
 Enterprise Modelling and Information Systems Architectures

 Vol. 2, No. 1, May 2007
26 Thouraya Bouabana-Tebibel

Thouraya Bouabana-Tebibel

Object Dynamics Formalization Using
Object Flows within UML State Machines

UML, the de-facto standard for object-oriented modeling, currently still lacks a rigorously defined semantics for
its models. This makes formal analysis and verification of model properties extremely difficult. OCL, the Object
Constraint Language is part of UML for the expression of system properties. To validate formally these properties,
we first present a technique for transforming a UML object life cycle model into Object Petri nets. We are
especially interested in the modeling of communicating systems and for this purpose we use the state machines as
models of the object behaviour. Secondly, we resort to the object and sequence diagrams which provide
respectively identified objects and events for initializing the Petri nets derived from the state machines. Thirdly,
validation of OCL invariants which are translated into temporal logic properties to be checked on the Petri nets
derived from the UML models, requires integration of object flows within the state machines. These object flows
express the dynamic creation and deletion of objects in the class association ends. Our interest in the association
ends is motivated by the fact that they constitute the most important constructs of OCL expressions. A case study
is provided throughout the paper to illustrate the methodology.

1 Introduction

The Unified Modeling Language UML [UML03a] is
currently considered as the universal notation for
object-oriented specification of complex system
artefacts, in graphic and documented form. Unfortu-
nately, it suffers from continuing criticism on the
precision of its semantics at a time when the verifi-
cation of the correctness of models has become a
key issue. UML 2.0 [UML04] brings more precision to
its semantics, but it remains informal and lacks tools
for automatic analysis and validation.

On the other hand, Petri nets [Jens92] are a formal
language that relies on a mathematical theory which
permits abstract proof activities. They can express
most of the object behaviours and consequently,
seem to be a natural technique for modeling the
object dynamics [BeDM02]. Their drawback, in con-
trast to the UML notation, is their high learning cost
and their failure to model large-scale applications.

The communicating systems (Internet, satellites …)
are composed of entities which continuously interact
with each other or with their environment [Berr00],
[HaPn85]. The dynamics of an object interacting
with other objects is highlighted in UML by means of
state machine diagrams. The latter model the object
life cycle emphasizing the object interactions which

are expressed by means of exchanged messages.
Indeed, state machines describe the different states
of an object where the transitions from one state to
another are generally induced by event triggers. As
for the static representation of the interactions
among the objects of the system, it is specified
using collaboration diagrams. The latter focus on the
modeling of the communicating classes and the
messages they exchange.

To fill gaps in the UML notation and Petri nets for
modeling object interactions, we presented in
[BoBe04] a technique for transforming the UML state
machines into Object Petri Nets, OPNs for short. The
latter are then connected using the collaboration
diagram structure and information, see figure 1. The
OPNs are a generalization of ordinary Petri nets
relying on the basic principles of the object-oriented
approach and supporting convenient definition and
manipulation of object values. Lakos demonstrates
in [Lako01] that OPNs constitute a natural target
formalism for object-oriented modeling languages
since they provide a clean integration of the static
(class) and dynamic (lifecycle and interactions of a
class) models. He applies his theory to the Rum-
baugh’s OMT notation [RBL+91].

In the present paper, we extend the work presented
in [BoBe04] by developing a technique for dealing

Enterprise Modelling and Information Systems Architectures
Vol. 2, No. 1, May 2007
Object Dynamics Formalization Using Object Flows within UML State Machines 27

with the verification process. It appears from our
investigations that the research so far has tackled
only the formalization of models with anonymous
objects and there is no research yet which targets
the analysis of models by considering objects identi-
fied by identities and attribute values. Thus, the
main idea of this paper is to validate the UML state
machines of communicating classes by proposing a
methodology which on one hand, exploits the object
and sequence diagrams to initialize the derived OPNs
and on the other hand, uses the system properties
expressed in the Object Constraint Language (OCL)
[UML03b] to validate the models, see figure 1.

Object diagrams describe possible configurations.
Also called instance diagrams, they show the links
between the instantiated objects and their attribute
values, at a given time. They will be used to initialize
the OPNs marking with objects named by identities
and attribute values. As for the sequence diagrams,
they constitute an attractive visual formalism, widely
used to capture system scenarios [PiJé04]. They
describe interactions by focusing on the sequencing
of the exchanged messages among a group of ob-
jects. They will be used to define the OPN’s initial
marking with the events of the scenario that will be
verified.

Once initialized, the OPNs are analyzed by means of
PROD [PROD04], a model checker tool for predi-
cate/transition nets. To avoid the high learning cost
of the model checker, we suggest that the designer
specifies the system properties in OCL which is part
of UML. OCL permits the formulation of restrictions
over UML models, in particular, invariants. We
automate after that, the translation of these invari-
ants to temporal logic properties so that they can be
verified by PROD during the Petri net analysis.

OCL invariants are specified on class diagrams. The
latter model the static structure of a system in terms
of classes and relationships between classes. A class
describes a set of objects encapsulating attributes
and methods. An association abstracts the links
between the class instances. It has at least two
ends, named association ends, each one represent-
ing a set of end objects with a size limited by a mul-
tiplicity.

However, a simple translation of OCL invariants into
Linear Temporal Logic (LTL) and Computation Tree
Logic (CTL) properties is not sufficient for realizing a
property checking. Indeed, the association ends rank
among the most important constructs of OCL ex-
pressions. Unfortunately, they do not appear on the
object life cycle diagram (state machine). In order
that the OCL expressions composed of association
end constructs can be verified on the derived OPNs
after they have been translated into temporal logic
properties, the association ends should be modeled
on the state machines. This modeling should show
the object flow regarding the roles the object plays,
in other words, the activity of creation/ deletion of
objects in/from the association ends. So, to achieve
a systematic formal verification of OCL invariants,
we propose an approach for the integration of the
association end update within the state machines.
This is realized using the link actions [UML01] which
are translated into Petri nets while transforming the
state machine.

In short, our most relevant contribution aims at a
value-oriented validation of UML state machines. For
this purpose, we first use the object and sequence
diagrams to initialize the specification. Then, we
resort to the OCL invariants which allow an evalua-
tion of the system properties by using UML concepts.
However, the formal validation of these properties

Figure 1: Methodology of modeling and analysis

Object Petri Nets

 Model
analysis

User
UML diagrams

 analyzable OPNs

UML
editor
 State machines

 &
Collaboration diagram

 Class diagram
(OCL Invariants)

Sequence diagram
 &
 Object diagram

 Object-oriented
 derivation approach

 OPNs
 initialization

 Enterprise Modelling and Information Systems Architectures

 Vol. 2, No. 1, May 2007
28 Thouraya Bouabana-Tebibel

requires a specific object flow specification on the
state machines by using the association end con-
structs. This approach has not been so far the object
of research in which the model initialization is gen-
erally based on anonymous objects and the object
flows are never modeled on the state machines.

The remainder of the paper starts with a brief over-
view on the mapping of UML state machines to Petri
nets. This mapping constitutes the background of
the present work. In sections 3 and 4 the proposed
approach is presented and the techniques upon
which it is based are developed. These techniques
are illustrated throughout the paper using a case
study. Some results on the model analysis are given
and commented in section 5. We provide in section 6
the reasons that motivate our work and show its
novelty and relevance by comparison with related
works. We conclude with some observations on the
obtained results and recommendations for future
research directions.

2 Background

We summarize in this section the work that we pre-
sented in [BoBe04] to transform UML state machines
into Object Petri nets. This work supports the ap-
proach that we develop in the present paper.

2.1 State machines

A state machine relates to the behaviour of a class
describing its states and the messages it exchanges
with other state machines classes. This behaviour
starts from one initial state and terminates in one
final state such that every intermediate state is on a
path from the initial to the final state. An intermedi-
ate state models a situation during which some
invariant condition holds. The invariant may repre-
sent a static situation such as an object waiting for
some external event to occur. However, it can also
model dynamic conditions such as the execution of
an action. This execution is modeled by using the
keyword do which introduces an activity (called do
activity) that is performed as long as the object is in
the state.

Other actions, defined as atomic, may be specified
within the state, namely those introduced by the
keywords entry and exit. The entry action is per-

formed at the entry of the state whereas the exit
action is performed upon exiting the state, see fig-
ure 2.

The states are linked by means of transitions anno-
tated with the event that triggers the transition
(event trigger) and atomic actions produced by the
triggered transition. An empty event indicates that
the transition can fire spontaneously, while an
empty action indicates that the transition produces
no action.

Due to their atomicity, the entry, exit and transit
actions are in fact, generated events respectively
called: entry, exit or transit events.

Events are of two types: send events and call
events. The call event includes the particular events
create and destroy. Events are mentioned on the
state machine as follows: «send» class(), «call»
operation(), «create» class() or «destroy» class().
Examples of these events are given in the case
study of figure 4.

2.2 Case study

We illustrate our study and first of all, the state
machine models, through an interactive application
that is mainly characterized by a great number of
exchanged messages between its components. This
application concerns a message server whose main
role is to manage the communication between the
connected stations. All of the exchanged messages
must go through the server, to be forwarded to the
receivers. The corresponding class diagram is pre-
sented in figure 3, where the server is modeled by
the Server class, the stations by the Station class
and the exchanged messages by the Message class.
The stereotyped class Command models the used
signals. It supports four types: Connection, Okcon-
nection, Disconnection and Okdisconnection.

Figure 4 presents the state machine of a station
which connects itself to the server after it has per-
formed a self diagnostic (check activity). Its connec-
tion request is realized by using the «send» connec-
tion event. The server confirms the station connec-
tion using the «send» okconnection event. When
connected, a station can notify a message, receive a
message or disconnect itself. It creates a message

Figure 2: Events and activity of the state machine

 State 2

entry: event
do: activity
exit: event

trigger / transit event

 State 1

entry: event
do: activity
exit: event

Enterprise Modelling and Information Systems Architectures
Vol. 2, No. 1, May 2007
Object Dynamics Formalization Using Object Flows within UML State Machines 29

using a «create» message event and then notifies it
by means of a «send» message event.

After it has received a forwarded message from the
server by means of a «send» message trigger, the
station saves it using a «call» save event. Its dis-
connection is requested by the «send» disconnection
event and confirmed by the «send» okdisconnection
event.

2.3 Object Petri Nets

UML is an object-oriented notation well-suited to
model complex systems due to its modularity. Petri
nets offer an appropriate formalism for dynamics
and concurrency; however, ordinary Petri nets lack
thorough modularization techniques. So, to merge
UML and Petri nets, it is appropriate to move to-
wards OPNs which support object-oriented structur-
ing, thus allowing the definition of clean interfaces
for object interactions. Furthermore, OPNs can be
transformed into behaviourally equivalent Colored
Petri Nets [Lako94], thus providing the basis for
applying traditional analysis techniques.

OPNs have been formally [Lako96] and informally
[Lako01] defined by Lakos. In the OPNs, classes are
represented by subnets that can be instantiated as
many times as needed to obtain objects. This instan-
tiation is realized using tokens, in the form of n-
tuples, as class instances. This is the most important
feature of the OPNs since it is the way they support
the dynamic creation of objects. In accordance with
the object-oriented approach, the subnet encapsu-
lates the attributes and methods of a class. The
attributes are expressed as components of the token
which represents the object. As for the methods,
they describe the object life cycle (state machine) in
the form of a bunch of places, functions and transi-
tions. The places are of two types: simple and super.
The simple places hold tokens of simple type (inte-
ger, real, boolean, ..), class type or a multiset of the
above. The super place generates these tokens. It
can act as a source or sink of tokens.

The functions define the token consumption while
the transitions modify the net state according to the
usual Petri net semantics. As for the super transi-
tion, it corresponds to a set of internal actions.

adr : integer

check()

wait()

message()

*

 transmittedMessage

*

1

dest : integer

info : string

 Message

Station Server

treat()

message()

connectedStation

adr : integer

maxStation :

receivedMessage

*

1

1

connection()

disconnection()

okConnection()

okDisconnection()- «signal»

Command

save()

 «type»

Connection

 «type»

OkConnection

 «type»

Disconnection

 «type»

OkDisconnection

Figure 3: Class diagram of the message server

Figure 4: State machine of the station class

entry : «send» connection()

 connected

entry : «send» disconnection()

disconnection

connection

«send» okconnection()

/ «create» message()

«send» okdisconnection()

reception

exit : «call» save()

«send» message()

entry : «send» message()

notification
 do : wait()

 checking

 do : check()

 Enterprise Modelling and Information Systems Architectures

 Vol. 2, No. 1, May 2007
30 Thouraya Bouabana-Tebibel

More formally, we define an OPN by the 7-tuple <P,
T, A, C, Pre, Post, M0> where:

 P = {p} is a set of places.

 T = {t} is a set of transitions.

 A P T T P, is a set of arcs.

 C = {c} is a set of colours where c = {<v1,
v2,, …, vk>} and vj is a variable or a con-
stant.

 Pre : P T P(C) is a precondition function
to the transition firing such that
Pre(pi, ti) = ck.

 Post : P T P(C) is a postcondition func-
tion to the transition firing such that
Post(pi, ti) = ck.

 Mo : P C is the initial marking function,
such that Mo(p) = ck.

2.4 Overview of the derivation approach

After defining in the previous sections the notation
and formalism of interest, we provide in this section
an overview of the derivation approach that we
presented in [BoBe04]. Because of UML’s and OPN’s
suitability for the object-oriented modeling, we pro-
posed the transformation of each state machine
modeling interactive class behaviour into an object
subnet called Dynamic Model or DM (see figure 5).
To construct the DM, each state s S is converted
to a place p P and each transition tr Tr is con-
verted to a transition t T with an arc at its input
and an arc at its exit. As for the do activity, it is
translated into a pair of transition-place with an arc
at the input and the exit of the transition. These
transformations are shown on figure 6 through the
mappings M1, M2 and M3.

To deal with Petri net simulation, we address the
Petri net initial marking which may be of two types:
static and dynamic. The static initial marking pro-
vides the class instances and their attribute values.
These instances are extracted from the object dia-

gram to initialize the Object place with tokens of
object type. The dynamic initial marking provides
the exchanged messages among the interactive
objects. These messages are extracted from the
sequence diagram to initialize the Scenario place
with tokens of event type.

The event triggers occur on the DM through the
Input place. They are represented by arcs from the
Input place to the transition on which they occur
(see mapping M7 on figure 6). With the places Ob-
ject, Scenario and Input, the DM constitutes an
Object Petri net Model that we call OPN. To connect
the different OPNs, we use the Link place through
which all exchanged messages should pass. Thus,
for each OPN, a directed transition from the Link
place to the Input place is built. The transition firing
is conditioned by the events that are inputs to the
class (whose dynamics is specified by the DM) rep-
resented on the collaboration diagram.

As for events generated on the state machine, they
are converted to an arc from the Scenario place to
the transition to which they are related and an arc
from this transition to the Link place (see mappings
M4, M5, M6 on figure 6).

Figure 6 gives an overview of the semantics map-
ping of the state machine basic constructs into their
counterparts in Petri nets. The dashed symbols rep-
resent associated constructs not concerned by the
translation.

In figure 7, we show the OPN resulting from the
conversion of the station state machine.

3 Initialization technique

To deal with the model simulation, starting from
state machine diagrams, two types of arguments
must be initialized, namely, the system objects and
the exchanged messages among these objects.
Thus, we proceed to two types of initialization that
we call static and dynamic.

Figure 5: Petri nets interconnection architecture

OPN

 Link

OPN

OPN DM
 Input

Object

Scenario

Enterprise Modelling and Information Systems Architectures
Vol. 2, No. 1, May 2007
Object Dynamics Formalization Using Object Flows within UML State Machines 31

3.1 Static initialization

For the requirements of our initialization approach,
we distinguish between two types of objects: active
and passive. Active objects interact using messages,
whereas passive objects are exchanged among the
active objects. For example, in the server message
application, the server and station objects are active
while the message and command objects are pas-
sive.

For the static initialization, only the active objects
are concerned. These objects are formalized by
coloured tokens of the form: <obj, attrib> where obj
designates their identity and attrib the set {attrib1,
…, attribk} of their attribute values. For the object
identity, we adopt the UML notation which identifies
an object by its name and its class name as follows:
object:Class.

The objects and their attribute values are specified
on the object diagrams. The active objects initialize
Petri net marking by providing the tokens that move
on the DM. Thus, all objects instantiated from the
same class on an object diagram are inserted in the
Object place of the OPN translating the state ma-
chine of the class.

Figure 8 shows an object diagram of the message
server application before any action (there are no
links between the objects). For each station, the IP
address is given.

3.2 Dynamic initialization

Sequence diagrams allow the modeling of specific
scenarios. They show exchanged messages among
lifelines. The lifelines represent the participants in
the interaction where each participant is identified

by its name concatenated to the class name as fol-
lows:

object:Class. The messages reflect events specified
with their attribute values, as follows: «send»
class(attrib), «call» operation(attrib), «create»
class(attrib), «destroy» class(attrib), see figure 8.
This specification enables the events that are dy-
namically generated on the state machine.

The sequence diagram of figure 8 shows a scenario
related to the server message application presented
in section 2.2. Two stations st1 and st2 request a
connection from a server s after performing a self
diagnostic. When done, st1 creates a message m1,
transmits it and then, disconnects itself. m1 is for-
warded by s to st2. st2 saves it and then, discon-
nects itself.

We formalize an interaction on a sequence diagram
by the 5_tuple (ev, srce, targ, xobj, attrib). The
component ev identifies the event («send» class(),
«call» operation(), «create» class(), «destroy»
class()). Srce and targ are respectively the source
and the target object identity. The component xobj
gives the exchanged object identity (object:Class) if
the sent message is an object and only the class
name (Class) if the sent message is a signal. As for
attrib, it designates the set {attrib1, …, attribk} of
the exchanged object attributes.

The dynamic model DM, derived from a state ma-
chine, is a generic model, specifying the object
overall behaviour. Its initialization, deduced from a
sequence diagram is done by means of: home mes-
sages (generated by the model objects towards
other objects) or border messages (generated from
the system environment towards the model objects).

Figure 6: Derivation of UML constructs to Petri nets

S

 State machine constructs Petri net constructs

S

do : act
 act

 do-act

 entry : ev

exit : ev

Link

/ ev

t

 t

mapping

Scenario

ev /
Input

Mapping

M1

M2

M3

M4

M5

M6

M7

mapping

mapping

mapping

mapping

mapping

mapping

Link Scenario

Link Scenario

 Enterprise Modelling and Information Systems Architectures

 Vol. 2, No. 1, May 2007
32 Thouraya Bouabana-Tebibel

The home messages are grouped together per class,
so that for each object, only the output events are
retained. They are converted afterwards to tokens of
the form < ev(Sc), srce(Sc), targ(Sc), xobj(Sc), attrib(Sc)>
and stored in the Scenario place of the DM corre-
sponding to their class. Through this initialization,
the Scenario place enables the events generated by
the DM and identifies them with real values, thus
producing a Petri net animation.

Since their source object are not represented on the
model, all border messages are directly stored in the
Link place which is common to all classes. After that,
they are converted to tokens of the form: <ev(Li), ,
targ(Li), xobj(Li), attrib(Li)>. This initialization permits

the opening of the Petri net model by using the Link
place which is defined as an open place.

The transformation of the sequence diagram of fig-
ure 8, gives the following Scenario place for the OPN
of the station class.

4 System property validation

Verification by model checking – as treated in PROD
– is based on state space generation and verification
and validation of safety and liveness properties of a
system on this space. The verification tackles the
good construction of the model, using generic prop-
erties as deadlock, livelock, reject states, etc. As for

 connection

Input

 notification

 disconnection

 reception

 connected

Link

 Scenario

Object

checking

wait

check t1

t2

t3

 t4

t5

 t6

t7

t8

 t9

do-check

 do-wait

Figure 7: Petri nets derived from the state machine of the Station class

Figure 8: Static and dynamic initialization

Static initialization Dynamic initialization

 st1 : Station

 adr = ip1

st2 : Station

adr = ip2

 <st1:station,ip1>
 <st2:station,ip2>

ObjectStation

derivation

 St1 : Station S : Server St2 : Station

 «send» connection()

check() check()

 «send» okconnection()
«send» connection()

 «send» okconnection()
 wait()

 wait()«send» message(ip2, Hello)

 wait()

 «send» disconnection()

 «send» okdisonnection()

 treat()

 «send» disconnection()

 «send» okdisonnection()

 wait()

«send» message(ip2, Hello)

M1 :Message

 «create» message(ip2, Hello)

 «call» save(ip2, Hello)

Enterprise Modelling and Information Systems Architectures
Vol. 2, No. 1, May 2007
Object Dynamics Formalization Using Object Flows within UML State Machines 33

the validation, it checks whether the model is con-
structed in conformity with the customer initial re-
quirements. For this purpose, specific properties of
the system, written by the modeler in Linear tempo-
ral Logic (LTL) or Computational Tree Logic (CTL)
are used. For both of these approaches, given a
property, a positive or negative reply is obtained. If
the property is not satisfied, it generates a trace
showing a counterexample.

Since the main motivation of this work is that the
UML designer may reach valid models without the
need for knowledge of formal techniques, it is only
reasonable that the properties are expressed by the
modeler in the OCL language and are automatically
translated afterwards into LTL and CTL. OCL which is
a part of UML for the expression of constraints over
UML models, in particular invariants, is appropriate
to data value handling but does not support the
expression of temporal properties. For formalization
purposes, it is rather suitable for a translation to
first-order predicate logic. Beckert et al. tackle this
translation in [BeKS02]. So, to deal with an appro-
priate translation of OCL to the temporal logic which
is the supported logic by the model checker tool, we
first propose to extend OCL with temporal operators
and then to translate it to LTL and CTL. This work is
presented in [BoBe06]. Other works like those of
Distefano [DiKR00] and Flake [FlMu04] have also
invested this research direction.

OCL is mainly based on the use of operations on
collections for specifying object invariants. Since
these collections correspond to association ends, the
latter must appear on the Petri net specification so
that the derived LTL and CTL properties (whose
expression is essentially made of these constructs)
can be verified. This requires the association ends to
be modeled onto the state machines in order to get,
after their transformation, the equivalent Petri net
constructs. This object flow modeling is realized by
means of the link actions. However, the usefulness
of the link actions does not concern explicitly the
modeling of the object life cycle. When constructing
his diagrams, the designer does not necessarily
think of modeling these concepts which are rather
specific to the link and end object updates. For ex-
ample, for connecting a station to the server, the
connection request and connection confirmation
actions are naturally and systematically modeled by

the designer, but the addition of the connected sta-
tion to the association end is never considered in the
modeling, see figures 4 & 9. That is why we recom-
mend to the designer to specify the link actions on
the state machines so that the OCL invariants can be
verified.

UML action semantics was defined in [UML01] for
model execution and transformation. It is a practical
framework for formal descriptions. For this work, we
are particularly interested in the create link, destroy
link and clear association actions.

The create link action permits the addition of a new
end object in the association end. The destroy link
removes an end object from the association end.
The clear association action destroys all links of an
association in which a particular object participates.
These actions will be represented on the state ma-
chine as tagged values of the form {linkAc-
tion(associationEnd)}, following the event which
provokes the association end update.

In figure 9, once the station is connected (by reception of
«send» okconnection()) or disconnected (by reception of
«send» okdisconnection()), it adds or removes itself from the
association end connectedStation, using respectively, {cre-
ateLink(connectedStation)} or {destroyLink (connectedSta-
tion)}. It adds a sent or received message with {create-
Link(transmittedMessage)} or {create-
Link(receivedMessage)}, respectively. Finally, after it
receives a disconnection confirmation, the station
clears its association ends with the Message class,
using {clearAssociation(transmittedMessage)} and
{clearAssociation(receivedMessage)}.

The link actions may concern an active or passive
(exchanged) end object. The object-oriented ap-
proach, on which both UML and OPNs rely, is based
on modularity and encapsulation principles. To deal
with modularity, a given association end should
appear and be manipulated in only one state ma-
chine. In Petri nets, an association end is modeled
by a place of role type, see rule 1. This place holds
the name of the association end and belongs to the
DM translating the state machine.

The question raised is then to which state machine
the association end should belong, to the state ma-
chine of the class modeling its objects or to the class
at the opposite end? For example, concerning the

Scenario = <«send» connection, st1:Station, s:Server, connection>
+ <«send» connection, st2:Station, s:Server, connection>
+ <«create» message, st1:Station, m1:Message, m1:Message, ip2, Hello>
+ <«send» message, st1:Station, s:Server, m1:Message, ip2, Hello>
+ <«send» disconnection, st1:Station, s:Server, disconnection>
+ <«call» save, st2:Station, m1:Message, ,>
+ <«send» disconnection, st2:Station, s:Server, disconnection>.

 Enterprise Modelling and Information Systems Architectures

 Vol. 2, No. 1, May 2007
34 Thouraya Bouabana-Tebibel

update of the association end connectedStation, in
which class should it be carried out, in the class
Station or the class Server?

An association end regrouping active objects must
be updated within the state machine of the class of
these objects, in order to comply with the encapsu-
lation concept. Indeed, since the end object is saved
in the role place with its attributes, these attributes
must be accessible when adding the object to or
removing it from the association end. They are given
by the tuple <object, attrib> which specifies an
active object. As an example, see the modeling of
the association end connectedStation on figure 9.

As for exchanged objects, they are usually manipu-
lated by active objects and are not specifiedby dy-
namic models. So, the association end representing
them could be updated in the state machine of the
active class that is at the opposite end. For the ex-
changed objects, the encapsulation constraint is
lifted given that their attributes are transmitted
within the message – which is of the form <ev, srce,
targ, xobj, attrib> – and so, accessible by the active
object when performing the association end update.
For example, see the modeling of the association
ends transmittedMessage and receivedMessage on
figure 9.

In Petri nets, the create link action is semantically
equivalent to an arc starting in the transition with
the end update towards the place specifying the
association end. This translation is formalized by
rule 2. The destroy link action is semantically
equivalent to an arc from the association end place
to the transition corresponding to the link action, see
rule 3.

The object to be added to / removed from the asso-
ciation end is extracted from the components of the

token corresponding to the event that provokes the
association end update. This token is situated in the
Scenario place if the event is generated. It is located
in the Link place if the event occurs, see rule 2.

In Petri nets, the association end objects are colored
tokens of role type. They are of the form <assoc,
obj, attrib>, where obj is the object to be added to
or removed from the association end and assoc is
the object at the opposite end.

We propose the formalization of the mapping of the
link actions by means of 4 rules. For this purpose,
we define the concepts dealing with the association
end update by the 7-tuple <O, U, R, r, createLink,
destroyLink, clearAssociation> where:

 O = {o} is a set of active objects.

 U = {u} is a set of exchanged objects.

 R = {r} is a set of association ends.

 r = {y} is a set of objects of the association
end r, where y O y U.

 createLink : R R is a function inserting an
object into an association end such that
createLink(ri

(k)) = ri
(k+1) = {y1

(i), y2
(i), …, yk

(i),
yk+1

(i)}, yk O yk U.

 destroyLink : R R is a function removing
an object from an association end such that
destroyLink(ri

(k)) = ri
(k 1) = {y1

(i), y2
(i), …,

yk 1
(i)}, yk O yk U

 clearAssociation : R R is a function re-
moving all objects of an association end ri
such that clearAssociation(r) = {}.

entry : «send» connection()

 connected

entry : «send» disconnection()

disconnection

connection

 «send» okconnection()
{createLink(connectedStation)}

/ «create» message()

«send» okdisconnection()
{destroyLink(connectedStation),
 clearAssociation(transmittedMessage),
 clearAssociation(receivedMessage)}

reception

exit : «call» save()

 «send» message()
{createLink(receivedMessage)}

Entry : «send» message()
{createLink(transmittedMessage)}

notification
 do : wait()

checking

do : check()

connection

Input

 notification

 disconnection

 reception

 connected

Link

 Scenario

Object

checking

 wait

 check t1

t2

t3

 t4

 t5

 t6

t7

t8

t9

do-check

 do-wait

connectedStation

receivedMessage

treansmittedMessage

Figure 9: transformation of the state machine of the station class considering the link actions action

mapping

Enterprise Modelling and Information Systems Architectures
Vol. 2, No. 1, May 2007
Object Dynamics Formalization Using Object Flows within UML State Machines 35

Rule 1: Conversion of an association end

 For each r R, create rol P (rol is of
role type).

Rule 2: Conversion of a createLink() action

 For each createLink(r), r R, following a
generated event : create an arc t rol T
P, such that:

if r O:
Post(rol, t) = <targ(Sc), srce(Sc), attrib>

if r U:
Post(rol, t) = <srce(Sc), xobj(Sc), attrib>

 For each createLinki(ri
(k)), ri R, following

an event trigger : create an arc tp roli T
 P, such that :

if r O:
Post(rol, t) = <srce(Li), targ(Li), attrib>

if r U:
Post(rol, t) = <targ(Li), xobj(Li), attrib>

Examples of the translation of the link actions are
presented on figure 9 which completes figures 4 & 7
regarding these actions.

Rule 3: Conversion of a destroyLink() action

The conversion of the destroyLink() action is treated
in a similar manner as the createLink() action. The
only differences between them are that:

 the arc incoming into the role place is re-
placed by an arc outgoing this place,

 the Post() function is replaced by the Pre()
function holding exactly the same tokens.

The clear association action is semantically equiva-
lent to an arc going from the association end place
towards the transition related to the link action and
removing all the association end objects linked to a
given object. An object may only destroy itself or its
associated exchanged objects. It can not destroy its
associated active objects. Conversion of the clear
association action is given by rule 4. An example is
shown on the state machine and OPN of figure 9.

Rule 4: Conversion of a clearAssociation()
action

 For each clearAssociationi(r) r R, after a
generated event:

create an arc rol t P T, such that:
Pre(rol, t) =<srce(Sc), xobj, attrib>

 For each clearAssociationi(r) r R, after an
event trigger:

create an arc rol t P T, such that:
Pre(rol, t) = <targ(Li), xobj, attrib>

5 Model Analysis

To test the practical implementation of our ap-
proach, we built a translator whose semantic func-
tions are drawn from the conversion rules we have
set in [BoBe04] and showed in section 2.4. We also
developed a graphical interface for the construction
of the class, state machine, collaboration, object and
sequence diagrams. These diagrams constitute the
input of the translator whose outputs are predi-
cate/transition nets, specified in PROD syntax. A
little part of the translated model of figure 9 is given
in what follows, for the transition (t3) which goes
from the state connection to the state connected.

#trans t3
in {connection:<.targ,attrib.>;
 Input:<.srce,targ,xobj,attrib1,attrib2.>}
out {connected:<.targ,attrib.>;
 connectedStation:<.srce,targ,attrib.>}
#endtr

where the keywords trans, in, out and endtr desig-
nate respectively the transition, its input places, its
output places and its end.

PROD was executed afterwards to verify the models.
The Petri net initial marking was defined by the
object and sequence diagrams of figure 8.

The generic properties concerning the absence of
livelock (infinite loops) and deadlock have been first
checked. They were specified by means of the PROD
commands:

#place tester lo(<.0.>)hi(<.0.>)mk(<.0.>)
 #tester tester deadlock(<.0.>).
 #place tester lo(<.0.>)
 hi(<.1.>) mk(<.0.>)
 #tester tester livelock(<.1.>)

This gives the following results:

 Enterprise Modelling and Information Systems Architectures

 Vol. 2, No. 1, May 2007
36 Thouraya Bouabana-Tebibel

where the nodes are the different states of the sys-
tem life cycle and the arrows are the transitions
between these states. Here, a node (or a state)
represents a view of the system, identified by a
marking and obtained after a Petri net transition
firing. The last node (number 200, the first is num-
ber 0) which is given after the last transition of the
system behaviour, shows the final marking of the
Petri net model. Only the places with tokens are
represented. The others are empty. We notice that
both of the association end places transmittedMes-
sage and receivedMessage, include the message m1.
The association end place connectedMessage is
empty, because the stations have disconnected
themselves. As for the server, it waits for new con-
nection requests (in the place free).

Some system invariants were afterwards expressed
in LTL properties and verified. Two of these proper-
ties are expressed below in a paraphrased (textual)
form and then, specified as OCL invariants and
translated into LTL properties. To make easier the
comprehension of the properties, refer to the class
diagram of the server message application (fig-
ure 3).

Property 1

The number of connected stations is limited to max-
Station.

Property 1 expression in OCL

context s:Server inv :
s.connectedStation size <= s.maxStation

Property 1 expression in PROD

For each server s and for each place of its DM* write
the property:

verify henceforth (card(connectedStation :
field[0] == s_server) <= (placeDM*Server :
field[2]))

where:

 field[0] designates the first component
(assoc) of the connectedStation tokens,

 field[2] designates the third component
(attrib2 = maxStation) of the tokens of the
server DM*.

Property 2

Only connected stations can transmit messages.

Property 2 expression in OCL

Context s:Server inv:

s.connectedStation excludes(st1:Station)
implies st1.transmittedMessage isEmpty()

Property 2 expression in PROD

#verify henceforth (connectedStation:
(field[0] == s_server && field[1]
==st1_station) == empty implies
(transmittedMessage: field[0] ==
st1_Station) == empty)

where :

 connectedStation: field[0]==s_server &&
field[1]==st1_station designates the 1st
and 2nd components of the connectedSta-
tion tokens,

 transmittedMessage: field [0]==st1_station
designates the 1st component of the
transmittedMessage tokens.

When PROD program is executed with these three
properties, it terminates without signalling errors.

6 Contributions vs. related work

6.1 On the initialization of the
specification

For formalization purposes, the sequence diagrams
are generally combined with the state machines in
order to connect the object life cycles [BeDM02].
They are also transformed separately into other
formalisms to validate specific scenarios [HaKP05] or
composed together to describe the system overall
behaviour [UcKM03]. As far as we are concerned, we
introduce three novel uses of the sequence diagrams
that we integrate within the process of model initiali-
zation.

We, first, use the sequence diagrams to initialize the
specification. The generic structure of the OPNs
derived from the state machines, yields a specifica-
tion that supports the whole system scenarios.
Based on this, we suggest the use of the sequence
diagram to initialize the Petri net marking with the
events of the scenario that will be verified.

Second, we exploit the sequence diagrams to pro-
vide an interface between the system and its envi-
ronment. In spite of their suitability to describe
complex behaviours such as parallelism or synchro-
nization, one significant gap of ordinary Petri nets is
their incapacity to model open interactive systems.
Many works such as [BCEH01] close this gap by
proposing Open Petri nets that are ordinary Petri
nets with a distinguished set of places, called open
places. The latter are intended to represent the
interface of the net towards the external world.
Nevertheless, it still misses concrete propositions

Enterprise Modelling and Information Systems Architectures
Vol. 2, No. 1, May 2007
Object Dynamics Formalization Using Object Flows within UML State Machines 37

about the practical use of this solution when formal-
izing UML. Thus, we utilize the sequence diagrams to
constitute the net interface towards its environment.

Finally, we utilize the creation and deletion informa-
tion to instantiate or destroy the objects of the sys-
tem. Another weakness of ordinary Petri nets is their
failure to produce new objects dynamically. This
deficiency is overcome in the literature with the
OPNs’ super places which enable the generation of
new objects [Lako01]. Similarly to the open places,
we propose an applicative use of the super places in
the UML context by using the events create and
destroy.

On the other hand, data formalization is usually
given by means of state-oriented languages such as
Z [AmPo03] or B [KiCa99]. We propose to specify
data by means of object diagrams. These data pro-
vides Petri net initial marking with objects named by
identities and attribute values.

Hsiung et al. [HLT+04] Present a work which is close
to ours. They combine the statecharts, the sequence
diagrams and OCL constraints to deal with system
verification. However, their interest is on timed
statecharts and so in contrast to our work they use
the sequence diagrams to schedule the different
tasks of the system behaviour and do not deal with
the objects and events valuation. As for OCL con-
straints, the authors emit only the idea of translating
them into timed CTL logic but do not develop any
strategy of translation of these constraints.

6.2 On the validation of the specification

Formalization of UML state machine semantics
[PaLi99],[Trao00],[Kusk01],[EsJW02],[NiAD03],
[BaPe05] and integration in the state machines of
languages state-oriented or property-oriented
[AtPS03] have been widely investigated. The OCL
language has also been integrated within the state
machines in various works, in particular, those of
Flake and Mueller [FlMu04] who extend it with tem-
poral logic to express properties over time.

However, no previous work has tackled the integra-
tion of the association end specification within UML
dynamic models. We can explain this, arguing that
the UML/OCL association is rarely used to formally
validate UML models. When done, it is limited to OCL
attribute expressions [TrSo04] or OCL pre and post-
conditions [FlMu04] whereas the association ends
which yield the most important expressions are
never treated. Generally, the formalized UML models
are rather coupled with appropriate formalisms for
the expression of system properties.

Thus, when the OCL invariants express constraints
on the association ends, the latter should be mod-

eled on the state machines so that they provide once
transformed to Petri nets, a formal basis for the
validation of the translated invariants. Otherwise,
although correctly specified and translated to LTL or
CTL, the properties could never be validated on the
derived Petri nets without association end specifica-
tion within the state machines.

The relevance of such an approach is to exploit all
OCL capabilities to formally validate the system
properties. These capabilities concern particularly,
the navigation and operation constructs that yield
most of the OCL expressions. Its only constraint
concerns the obligation for the user to specify the
link actions on the state machine. However, this
constraint is minimal compared to that of limiting
OCL expressions or specifying using formal lan-
guages like temporal logics.

6.3 On the modeling of large-scale
systems

Expression of the object behaviour and interactions
using state machines connected by means of col-
laboration diagrams, allows the modularization of
the system activities per class. For large-scale sys-
tems, this modularity simplifies and clarifies the
dynamic model representation. On the other hand,
the object-oriented approach that we propose for
formalizing these models provides an interconnec-
tion architecture of the derived Petri nets, which
complies with modularity, see figure 5. Indeed, the
proposed derivation approach is also modular, in the
sense that each state machine is transformed sepa-
rately into a DM model which communicates with
other DMs through the Link place. Thus, the connec-
tion of the state machines using collaboration dia-
grams crowned with the object-oriented modular
formalization approach that we formulate, proves to
be appropriate for specifying large-scale systems by
means of generic models.

7 Conclusion

This paper presents an approach for validating sys-
tematically UML models without the need for the
user to know formal checking techniques. The verifi-
cation concerns both the correctness of the model
construction and the faithfulness of the modeling.
The latter is allowed because of awaited system
properties which are expressed by the modeler in
OCL language and then translated into LTL and CTL
properties. The formal validation of these properties
required the integration of an object flow specifica-
tion into the object control flow model (state ma-
chine), using predefined actions (link actions) on the
association ends.

 Enterprise Modelling and Information Systems Architectures

 Vol. 2, No. 1, May 2007
38 Thouraya Bouabana-Tebibel

Unlike previous efforts in this area, which formalize
UML dynamic models considering anonymous ob-
jects, the methodology which we propose deals with
a value-oriented validation. It offers to the user the
opportunity of validating his models by checking the
dynamics of objects identified by identities and at-
tribute values through specific scenarios. This in-
volves a complementary use of the object and se-
quence diagrams to initialize the object dynamics
expressed by means of the state machines.

Nevertheless, the initialization of these models with
identified objects needs on one hand, that the
classes have finite domains, in other words, in-
stances that can be represented on the object and
sequence diagrams. On the other hand, a large
number of class instances might explode the state
space during the validation process which is per-
formed by model checking. To overcome this prob-
lem, we propose as future work, to start the simula-
tion at a critical moment from the object life cycle
and not necessarily from the initial state. For this
purpose, the object diagram will be used to repre-
sent the system objects at this moment. This repre-
sentation will influence the token distribution at the
Petri net initial marking.

For the present work, we only suggest to the UML
designer, when performing a model validation, to
proceed to a pertinent and appropriate choice of the
initialization scenarios, composed of object and se-
quence diagrams. This choice should allow the
treatment of the most important and critical situa-
tions of the system. This solution remains better
than the one performing the model validation with
anonymous objects. It, first, allows a model valida-
tion in a concrete context although reduced, consid-
ering objects with real values. Second, it allows a
more precise validation by means of the OCL invari-
ants which require values for their validation.

Another prospect of this work concerns the analysis
of the validation/verification results and then, their
feedback to the user. Since the methodology sup-
poses that the designer does not master the formal
specification, the analysis results rendered by the
model checker PROD, will not be obviously meaning-
ful to him. So, these results must be firstly interpreted
and then presented to him in a form where the error
in models is simply and clearly pointed out.

8 References

[AtPS03] Attiogbé, C.; Poizat, P.; Salaun, G.: Integration of
Formal Datatypes within State Diagrams. In: Proceed-
ings of Fundamental Approaches to Software Engineer-
ing, Lecture Notes in Computer Science 2621 (2003),
pp. 341-355.

[AmPo03] Amálio, N.; Polack, F.: Comparison of Formaliza-
tion Approaches of UML Class Constructs in Z and Ob-
ject-Z. In: Proceedings of International Conference of Z
and B Users, Lecture Notes in Computer Science 2561
(2003).

[BCEH01] Baldan, P.; Corradini, A.; Ehrig, H.; Heckel, R.:
Compositional Modeling of Reactive Systems Using
Open Nets. In: Proceedings of 12th International Con-
ference on Concurrency Theory, Lecture Notes in Com-
puter Science 2154 (2001), pp. 502-518.

[BaPe05] Baresi, L.; Pezzè, M.: Formal Interpreters for
Diagram Notations. ACM Transactions on Software En-
gineering and Methodology - ACM Press 14 (2005) 1,
pp. 42-84.

[BeKS02] Beckert, B.; Keller, U.; Schmitt, P.: Translating
the Object Constraints Language into First-order Predi-
cate Logic. In: Proceedings of Verify, Workshop at Fed-
erated Logic Conferences, Copenhagen, 2002.

[BeDM02] Bernardi, S.; Donatelli, S.; Merseguer, J.: From
UML Sequence Diagrams and Statecharts to analysable
Petri Net models. In: Proceedings of third international
workshop on software and performance, Italy, ACM
Press, 2002, pp. 35-45.

[Berr00] Berry, G.: The Foundations of Esterel. MIT Press.
2000.

[BoBe06] Bouabana-Tebibel, T.: Formal validation with OCL.
In: Proceedings of 2006 IEEE International Conference
on Systems, Man & Cybernetics, Taipei, Taiwan, 2006.

 [BoBe04] Bouabana-Tebibel, T.; Belmesk. M.: Formaliza-
tion of UML object dynamics and behaviour. In: Pro-
ceedings of 2004 IEEE International Conference on
Systems, Man & Cybernetics, Netherlands, 2004.

 [DiKR00] Distefano, D.; Katoen, J-P.; Rensink, A.: On a
Temporal Logic for Object-Based Systems. In: Proceed-
ings of 4th International Conference on Formal Methods
for Open Object-Based Distributed System, FMOODs
2000, USA, 2000.

[EsJW02] Eshuis, R.; Jansen, D.; Wieringa, R.: Require-
ments-Level Semantics and Model Checking of Object-
Oriented Statecharts, Requirements Engineering 7
(2002) 4, pp. 243-263.

 [FlMu04] Flake, S.; Mueller, W.: Past- and Future-Oriented
Temporal Time-Bounded Properties with OCL. In: Pro-
ceedings of 2nd International Conference on Software
Engineering and Formal Methods, China, ©IEEE Com-
puter Society Press, 2004, pp. 154-163

 [HaKP05] Harel, D.; Kugler, H.; Pnueli, A.: Synthesis Revis-
ited: Generating Statechart Models from Scenario-
Based Requirements. In: Proceedings of international
conference on Formal Methods in Software and System
Modeling, Lecture Notes in Computer Science 3393
(2005), pp. 309-324.

[HaPn85] Harel, D.; Pnueli, A.: On the development of
reactive systems. In: Logic and Models of Concurrent
Systems vol. 13. NATO ASI series F, Springer Verlag,
1985.

Enterprise Modelling and Information Systems Architectures
Vol. 2, No. 1, May 2007
Object Dynamics Formalization Using Object Flows within UML State Machines 39

[HLT+04] Hsiung, P-A.; Lin, S-W.; Tseng, C-H.; Lee, T-Y.;
Fu, J-M.; See, W-B.: VERTAF: an Application Frame-
work for the Design and Verification of Embedded Real-
Time Software. IEEE Transactions on Software Engi-
neering 30 (2004) 10, pp. 656-674.

[Jens92] Jensen, K.: Coloured Petri nets, Vol 1: Basic Con-
cepts, Springer, 1992.

[KiCa99] Kim, S.-K.; Carrington, D.: Formalizing The UML
Class Diagram Using Object-Z. In: Proceedings of
UML’99 – The Unified Modeling Language Beyond The
Standard, USA, Lecture Notes in Computer Science
1723 (1999).

[Kusk01] Kuske, S.: A formal semantics of UML state ma-
chines based on structured graph transformation. In:
Proceedings of UML: The Unified Modeling Language.
Modeling Languages, Concepts and Tools, Lecture
Notes in Computer Science 2185 (2001), pp. 241-256.

[Lako01] Lakos, C.A.: Object-Oriented Modelling with Object
Petri Nets, In: G. Agha, F.D. Cindio and G. Rozenberg
eds., Lecture Notes in Computer Science, 2001.

[Lako96] Lakos, C.A.: The Consistent Use of Names and
Polymorphism in the Definition of Object Petri Nets. In:
Proceedings of 17th International Conference on the
Application and Theory of Petri Nets, Japan, Lecture
Notes in Computer Science 1091 (1996), pp. 380-399.

[Lako94] Lakos, C.A.: Object Petri Nets - Definition and
Relationship to Coloured Nets, Technical Report TR94-
3, Computer Science Department, University of Tas-
mania, 1994.

 [NiAD03] Niu, J.; Atlee, J. M.; Day, N. A.: Template Se-
mantics for Model-based Notations. IEEE Transactions
on Software Engineering 29 (2003), pp. 866-882.

[PaLi99] Paltor, I.; Lilius, J.: Formalizing UML State Ma-
chines for Model Checking. UML'99 – The Unified Mod-
eling Language. Beyond the Standard. Lecture Notes in
Computer Science 1723 (1999).

[PiJé04] Pickin, S.; Jézéquel, J-M. : Using UML Sequence
Diagrams as the Basis for a Formal Test Description
Language. In: Proceedings of Fourth International Con-
ference on Integrated Formal Methods, England, Lec-
ture Notes in Computer Science 2999 (2004), pp. 481-
500.

[UML04] UML 2.0 Superstructure Specification, Object
Management Group, 2004.

[UML03a] Unified Modeling Language Specification, version
1.5, Object Management Group, 2003.

[UML03b] UML 2.0 OCL Specification, Object Management
Group, October 2003.

[UML01] The UML Action Semantics, Object Management
Group, November 2001.

[PROD04] PROD 3.4, An advanced tool for efficient reach-
ability analysis, Laboratory for Theoretical Computer
Science, Helsinki University of Technology, Finland,
2004.

[RBL+91] Rumbaugh, J; Blaha, M.R.; Lorensen, W.;
Eddy, F.; Premerlani, W.: Object-oriented modelling
and design, Prentice-Hall, 1991.

 [Trao00] Traoré, I.: An Outline of PVS Semantics for UML
Statecharts. Journal of Universal Computer Science 6
(2000), pp. 1088-1108.

 [TrSo04] Truong, N.; Souquières, J.: Validation des pro-
priétés d'un scénario UML/OCL à partir de sa dérivation
en B. In: Proceedings of Approches Formelles dans
l'Assitance au Développement de Logiciels. France,
2004.

[UcKM03] Uchitel, S.; Kramer, J.; Magee, J.: Synthesis of
Behavioral Models from Scenarios, IEEE Transactions
on Software Engineering 29 (2003) 2, pp. 99-115.

Thouraya Bouabana-Tebibel

National Institute of Computer Science
BP 68M Oued Smar
16309 Algiers
Algeria
t_tebibel@ini.dz

