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1 Introduction

1.1 The advent of Large Language Models

Understanding and generating natural language
has been a lively field of research in informatics for
decades and has received considerable attention
in practice since the prominent breakthrough of
OpenAl with ChatGPT (Jurafsky and Martin 2025;
Zhao et al. 2025). Such systems regularly work on
so-called artificial neural networks, also known as
sub-symbolic methods (Smolensky 1990). Tech-
nically, this idea has been known for decades,
but only recently have new ideas for technical
development and training been created; these are
known as ‘generative pre-trained transformers’,
or GPT for short (Brown et al. 2020; Radford
et al. 2019). This technical approach is generally
regarded as the basis for so-called large language
models (LLM).
An LLM is large in terms of various aspects:

¢ the number of parameters used by the model,
* the required time for model training, and
* the amount of the training texts and other data

sources are impressive.

An LLM can now be used productively for
many applications. Typical examples are:
* Writing texts on given topics,
* revising the language and style of existing texts,

* translating texts,
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* summarizing texts,

* extracting key statements from texts,
 conducting dialogues in natural language,
* classifying documents,

* answering general questions, and

* identifying positive or negative moods in texts.

Technically, an LLM is based on sequence of
tokens. A token typically represents a character,
a sequence of characters, a word, or longer text
fragments. It has been well known for decades,
that human-generated texts entail typical statistical
patterns (Shannon 1948; Weaver 1949); if certain
characters follow each other regularly, such se-
quences are produced more frequently by an LLM.
Nevertheless, it is surprising that an LLM can
exhibit such a wide range of capabilities.

1.2 From LLM to LxM agents

For some time, the idea arose that an LLM do
not only use tokens for representing natural lan-
guage but other types of objects. With appropriate
adaptions, an LLLM can be used for generating
program code, protein predictions, image analyses
and, more recently, for generating plans, actions,
and workflows (Ding et al. 2023; Yenduri et al.
2024). It is astonishing that the same techniques
used to generate natural language texts can also
be effectively employed to generate other types of
objects.

The tokens generated by an LLLM which is
trained on workflows, actions, processes can di-
rectly be used to trigger a (remote) procedure call,
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a web service, or a human action. Such a combina-
tion is called large action model (Wang et al. 2024;
J. Zhang et al. 2024), large process model (Fettke
2024; Kampik et al. 2023), or LxM (Senaratna
2025; Wahlster 2024) — where the letter “x” is
used as a placeholder for referring to different
concepts.

More recently, LLM are combined with the
well-known idea of a software agent. Software
agents are a long-established concept in informat-
ics, particularly in artificial intelligence. Such
an agent has sensors and actuators that enable it
to determine information about its environment
and initiate or execute actions in the environment.
From a broader perspective, a human person can
also be understood as an agent.

While an LLM can be understood as a talk-
ing machine, a software agent equipped with an
LLM is an acting machine; in short, it is an LxM
agent. Initial applications exist for the following
scenarios, for example:

* ‘Buy a black desk on the Internet’;

* ‘Book a train journey from Saarbriicken to Kla-
genfurt on the Internet’;

* ‘Enter the booking document in the ERP sys-

b

tem'.

To realize these scenarios or more complicated
ones, an LxM agent does not only incorporate
an LLM but has other modules for data storage,
planning or inference, similar to other intelligent
systems. This shows that a powerful LxM agent
is not only based on the sub-symbolic concepts
of large language models, but can also represent
and process explicit, symbolically represented
knowledge. For example, legal regulations should
rather be modeled explicitly. This is why we also
speak of a so-called hybrid or neuro-symbolic
LxM agent.

One further aspect is of importance for under-
standing the new concept. Historically, the term
“agent” is understood as a simple predicate, e.g., a
thing x is an agent or not an agent. Recently, more
often the characteristic agentic is used: A thing x
is more or less agentic than a thing y; some things

are not agentic at all, for example, a stone or a
mountain. Some things are fully agentic, e.g., a
human person. In between, a broad spectrum of
different agentic characteristics are distinguished
(Fettke and Strohmeier 2022; Kapoor et al. 2024):

* Environment and goal: single tasks vs. complex
processes;

¢ User interfaces: technical user interfaces vs.
natural language user interfaces;

* Supervision: low autonomy vs. high autonomy
without supervision;

* System design and dynamic control-flow: no
interaction with other tools and components vs.
conversationally interaction with other agents.

LxM agents give a new boost to the idea of
robotic process automation (RPA), as an RPA
system is traditionally based on simple rule-based
approaches (Czarnecki and Fettke 2021; Mendling
et al. 2018).

Another often referenced concept in our con-
text is the idea of so-called foundation models
which describe pre-trained models that can be
used for several so-called down-stream tasks such
as question-answering, sentiment analysis, infor-
mation extraction, image captioning, object recog-
nition, or instruction following without the need for
particular model adaptation or fine-tuning (Bom-
masani et al. 2022). These models are trained on
mass data in an unsupervised way and nowadays
often encompass several so-called modalities, e.g.
text, image, speech, structured data, and signals.
It is obvious that the capabilities of such a model
provide an important component for agentic sys-
tems. However, similar to the fact that a human
agent does not only consist of a human brain, but
of more sensors and actuators, these sensors and
actuators open the possibility to interact with the
environment. Without it, the human agent would
not be able to act in its environment. Similarly,
an agentic system needs, beside such a foundation
model, other components to really act as an agent.

The next section of this editorial will give a
more technical background and details of several
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Figure 1: Abstract LxM agent architecture

LxM agents. Section 3 will discuss the importance
of conceptual modeling in this context. Our edito-
rial closes with some conclusions and important
research questions.

2 Technical Background

In this section, we give more details on the tech-
nical background of an LxM agent. Therefore,
we proceed in three steps. First, in Section 2.1
we introduce an abstract architecture. Second, in
Section 2.2 we illustrate the abstract architecture
by various examples for LLM-based agents of
different complexities, which were implemented
by the authors. Third, Section 2.3, describes some
dedicated LxM Agents developed in the literature.

2.1 Abstract LxM Architecture

Fig. 1 shows the general description of an LxM
agent. As already argued in the Introduction, an
LxM agent consists of an LLM, can observe an
environment, e.g., via sensors, and manipulate the
environment via actions, e.g. through actuators.
The specific technical details of these modules
are very different from one particular system to
another.

2.2 LLM-based Agents: Basic Agent
examples

LxM agents make use of the fact that mainstream
LLM are not only trained to act as chatbots, but
also to follow instructions and call external ser-
vices resp. tools, cf. (OpenAl 2025). However,
the LLM infrastructure does not perform the calls
to services itself. Instead, the LLM respond with

the service it wants to call together with all the
parameters required for an invocation. The agent’s
execution environment then performs the invoca-
tion and replies to the LLM with the return value
of the tool call.

We first provide an example for the basic LxM
agent architecture in Figure 2 and Figure 3. For
illustrative purposes, this agent is created in a
classical chat bot environment. The agent is based
on an instruction prompt using a task description
and a set of actions. The task description may
include text as well as symbolic information, e.g.,
in the form of a BPMN diagram. It instructs the
LLM to act like an agent. Instead of replying to
a user request in textual form, the agent is only
allowed to reply with one of the actions supplied
with the prompt. Whenever the agent replies to a
message, the execution environment will invoke
the action/service and send a new message to the
agent with the reply of the service invocation.

The Figures 4 and 5 show two possible user
interactions with the agent defined in Fig. 3. In
4, the user asks the agent to start the heating
thirty minutes before his last appointment ends.
The bot autonomously decides to retrieve the
user’s schedule via an ICAL resource. After the
resource is provided to the agent by the execution
environment, the agent calls a generic scheduling
activity where the first parameter is the turn-on
heating activity and the second parameter is the
derived time-point.

In the second example shown in Figure 5, the
user asks the agent to remember his daughter to
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Figure 2: Architecture of a basic LLM-based agent

wear sunscreen if the weather is sunny at three
o’ clock on that day. The agent autonomously
decides to schedule the calling of a vision agent
(an agent based on a vision model) for 3PM. It
passes the webcam image of the user’s home town
as the first parameter and asks for if the weather is
sunny. Once the scheduled call to the vision agent
is completed, the environment sends a reply to the
agent. In the example the weather is sunny, so the
agent calls an action to send an email to the user’s
daughter.

2.3 Agent Example with Tool Calling

The previous example was meant for illustrative
purposes only. It can be tried with virtually every
LLM-based chatbot application. However, real
agents are realized with the help of explicit tool
definitions. This means the LLM API typically
receives the available tools as a separate parameter
and assumes that the parameters of the tools are
defined in the form of JSON Schema. Using
the OpenAl Completions API we can define the
agent from the previous example with the message
shown in Listing 1. However, the basic principle
does not change.

The major difference is that the LLM answers
with a specific message containing only the re-
quired tool call. The receiver can then execute the

AN LN =

requested function locally and provide the result
to the LLM.

Over time, a large number of agent frameworks
were introduced. Such frameworks typically pro-
vide features such as multi-agent collaboration, an
environment for tool calling, RAG workflows, and
unified LLM interfaces. The Github Repository!
provides an excellent overview.

{
"model": "gpt-4o0",
"messages": [
{
"role": "system",
"content": "You are a helpful agent. \n The

following URLs may be accessed via the fetch
() action: \n http://mycalendar.com/user.ics
// the calendar of the current user in ICAL
format \n http://mytwon.com/webcam. jpg //
the current webcam picture showing the
current weather conditions. \n No other
resource must be used. You are not a vision

model. The time zone of the user is Europe/
Berlin. \n For every message you receive,
always reply only with one of the above
actions. Make sure to only execute actions
once all required information is available.
You may first need to request external
information via fetch() or by asking the user
via ask(). You must not reply to the user
without calling an action. Do not provide any
other output. Reply with exactly one action

},
{
"role": "user",
"content": "Turn on my heating 30 minutes before
my last appointment ends."
}
1,
"tools": [
{
"type": "function",
"function": {
"name": "fetch",
"description": "Access a web resource.",

L https://github.com/kaushikb1 1/awesome-1lm-agents
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System User:

You are a helpful agent. Only the following actions are available:

« fetch(URL,httpMethod) // acccess a web resource

* schedule(action(), timepoint) // schedule an action at an absolute timepoint DD:MM:YY H:M:S

* ask(query) // ask the user

* callVisionAgent(imageurl, yourMessage) // ask another agent about a picture

* turnHeatingOn // turn the heating system of the user only
* turnHeatingOff turn the heating system of the user only

* sendMessage(email, subject, body)

The following URLs may be accessed via the fetch() action:

* http://mycalendar.com/user.ics // the calendar of the current user in ICAL format
e http://mytwon.com/webcam.jpg //the current webcam picture showing the current weather conditions.

No other resource must be used. You are not a vision model. The time zone of the user is Europe/Berlin.

For every message you receive, always reply only with one of the above actions. Make sure to only execute actions
once all required information is available. You may first need to request external information via fetch() or by asking
the user via ask(). You must not reply to the user without calling an action. Do not provide any other output. Reply

with exactly one action.

Figure 3: Instruction Prompt for a simplified Smart Home Agent

Agent:
ask("What would you like help with today?")

User:
Turn on my heating 30 minutes before my last appointment ends.

Agent to Execution Environment:
fetch(http://mycalendar.com/user.ics, "GET")

Execution Environment to Agent:
BEGIN:VCALENDAR

DTSTART;TZID=Europe/Berlin:20250304T160000
DTEND;TZID=Europe/Berlin:20250304T190000
SUMMARY:LxM Agent Project Meeting
END:VEVENT

END:VCALENDAR

Agent to Execution Environment:
schedule(turnHeatingOn, "04.03.25 18:30:00")

Figure 4: Example Interaction 1 with Agent from Fig.

3

"parameters": {
"type": "object",
"properties": {

"URL": {
"type": "string"
},

"httpMethod": {
"type": "string"
}

},

"required": [

"URL",

"httpMethod"

1,

"additionalProperties": false
3,
"strict": true

}

},

1,

"store": false

}

Listing 1: Example message to LLM using OpenAl
API tool calling

2.3.1 Generic Agent Example

In the previous examples, we used a hand-crafted
instruction prompt to define the capabilities and
behavior of the agent. Such an instruction prompt
may be derived from some kind of model. How-
ever, it is also possible to take a model as an input
for a generic agent. An example of such an agent is
shown in Figure 6. We have evaluated this prompt
via ChatGPT (GPT 40). The user provided the
Process Model shown in Figure 8 as a PNG file.
We were then able to execute the same behavior
for the heating and sunscreen examples as in the
previous section. It is worth noting that the agent
was not able to follow BPMN XML correctly. It
is, therefore, an interesting topic to explore how
models should be communicated with agents.

2.3.2 Vision enabled IOT Agent creating a
model
The next example pertains to the area of Smart
Living and the support of tasks in households,
e.g. viarobots or other assistance systems (Fig. 9).
For this example, the Ferret-13B LLM has been
used, which is a multi-modal, foundational LLM
that can understand and process spatial references
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Agent:
ask("What would you like help with today?")

User:
My daughter will play outside today at 3 pm. Please check the weather when she starts playing, and if it is sunny,
send her a reminder to wear sunscreen.

Agent to Execution Environment:
schedule(callVisionAgent(‘http://mytwon.com/webcam.jpg), 'is there sun on this image?'), 15:00:00 12-10-23)

Execution Environment to Agent:
yes

Agent to Execution Environment:

sendMessage("mydauthger@myfamily.com", "Reminder to Wear Sunscreen", "The weather is sunny! Don't forget to
wear sunscreen while you're playing outside today. Enjoy your time!" )

Figure 5: Example Interaction 2 with Agent from Fig. 3

user bitmap LM

object detection task

-

coordinates of
bounding objects

A

Figure 6: LLM-based vision architecture

System User:

You are a helpful agent called "Al Agent".

Your job is to behave as described in the BPMN diagram that will be provided next by the user. First ask for the model.
Then interpret the model and behave according to the definition. If you need external data, respond with call
<activitylabel(parameter)> to the user. The execution environment will then execute the activity and provide you the
result as a user message. User interactions can only be performed via the activities of the User lane. Also, answer
with call <activitylabel(parameter)>. The user will then provide the required information. Each Response from your
side must only contain an allowed activity either of the user or of the execution environment lane.

Agent:
Please provide the BPMN model.

User:
Provides Diagram as PNG Image

Figure 7: Generic Agent interpreting a BPMN Diagram
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Al Agent Interaction

Al Agent

Start Agent

Figure 8: BPMN Model describing Agent Behavior as input for Generic Agent in Fig. 7

without having to be trained on specific objects
or environments (You et al. 2023). It is provided
by Apple for free for research purposes? and can
be run on consumer hardware. As depicted in
Figure 10, the input to the LLM was a picture
of a bathroom in which the positions of different
objects shall be identified. By issuing prompts
asking for the coordinates of several objects, the
LLM returns the position information in the form
of coordinates for bounding boxes. These can
serve as a basis for creating an according model
as shown in the last image (7) of Figure 10. The
LLM can also be used for identifying objects in
certain areas, e.g. by handing it an image together
with a region in that image. In contrast to previous
approaches in computer vision, this LLM does
not require particular pre-training for recognizing
objects. By adding the model aspect in the agent
pipeline, it can be verified which objects and

regions an LLM has recognized and how this
information serves as input for actions.

2.3.3 Vision-enabled Agent for Planning
Actions

The example in Figure 11 shows how a vision-
enabled LLM can be used to first derive the steps
of a cooking process with references to objects
in a given image. Subsequently, this information
about the cooking process is transformed into a
BPMN process model. This representation in
the form of a conceptual model permits to more
easily identify paths and potential errors in the
process (Fill et al. 2023, 2024). We generated the
BPMN model based on the agent’s input using an
extended version of (Kopke and Safan 2025).

2.4 Dedicated LxM agents

The following subsections provide an overview of
the dedicated LxM agents found in the literature.

2 https://github.com/apple/ml-ferret


http://dx.doi.org/10.18417/emisa.20.3
https://github.com/apple/ml-ferret

International Journal of Conceptual Modeling

Vol. 20, No. 3 (2025). DOI:10.18417/emisa.20.3

Peter Fettke, Hans-Georg Fill, Julius K&pke

user bitmap of ingredi LM

request for cooking idea

receipe. TXT

receipe.BPMN

cooking robot

receipe.BPMN

Figure 9: LLM-based vision architecture

Mirror

g
Machine

Door]

Figure 10: Example for model elicitation using the Ferret-13B LLM: Coordinates retrieved via prompts on the original
image [1] of objects (mirror [2], shower handle [3], washing machine [4], washing machine door [5], and towels [6]
were used as a basis for the model in [7]. Original image by Pixabay, Source:
https://pixabay.com/photos/real-estate-interior-bath-room-6900973/
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To make a soup using the ingredients shown, you would need to follow these
steps: 1. Wash and chop the ingredients: The board [21, 266, 985, 832] is full
of chopped vegetables like broccoli [106, 526, 384, 645], carrots [242, 337,
450, 535], mushrooms [489, 446, 750, 589], and spinach [366, 587, 608,
826]. 2. Prepare the egg [475, 304, 650, 423] [544, 304, 650, 421]: The egg is
located on the board. You can either keep it whole or break it into smaller
pieces. 3. Heat some oil or butter in a pot or pan [0, 0, 570, 246]: You can find
a suitable pan in the image. Add the onions and sauté them until they
become 4. Add the Add the broccoli [106,
526, 384, 645], carrots [242, 337, 450, 535], mushrooms, and spinach to the
pot. Sauté them until they become tender. 5. Add the egg: If you are using
whole eggs, you can add them to the soup. If you are using egg yolks or egg
whites, you can add them separately. 6. Season the soup: Add salt, pepper
[179, 535, 237, 590], and any other desired seasonings. 7. Serve the soup:
Once the soup is cooked and seasoned to your liking, you can serve it in
bowls or cups. Remember to ensure food safety by washing the ingredients
thoroughly and keeping the cooking area clean. 2

how do | make a soup of these
ingredients. Include the
coordinates of the required
objects.

To make a soup using the ingredients shown, you would need to follow these
steps: 1. Wash and chop the ingredients: The board [obj0] is full of chopped
vegetables like broccoli [obj1], carrots [obj2], mushrooms [obj3], and
spinach [obj4]. 2. Prepare the egg [obj5] [obj6]: The egg is located on the
board. You can either keep it whole or break it into smaller pieces. 3. Heat
some oil or butter in a pot or pan [0bj7]: You can find a suitable pan in the
image. Add the onions and sauté them until they become translucent. 4. Add
the chopped vegetables: Add the broccoli [obj1], carrots [0bj2], mushrooms,
and spinach to the pot. Sauté them until they become tender. 5. Add the egg:
If you are using whole eggs, you can add them to the soup. If you are using
egg yolks or egg whites, you can add them separately. 6. Season the soup:
Add salt, pepper [0bj8], and any other desired seasonings. 7. Serve the soup:
Once the soup is cooked and seasoned to your liking, you can serve it in
bowls or cups. Remember to ensure food safety by washing the ingredients
thoroughly and keeping the cooking area clean. Q

.

Create a process model for a cooking robot. This robot is vision-enabled and is able to identify the required ingredients.
5

The text ins object i ifiersin[]
All data objects should have a label ining the object i ifier and a h label. Make sure to includ
all y decisions the robot has to take.
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="http://www.omg. 'DD/20100524/DC" xmlns:di="http://www.omg.org/spec/DD/20100524/DI"
b 1.0"
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@

Figure 11: Example for the LLM-based derivation of a BPMN process model for cooking instructions including
references to coordinates of objects using Ferret-13B and GPT-4o. Original image by Pixabay, Source: https:
//pixabay.com/photos/avocado-chopping-board-ingredients- 1838785/
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2.4.1 LxM agent WebShop

An example is shown in Fig. 12, an agent which
is able to buy products in a web shop. The agent
consists of an LLM, ResNet, and a web-query
generation. Its sensors and actuators communi-
cate with the environment by HTTP requests and
responses. The agent is able to fulfill tasks such
as "I want a small portable folding desk".

2.4.2 LxM agent UFO

Fig. 13 shows the system UFO developed by Mi-
crosoft (C. Zhang et al. 2024). This system addi-
tionally is composed of a planner which is able to
plan future actions. Its environment is a windows
desktop. As observational input, windows screens
and bitmaps are used. UFO allows to manipulate
the environment by executing particular mouse
moves, clicks, or keyboard strokes. Typical tasks
which can be executed by UFO are "close all open
PDF documents", "delete all notes in my presen-
tation", or "draft an email to John thanking him
for the preprint on LxM agents."

2.4.3 LxM agent YuraScanner

A third, and last example, is depicted in Fig. 13.
It shows an LxM agent which is autonomously
able to scan unknown web applications and de-
tect security vulnerabilities in a blackbox man-
ner. Therefore, the agent interacts with the web
application via HTTP requests and responses, au-
tonomously identifies the possible navigation on
the side, as well as possible workflows to fulfill
particular tasks, and — finally — to detect security
problems in these workflows. Note, that the more
detailed description of the last system is due to the
fact that more information is publicly available.

2.5 Some intermediate remarks

Summarzing our presented example cases and
many more cases described in practice and
academia, we have to admit that LLM in general
and the recent from talking machines to acting ma-
chines powered by LLM is often confusing and it is
difficult to understand how a system exactly works

and how it performs under realistic circumstances.
One reason for the opacity of the technology is
that the particular components which are used,
adapted, or enhanced are often not clear. From
a technological point of view, this situation is of
course surprising since the technical implementa-
tion needs to know which components builds on
other components. However, having in mind the
fact that the market for Al in general and LLM
in particular, is estimated in billions of Euros,
Pounds, US-Dollar etc., this is not surprising.

To shed some light on the different systems, Fig. 15
gives an overall overview of the systems described
before. This figure relies on the idea of (Bom-
masani et al. 2023) to describe the ecosystem of
foundational models by a so-called "ecosystem
graph". Each node of such a graph represents an
asset:

» Dataset asset: data used for training purposes,

* Model asset: a pre-trained machine learning
model,

» Application asset: an applications built on top.

An arrow between two nodes indicates that one
asset depends on the existence of another asset.
The overview clearly shows that GPT4 currently
provides a central hub in developing the LxM
agents presented. However, the provided Web-
Shop example does not use it. One reason may
be that this is an early example. Additionally, it
is interesting to combine different LLM in one
application, as our example shows. Nevertheless,
it is also possible to use other LLLM for building
agents. Last but not least, in our scenario, no
particular datasets for LxM agents are used. Note,
that the ecosystem graph provides instances of
such assets, e.g., human and robots trajectories,
workflows (Bommasani et al. 2023).

Based on these remarks, it is pretty clear that in the
future a better understanding of the LxM agents is
necessary. Therefore, we discuss in the following
the role of modeling for this purpose.
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Figure 12: Architecture for the LxM agent WebShop (based on: Yao et al. 2023)
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Figure 13: Architecture for the LxM agent UFO (based on: C. Zhang et al. 2024)
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Figure 14: Architecture for the LxM agent YuraScanner (based on: Stafeev et al. 2025)
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Figure 15: Ecosystem graph for our examples described in this Section, extends the idea of Bommasani et al. 2023
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Figure 17: Modeling meets LxM Agents

3 LxM Agents and Modeling

In the following, we discuss how conceptual mod-
eling can contribute to the landscape of LxM
agents.

3.1 LxM agents as actors of processes

LxM agents can be actors in orchestrations (Fig.
16(1)) or choreographies (Fig. 16(2)). We call pro-
cesses partially based on LxM agents ’LxM agent
extended processes’. An LxM agent may execute
a specific task of an orchestration. However, the
triggering of the task execution lies in the control
of the orchestration engine. In this sense, the LxM
agent is an alternative implementation of an RPA
agent. Furthermore, an LxM agent may execute
several tasks within an orchestration, just like a
human actor. The capability of an LxM agent
to remember previous actions shows a significant
difference between an automated task and an LxM
agent. It may, therefore, be helpful to model LxM
agents in their own lanes in a BPMN diagram.
However, an even more dynamic approach - i.e.,
more agentic - is to model LxM agents as actors
in a choreography. In this case, they can freely
decide when and what to execute if their public
behavior adheres to the choreography specifica-
tion. It should be noted that both patterns are
not necessarily disjoint: One agent may simulta-
neously participate in multiple orchestrations or
choreographies.

We, therefore, argue that modeling is essential
to guarantee the correct execution of LxM agent

extended processes. Therefore, the first area where
conceptual modeling can contribute is to explore
how to model various kinds of LxM extended
processes. This does not only relate to the global
view of orchestrations or choreographies but also
the modeling of agents themselves. We have
identified four scenarios where agents interact
with models - see Figure 17.

3.2 LxM agents configured with models

LxM agents are typically programmed by man-
ually providing textual instruction prompts. An
alternative solution is the automatic configuration
of agent instructions based on models. The input
models may for example be process models of
various types. This is especially relevant for guar-
anteeing that the agent’s behavior complies with
a process model in the form of a choreography
or orchestration. However, the models are not re-
stricted to process models. Also, data models are
highly relevant for supporting actionable agents
that can automatically enact services. Currently,
LLM agents typically support the definition of
message formats, e.g., using JSON schemas.

3.3 LxM agents interpret models

An alternative to Subsection 3.1, where instruction
prompts are configured from models, is the usage
of generic agent prompts, where the agent’s be-
havior is provided as input in the form of a model
at runtime (Fill et al. 2024). This differs from the
previous case, where an agent is configured based
on a model due to two reasons: (1) The model is
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provided as an input at runtime and not via the
instruction prompt. (2) The agent interprets the
model itself and can thus completely change its
behavior based on the provided input model.
Subsection 2.3.1 provides an example of a generic
agent prompt that, as its first interaction with the
user, asks for a process model. Once the process
model is uploaded, the agent behaves as defined
in that provided model.

3.4 LxM agents create models

Current LxM agents may query data from the
environment and execute services. It is only a
minor step when, instead of simple services, the
agents generate models (Fill et al. 2023, 2024).
One example is the generation of a process model
for the execution of a sub process. This approach
has multiple benefits: 1) classical model checking
methods can be applied on the generated mod-
els (safeness, soundness, etc.). Furthermore, the
computationally expensive agents are not bothered
with the execution of processes. Finally, the gen-
erated models can be communicated with human
users to support explainable Al. The ability of
LLM to generate high quality process models was
already shown in approaches such as (Kopke and
Safan 2025; Kourani et al. 2024).

3.5 LxM agents process models

Finally, any kind of model can be used by an
LxM agent: E.g., an agent that should translate
messages following heterogeneous schemas may
request the corresponding reference models to find
a mapping on the level of the models. It should be
noted that "Agent interprets model" (Case 2 in Fig.
17) is a subcase of "Agent uses model" (Case 4).
However, Case 2 is stronger as it implies that an
input model defines the agent’s behavior. In Case
4, an agent uses models for specific sub-tasks.

4 Conclusions

The examples shown before demonstrate two
things: First, the integration of LLM in agent
systems seems to be a fruitful combination. Al-
though many scenarios still seem to be a kind
of science fiction, particular evaluations of some

concrete tasks demonstrate not only that such sys-
tems can be built in principle but also that the
evaluation results show a significant performance
in some tasks.

Secondly, our work showcases that conceptual
modeling can significantly contribute to this
vividly developing field of research.

In the future, there will be many challenges for
research on the topic of LxM agents. These
include, for example:

* Concepts for enhancing the degree of autonomy
of LxM agents,

* Developing of techniques for guardrails for LxM
agents,

* Quality assurance, checks and approvals of an
LxM agent,

* Questions of trustworthiness and security of an
LxM agent,

* Training of a hybrid LxM agent,

* Evaluations of LxM agents in laboratory and
field environments,

* co-operation between different LxM agents.

Besides these technical questions, it is obvious
that conceptual modeling can play a major role
in these research streams. Models provide the
instruments for understanding the world of LxM
agents.
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