event («send» class(), 
«call» operation(), «create» class(), «destroy» 
class()). Srce and targ are respectively the source 
and the target object identity. The component xobj 
gives the exchanged object identity (object:Class) if 
the sent message is an object and only the class 
name (Class) if the sent message is a signal. As for 
attrib, it designates the set {attrib1, …, attribk} of 
the exchanged object attributes. 

The dynamic model DM, derived from a state ma-
chine, is a generic model, specifying the object 
overall behaviour. Its initialization, deduced from a 
sequence diagram is done by means of: home mes-
sages (generated by the model objects towards 
other objects) or  border messages (generated from 
the system environment towards the model objects). 

Figure 6: Derivation of UML constructs to Petri nets 

 

S 

  State machine constructs Petri net constructs 

S

do : act 
  act 

 do-act 

  entry : ev 

exit : ev 

Link 

/ ev 

t 

 t

mapping 

Scenario 

ev / 
Input 

Mapping 

M1 

M2 

M3 

M4 

M5 

M6 

M7 

mapping 

mapping 

mapping 

mapping 

mapping 

mapping 

Link Scenario 

Link Scenario 

 



 Enterprise Modelling and Information Systems Architectures 

 Vol. 2, No. 1, May 2007 
32  Thouraya Bouabana-Tebibel 

 

 

The home messages are grouped together per class, 
so that for each object, only the output events are 
retained. They are converted afterwards to tokens of 
the form < ev(Sc), srce(Sc), targ(Sc), xobj(Sc), attrib(Sc)> 
and stored in the Scenario place of the DM corre-
sponding to their class. Through this initialization, 
the Scenario place enables the events generated by 
the DM and identifies them with real values, thus 
producing a Petri net animation. 

Since their source object are not represented on the 
model, all border messages are directly stored in the 
Link place which is common to all classes. After that, 
they are converted to tokens of the form: <ev(Li), , 
targ(Li), xobj(Li), attrib(Li)>. This initialization permits 

the opening of the Petri net model by using the Link 
place which is defined as an open place. 

The transformation of the sequence diagram of fig-
ure 8, gives the following Scenario place for the OPN 
of the station class. 

4 System property validation 

Verification by model checking – as treated in PROD 
– is based on state space generation and verification 
and validation of safety and liveness properties of a 
system on this space. The verification tackles the 
good construction of the model, using generic prop-
erties as deadlock, livelock, reject states, etc. As for 
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the validation, it checks whether the model is con-
structed in conformity with the customer initial re-
quirements. For this purpose, specific properties of 
the system, written by the modeler in Linear tempo-
ral Logic (LTL) or Computational Tree Logic (CTL) 
are used. For both of these approaches, given a 
property, a positive or negative reply is obtained. If 
the property is not satisfied, it generates a trace 
showing a counterexample.  

Since the main motivation of this work is that the 
UML designer may reach valid models without the 
need for knowledge of formal techniques, it is only 
reasonable that the properties are expressed by the 
modeler in the OCL language and are automatically 
translated afterwards into LTL and CTL. OCL which is 
a part of UML for the expression of constraints over 
UML models, in particular invariants, is appropriate 
to data value handling but does not support the 
expression of temporal properties. For formalization 
purposes, it is rather suitable for a translation to 
first-order predicate logic. Beckert et al. tackle this 
translation in [BeKS02]. So, to deal with an appro-
priate translation of OCL to the temporal logic which 
is the supported logic by the model checker tool, we 
first propose to extend OCL with temporal operators 
and then to translate it to LTL and CTL. This work is 
presented in [BoBe06]. Other works like those of 
Distefano [DiKR00] and Flake [FlMu04] have also 
invested this research direction. 

OCL is mainly based on the use of operations on 
collections for specifying object invariants. Since 
these collections correspond to association ends, the 
latter must appear on the Petri net specification so 
that the derived LTL and CTL properties (whose 
expression is essentially made of these constructs) 
can be verified. This requires the association ends to 
be modeled onto the state machines in order to get, 
after their transformation, the equivalent Petri net 
constructs. This object flow modeling is realized by 
means of the link actions. However, the usefulness 
of the link actions does not concern explicitly the 
modeling of the object life cycle. When constructing 
his diagrams, the designer does not necessarily 
think of modeling these concepts which are rather 
specific to the link and end object updates. For ex-
ample, for connecting a station to the server, the 
connection request and connection confirmation 
actions are naturally and systematically modeled by 

the designer, but the addition of the connected sta-
tion to the association end is never considered in the 
modeling, see figures 4 & 9. That is why we recom-
mend to the designer to specify the link actions on 
the state machines so that the OCL invariants can be 
verified. 

UML action semantics was defined in [UML01] for 
model execution and transformation. It is a practical 
framework for formal descriptions. For this work, we 
are particularly interested in the create link, destroy 
link and clear association actions.  

The create link action permits the addition of a new 
end object in the association end. The destroy link 
removes an end object from the association end. 
The clear association action destroys all links of an 
association in which a particular object participates. 
These actions will be represented on the state ma-
chine as tagged values of the form {linkAc-
tion(associationEnd)}, following the event which 
provokes the association end update.  

In figure 9, once the station is connected (by reception of 
«send» okconnection()) or disconnected (by reception of 
«send» okdisconnection()), it adds or removes itself from the 
association end connectedStation, using respectively, {cre-
ateLink(connectedStation)} or {destroyLink (connectedSta-
tion)}. It adds a sent or received message with {create-
Link(transmittedMessage)} or {create-
Link(receivedMessage)}, respectively. Finally, after it 
receives a disconnection confirmation, the station 
clears its association ends with the Message class, 
using {clearAssociation(transmittedMessage)} and 
{clearAssociation(receivedMessage)}. 

The link actions may concern an active or passive 
(exchanged) end object. The object-oriented ap-
proach, on which both UML and OPNs rely, is based 
on modularity and encapsulation principles. To deal 
with modularity, a given association end should 
appear and be manipulated in only one state ma-
chine. In Petri nets, an association end is modeled 
by a place of role type, see rule 1. This place holds 
the name of the association end and belongs to the 
DM translating the state machine. 

The question raised is then to which state machine 
the association end should belong, to the state ma-
chine of the class modeling its objects or to the class 
at the opposite end?  For example, concerning the 

Scenario = <«send» connection, st1:Station, s:Server, connection> 
+ <«send» connection, st2:Station, s:Server, connection> 
+ <«create» message, st1:Station, m1:Message, m1:Message, ip2, Hello> 
+ <«send» message, st1:Station, s:Server, m1:Message, ip2, Hello> 
+ <«send» disconnection, st1:Station, s:Server, disconnection> 
+ <«call» save, st2:Station, m1:Message, ,> 
+ <«send» disconnection, st2:Station, s:Server, disconnection>. 
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update of the association end connectedStation, in 
which class should it be carried out, in the class 
Station or the class Server? 

An association end regrouping active objects must 
be updated within the state machine of the class of 
these objects, in order to comply with the encapsu-
lation concept. Indeed, since the end object is saved 
in the role place with its attributes, these attributes 
must be accessible when adding the object to or 
removing it from the association end. They are given 
by the tuple <object, attrib> which specifies an 
active object. As an example, see the modeling of 
the association end connectedStation on figure 9. 

As for exchanged objects, they are usually manipu-
lated by active objects and are not specifiedby dy-
namic models. So, the association end representing 
them could be updated in the state machine of the 
active class that is at the opposite end. For the ex-
changed objects, the encapsulation constraint is 
lifted given that their attributes are transmitted 
within the message – which is of the form <ev, srce, 
targ, xobj, attrib> – and so, accessible by the active 
object when performing the association end update. 
For example, see the modeling of the association 
ends transmittedMessage and receivedMessage on 
figure 9. 

In Petri nets, the create link action is semantically 
equivalent to an arc starting in the transition with 
the end update towards the place specifying the 
association end. This translation is formalized by 
rule 2. The destroy link action is semantically 
equivalent to an arc from the association end place 
to the transition corresponding to the link action, see 
rule 3.  

The object to be added to / removed from the asso-
ciation end is extracted from the components of the 

token corresponding to the event that provokes the 
association end update. This token is situated in the 
Scenario place if the event is generated. It is located 
in the Link place if the event occurs, see rule 2. 

In Petri nets, the association end objects are colored 
tokens of role type. They are of the form <assoc, 
obj, attrib>, where obj is the object to be added to 
or removed from the association end and assoc is 
the object at the opposite end.  

We propose the formalization of the mapping of the 
link actions by means of 4 rules. For this purpose, 
we define the concepts dealing with the association 
end update by the 7-tuple <O, U, R, r, createLink, 
destroyLink, clearAssociation> where: 

 O = {o} is a set of active objects. 

 U = {u} is a set of exchanged objects. 

 R = {r} is a set of association ends. 

 r = {y} is a set of objects of the association 
end r,  where y  O    y  U. 

 createLink : R R is a function inserting an 
object into an association end such that 
createLink(ri

(k)) = ri
(k+1) = {y1

(i), y2
(i), …, yk

(i),  
yk+1

(i)}, yk  O   yk  U. 

 destroyLink : R R is a function removing 
an object from an association end such that 
destroyLink(ri

(k)) = ri
(k 1) = {y1

(i), y2
(i), …, 

yk 1
(i)}, yk  O   yk  U 

 clearAssociation : R R  is a function re-
moving all objects of an association end ri 
such that clearAssociation(r) = {}. 

 

entry : «send» connection() 

 connected 

entry : «send» disconnection() 

disconnection 

connection 

  «send» okconnection()  
{createLink(connectedStation)} 

/ «create» message() 

«send» okdisconnection() 
{destroyLink(connectedStation), 
  clearAssociation(transmittedMessage), 
  clearAssociation(receivedMessage)} 
 

reception 

exit : «call» save() 

 «send» message() 
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Entry : «send» message() 
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checking 
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Figure 9: transformation of the state machine of the station class considering the link actions action 

mapping 
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Rule 1: Conversion of an association end 

 For each r  R, create rol   P  (rol  is of 
role type). 

Rule 2: Conversion of a createLink() action 

 For each createLink(r), r  R, following a 
generated event : create an arc  t rol  T   
P,  such that: 

if r  O: 
Post(rol, t) = <targ(Sc), srce(Sc), attrib> 

if r  U: 
Post(rol, t) = <srce(Sc), xobj(Sc), attrib> 

 For each createLinki(ri
(k)), ri  R, following 

an event trigger : create an arc  tp roli  T 
  P,  such that : 

if r  O: 
Post(rol, t) = <srce(Li), targ(Li), attrib> 

if r  U: 
Post(rol, t) = <targ(Li), xobj(Li), attrib> 

Examples of the translation of the link actions are 
presented on figure 9 which completes figures 4 & 7 
regarding these actions. 

Rule 3: Conversion of a destroyLink() action  

The conversion of the destroyLink() action is treated 
in a similar manner as the createLink() action. The 
only differences between them are that: 

 the arc incoming into the role place is re-
placed by an arc outgoing this place, 

 the Post() function is replaced by the Pre() 
function holding exactly the same tokens.  

The clear association action is semantically equiva-
lent to an arc going from the association end place 
towards the transition related to the link action and 
removing all the association end objects linked to a 
given object. An object may only destroy itself or its 
associated exchanged objects. It can not destroy its 
associated active objects. Conversion of the clear 
association action is given by rule 4. An example is 
shown on the state machine and OPN of figure 9. 

Rule 4: Conversion of a clearAssociation() 
action 

 For each clearAssociationi(r) r  R, after a 
generated event: 

create an arc rol t  P   T, such that: 
Pre(rol, t) =<srce(Sc), xobj, attrib> 

 For each clearAssociationi(r) r  R, after an 
event trigger: 

create an arc rol t  P   T, such that: 
Pre(rol, t) = <targ(Li), xobj, attrib>  

5 Model Analysis 

To test the practical implementation of our ap-
proach, we built a translator whose semantic func-
tions are drawn from the conversion rules we have 
set in [BoBe04] and showed in section 2.4. We also 
developed a graphical interface for the construction 
of the class, state machine, collaboration, object and 
sequence diagrams. These diagrams constitute the 
input of the translator whose outputs are predi-
cate/transition nets, specified in PROD syntax. A 
little part of the translated model of figure 9 is given 
in what follows, for the transition (t3) which goes 
from the state connection to the state connected. 

#trans t3 
in {connection:<.targ,attrib.>; 
  Input:<.srce,targ,xobj,attrib1,attrib2.>} 
out {connected:<.targ,attrib.>; 
  connectedStation:<.srce,targ,attrib.>} 
#endtr 
   
where the keywords trans, in, out and endtr desig-
nate respectively the transition, its input places, its 
output places and its end. 

PROD was executed afterwards to verify the models. 
The Petri net initial marking was defined by the 
object and sequence diagrams of figure 8. 

The generic properties concerning the absence of 
livelock (infinite loops) and deadlock have been first 
checked. They were specified by means of the PROD 
commands: 

#place tester lo(<.0.>)hi(<.0.>)mk(<.0.>) 
  #tester tester deadlock(<.0.>). 
  #place tester lo(<.0.>) 
    hi(<.1.>) mk(<.0.>) 
  #tester tester livelock(<.1.>) 
 
This gives the following results: 
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where the nodes are the different states of the sys-
tem life cycle and the arrows are the transitions 
between these states. Here, a node (or a state) 
represents a view of the system, identified by a 
marking and obtained after a Petri net transition 
firing. The last node (number 200, the first is num-
ber 0) which is given after the last transition of the 
system behaviour, shows the final marking of the 
Petri net model. Only the places with tokens are 
represented. The others are empty. We notice that 
both of the association end places transmittedMes-
sage and receivedMessage, include the message m1. 
The association end place connectedMessage is 
empty, because the stations have disconnected 
themselves. As for the server, it waits for new con-
nection requests (in the place free). 

Some system invariants were afterwards expressed 
in LTL properties and verified. Two of these proper-
ties are expressed below in a paraphrased (textual) 
form and then, specified as OCL invariants and 
translated into LTL properties. To make easier the 
comprehension of the properties, refer to the class 
diagram of the server message application (fig-
ure 3). 

Property 1 

The number of connected stations is limited to max-
Station. 

Property 1 expression in OCL 

context s:Server inv : 
s.connectedStation size <= s.maxStation 
 
Property 1 expression in PROD 
 
For each server s and for each place of its DM* write 
the property: 

# verify henceforth (card(connectedStation : 
field[0] == s_server) <= (placeDM*Server : 
field[2])) 
  
where: 

 field[0] designates the first component 
(assoc) of the connectedStation tokens, 

 field[2] designates the third component 
(attrib2 = maxStation) of the tokens of the 
server DM*. 

Property 2 

Only connected stations can transmit messages. 
 

Property 2 expression in OCL 

Context s:Server inv: 

s.connectedStation  excludes(st1:Station) 
implies st1.transmittedMessage isEmpty() 
 
Property 2 expression in PROD 

#verify henceforth (connectedStation: 
(field[0] == s_server && field[1] 
==st1_station) == empty implies 
(transmittedMessage: field[0] == 
st1_Station) == empty) 
 
where : 

 connectedStation: field[0]==s_server &&      
field[1]==st1_station designates the 1st 
and 2nd components of the connectedSta-
tion tokens, 

 transmittedMessage: field [0]==st1_station 
designates the 1st  component of the 
transmittedMessage tokens. 

When PROD program is executed with these three 
properties, it terminates without signalling errors. 

6 Contributions vs. related work 

6.1 On the initialization of the 
specification 

For formalization purposes, the sequence diagrams 
are generally combined with the state machines in 
order to connect the object life cycles [BeDM02]. 
They are also transformed separately into other 
formalisms to validate specific scenarios [HaKP05] or 
composed together to describe the system overall 
behaviour [UcKM03]. As far as we are concerned, we 
introduce three novel uses of the sequence diagrams 
that we integrate within the process of model initiali-
zation. 

We, first, use the sequence diagrams to initialize the 
specification. The generic structure of the OPNs 
derived from the state machines, yields a specifica-
tion that supports the whole system scenarios. 
Based on this, we suggest the use of the sequence 
diagram to initialize the Petri net marking with the 
events of the scenario that will be verified.  

Second, we exploit the sequence diagrams to pro-
vide an interface between the system and its envi-
ronment. In spite of their suitability to describe 
complex behaviours such as parallelism or synchro-
nization, one significant gap of ordinary Petri nets is 
their incapacity to model open interactive systems. 
Many works such as [BCEH01] close this gap by 
proposing Open Petri nets that are ordinary Petri 
nets with a distinguished set of places, called open 
places. The latter are intended to represent the 
interface of the net towards the external world. 
Nevertheless, it still misses concrete propositions 
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about the practical use of this solution when formal-
izing UML. Thus, we utilize the sequence diagrams to 
constitute the net interface towards its environment.  

Finally, we utilize the creation and deletion informa-
tion to instantiate or destroy the objects of the sys-
tem. Another weakness of ordinary Petri nets is their 
failure to produce new objects dynamically. This 
deficiency is overcome in the literature with the 
OPNs’ super places which enable the generation of 
new objects [Lako01]. Similarly to the open places, 
we propose an applicative use of the super places in 
the UML context by using the events create and 
destroy. 

On the other hand, data formalization is usually 
given by means of state-oriented languages such as 
Z [AmPo03] or B [KiCa99]. We propose to specify 
data by means of object diagrams. These data pro-
vides Petri net initial marking with objects named by 
identities and attribute values. 

Hsiung et al. [HLT+04] Present a work which is close 
to ours. They combine the statecharts, the sequence 
diagrams and OCL constraints to deal with system 
verification. However, their interest is on timed 
statecharts and so in contrast to our work they use 
the sequence diagrams to schedule the different 
tasks of the system behaviour and do not deal with 
the objects and events valuation. As for OCL con-
straints, the authors emit only the idea of translating 
them into timed CTL logic but do not develop any 
strategy of translation of these constraints.     

6.2 On the validation of the specification 

Formalization of UML state machine semantics 
[PaLi99],[Trao00],[Kusk01],[EsJW02],[NiAD03], 
[BaPe05] and integration in the state machines of 
languages state-oriented or property-oriented 
[AtPS03] have been widely investigated. The OCL 
language has also been integrated within the state 
machines in various works, in particular, those of 
Flake and Mueller [FlMu04] who extend it with tem-
poral logic to express properties over time.  

However, no previous work has tackled the integra-
tion of the association end specification within UML 
dynamic models. We can explain this, arguing that 
the UML/OCL association is rarely used to formally 
validate UML models. When done, it is limited to OCL 
attribute expressions [TrSo04] or OCL pre and post-
conditions [FlMu04] whereas the association ends 
which yield the most important expressions are 
never treated. Generally, the formalized UML models 
are rather coupled with appropriate formalisms for 
the expression of system properties.  

Thus, when the OCL invariants express constraints 
on the association ends, the latter should be mod-

eled on the state machines so that they provide once 
transformed to Petri nets, a formal basis for the 
validation of the translated invariants. Otherwise, 
although correctly specified and translated to LTL or 
CTL, the properties could never be validated on the 
derived Petri nets without association end specifica-
tion within the state machines. 

The relevance of such an approach is to exploit all 
OCL capabilities to formally validate the system 
properties. These capabilities concern particularly, 
the navigation and operation constructs that yield 
most of the OCL expressions. Its only constraint 
concerns the obligation for the user to specify the 
link actions on the state machine. However, this 
constraint is minimal compared to that of limiting 
OCL expressions or specifying using formal lan-
guages like temporal logics. 

6.3 On the modeling of large-scale 
systems  

Expression of the object behaviour and interactions 
using state machines connected by means of col-
laboration diagrams, allows the modularization of 
the system activities per class. For large-scale sys-
tems, this modularity simplifies and clarifies the 
dynamic model representation. On the other hand, 
the object-oriented approach that we propose for 
formalizing these models provides an interconnec-
tion architecture of the derived Petri nets, which 
complies with modularity, see figure 5. Indeed, the 
proposed derivation approach is also modular, in the 
sense that each state machine is transformed sepa-
rately into a DM model which communicates with 
other DMs through the Link place. Thus, the connec-
tion of the state machines using collaboration dia-
grams crowned with the object-oriented modular 
formalization approach that we formulate, proves to 
be appropriate for specifying large-scale systems by 
means of generic models. 

7 Conclusion 

This paper presents an approach for validating sys-
tematically UML models without the need for the 
user to know formal checking techniques. The verifi-
cation concerns both the correctness of the model 
construction and the faithfulness of the modeling. 
The latter is allowed because of awaited system 
properties which are expressed by the modeler in 
OCL language and then translated into LTL and CTL 
properties. The formal validation of these properties 
required the integration of an object flow specifica-
tion into the object control flow model (state ma-
chine), using predefined actions (link actions) on the 
association ends. 



 Enterprise Modelling and Information Systems Architectures 

 Vol. 2, No. 1, May 2007 
38  Thouraya Bouabana-Tebibel 

 

 

Unlike previous efforts in this area, which formalize 
UML dynamic models considering anonymous ob-
jects, the methodology which we propose deals with 
a value-oriented validation. It offers to the user the 
opportunity of validating his models by checking the 
dynamics of objects identified by identities and at-
tribute values through specific scenarios. This in-
volves a complementary use of the object and se-
quence diagrams to initialize the object dynamics 
expressed by means of the state machines. 

Nevertheless, the initialization of these models with 
identified objects needs on one hand, that the 
classes have finite domains, in other words, in-
stances that can be represented on the object and 
sequence diagrams. On the other hand, a large 
number of class instances might explode the state 
space during the validation process which is per-
formed by model checking. To overcome this prob-
lem, we propose as future work, to start the simula-
tion at a critical moment from the object life cycle 
and not necessarily from the initial state. For this 
purpose, the object diagram will be used to repre-
sent the system objects at this moment. This repre-
sentation will influence the token distribution at the 
Petri net initial marking. 

For the present work, we only suggest to the UML 
designer, when performing a model validation, to 
proceed to a pertinent and appropriate choice of the 
initialization scenarios, composed of object and se-
quence diagrams. This choice should allow the 
treatment of the most important and critical situa-
tions of the system. This solution remains better 
than the one performing the model validation with 
anonymous objects. It, first, allows a model valida-
tion in a concrete context although reduced, consid-
ering objects with real values. Second, it allows a 
more precise validation by means of the OCL invari-
ants which require values for their validation. 

Another prospect of this work concerns the analysis 
of the validation/verification results and then, their 
feedback to the user. Since the methodology sup-
poses that the designer does not master the formal 
specification, the analysis results rendered by the 
model checker PROD, will not be obviously meaning-
ful to him. So, these results must be firstly interpreted 
and then presented to him in a form where the error 
in models is simply and clearly pointed out.  
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