
Enterprise Modelling and Information Systems Architectures
Vol. 20, No. 2 (2025). DOI:10.18417/emisa.20.2
Object-Centric Process Mining for Blockchain Applications 1

Object-Centric Process Mining for Blockchain Applications
Extracting and Representing Ethereum Execution Data in OCEL 2.0

Richard Hobeck*,a, Alessandro Bertib, Ingo Weberc, Wil M.P. van der Aalstd
a Chair of Service-centric Networking, Technische Universitaet Berlin, Germany.
b RWTH Aachen University, Aachen, Germany & Fraunhofer FIT, Sankt-Augustin, Germany.
c Technical University of Munich, School of CIT & Fraunhofer-Gesellschaft, Munich, Germany
d RWTH Aachen University, Aachen, Germany & Celonis, Munich, Germany & Fraunhofer FIT, Sankt-Augustin, Germany.

Abstract. Analyzing the execution behavior of Ethereum Decentralized Applications (DApps) with process
mining presents significant challenges due to the multi-object nature of DApp data. Traditional event logs,
like XES, struggle to capture the respective structures and interactions effectively. This paper proposes
a method for extracting DApp execution data from Ethereum and representing it in the Object-Centric
Event Log (OCEL) 2.0 format. We address central challenges in this process, including dynamic contract
deployments, preserving the order of operations within transaction traces, and accurately representing
object types and their evolving roles. Our findings demonstrate that, while OCEL 2.0 offers some advantages
for capturing the rich interactions within DApps, certain limitations regarding hierarchical object types and
event granularity require workarounds. We evaluate the practicality of our approach with a case study of
the prediction market platform Augur, highlighting how object-centric process mining can provide insights
into DApp behavior. This work contributes to a better understanding of object-centric process mining in the
context of blockchain data.

Keywords. Process Mining • Blockchain • OCEL 2.0 • Event Log Extraction

Communicated by Julius Köpke. Received 2024-05-01. Accepted on 2025-01-07.

1 Introduction

Blockchain is a distributed ledger system that en-
ables transactions among parties without the need
for a central authority (Nakamoto 2008). Second-
generation blockchains like Ethereum extend these
capabilities by allowing the execution of smart
contracts – self-executing code that runs on the
blockchain network (Buterin et al. 2014). Relying
on smart contracts are Decentralized Applications
(DApps). DApps are consequently deployed to
the blockchain network and interact with other
smart contracts and users, generating extensive
runtime data (Wood 2014). The logged data can
be analyzed with process mining techniques, e. g.,
to verify that the code execution was performed
as expected (Hobeck et al. 2024).

Process mining bridges the gap between mod-
eled processes and actual process execution by
analyzing event logs. Traditionally, event logs
are stored in formats like the eXtensible Event
Stream (XES) (Acampora et al. 2017). In XES,
each event is associated with a single case (or
process instance), and events are ordered within
cases. While effective for linear and simple pro-
cesses, this structure can lead to issues when
dealing with complex systems like blockchain
applications, where multiple interacting entities
and concurrent activities are common. Here, one
event may relate to multiple process instances,
instead of a single one.

To address such limitations, the Object-Centric
Event Log (OCEL) format was developed (Ghah-
farokhi et al. 2021). OCEL allows events to

http://dx.doi.org/10.18417/emisa.20.2


International Journal of Conceptual Modeling
Vol. 20, No. 2 (2025). DOI:10.18417/emisa.20.2

2

be related to multiple objects of different types,
capturing more complex and realistic process be-
haviors. The latest iteration, OCEL 2.0 (Berti et
al. 2024), introduces capabilities to document dy-
namic object roles and qualified relations between
objects and events, enhancing the ability of logs
to capture the nuances of blockchain operations.

Various methods have been proposed to gen-
erate event logs from blockchain data (Moctar-
M’Baba et al. 2022b), including approaches that
simplify the logs by focusing on particular aspects
of smart contracts (Alzhrani et al. 2024; Beck
et al. 2021; Corradini et al. 2019; Klinkmüller
et al. 2019; Mühlberger et al. 2019). However,
these methods often fall short in capturing the full
behavior of DApps due to limitations in handling
dynamic and distributed data structures common
in blockchain environments (Moctar-M’Baba et
al. 2022a).

In this paper, we propose a comprehensive data
extraction technique and use the OCEL 2.0 for-
mat to better capture the dynamic behavior of
Ethereum-based applications. By broadening the
data sources and adapting an object-centric ap-
proach, we address the challenges associated with
capturing and analyzing blockchain data using
process mining techniques.

We investigate the following research questions:

RQ1 How can data from dynamically deployed De-
centralized Applications on Ethereum be ex-
tracted with limited preliminary knowledge
about the applications?

RQ2 Which technical and data integrity challenges
arise when adopting object-centric event logs
(OCEL 2.0) to capture the behavior of dynami-
cally deployed Decentralized Applications on
Ethereum, and how can these challenges be
addressed?

RQ3 To what extent does OCEL 2.0 accurately rep-
resent the behavior of dynamically deployed
Decentralized Applications on Ethereum, and
in which scenarios does it face limitations?

RQ4 How can object-centric process mining enhance
the analysis of event data from Ethereum DApps
compared to a single-case notion approach?

The contributions of this paper are1 :

1. Data extraction method: We introduce a data
extraction method for Ethereum DApps that
adapts to evolving DApp structures, code up-
dates, and distributed logging practices, en-
suring data capture throughout a DApp’s life-
cycle. The extraction method incorporates a
range of blockchain data sources, including
function calls and their input parameters, val-
ues of logged variables, contract creations, and
the flow of digital assets (cryptocurrency and
tokens).

2. Addressing OCEL 2.0 conversion challenges:
We identify and address the challenges
encountered when transforming complex
blockchain data into the object-centric event
log (OCEL 2.0) format, offering solutions for
accurately capturing DApp interactions.

3. Mapping blockchain data to OCEL 2.0: We
provide a mapping of Ethereum data structures
to the elements of the OCEL 2.0 meta-model,
showing how OCEL 2.0 can capture multi-
object interactions and dynamic relationships
within a DApp.

4. Object-centric process mining analysis: We
analyze DApp data formatted as OCEL 2.0,
examining object lifecycles, object-to-object
relations, and process visualizations with mul-
tiple objects – data aspects that are difficult to
explore using traditional event log formats or
raw blockchain data.

The remainder of the paper is structured as
follows. In Section 2, we describe the XES and
OCEL logging formats. Section 3 provides an

1 This work extends prior research by Hobeck and Weber
(2023). The extension affected the following contributions:
In 1. we extend the data extraction capabilities to addi-
tional Ethereum operations. In 2. we address challenges of
converting the extracted blockchain data into the more ex-
pressive OCEL 2.0 format (in contrast to OCEL), and added
the underlying discussion of blockchain data characteristics.
Consequently, 3. is an entirely new contribution. In 4. we
added life-cycle and object-to-object analyses and focused
the process visualization and interpretation on a subprocess
of the examined DApp.

http://dx.doi.org/10.18417/emisa.20.2


Enterprise Modelling and Information Systems Architectures
Vol. 20, No. 2 (2025). DOI:10.18417/emisa.20.2
Object-Centric Process Mining for Blockchain Applications 3

overview of key blockchain concepts necessary to
understand our approach. We discuss related litera-
ture in Section 4. Section 5 outlines data attributes
relevant to object-centric event logs derived from
the Ethereum blockchain. Our methodology for
data extraction from the Ethereum blockchain is
described in Section 6. In Section 7, we examine
the challenges encountered during data extrac-
tion and data transformation. Section 8 evaluates
the suitability of the Object-Centric Event Log
(OCEL) 2.0 format in capturing blockchain data,
with a discussion of practical implications in Sec-
tion 9. Finally, Section 10 concludes the paper
and suggests directions for future research.

2 Logging Formats in Process Mining

In process mining, event logs are used to store
process data. The structure and content of these
logs can influence the quality of the process mining
analysis. There are two primary paradigms in
process mining: case-centric and object-centric.

Case-centric process mining is the traditional
approach in which each event in an event log
is associated with a single case, representing a
unique instance of a process. The eXtensible Event
Stream (XES) standard (Aalst 2022; Acampora
et al. 2017) is designed for case-centric process
mining and widely adopted. Consider an online
retail process in which customers place orders con-
sisting of multiple items, which are then shipped
and invoiced separately. The example process has
the following activities: Create Order, Add Item,
Ship Item, Generate Invoice, and Receive Payment.
Here, events may relate to multiple objects, such
as orders, items, and invoices. In case-centric
process mining, we must choose a case notion to
flatten the log, such as Order ID. Table 1 shows
how events are recorded. Choosing a single case
notion introduces several issues:

1. Deficiency: If an event does not have the chosen
case notion, it may be omitted or misrepresented.
E.g., events not directly referencing orders like
Receive Payment might not appear in the log.

2. Convergence: If an event relates to multiple
instances of the same object type, it may be
duplicated. E.g., Generate Invoice relates to
different orders but is duplicated due to the
selected case notion. Replicating events may
result in misleading diagnostics involving costs
and time.

3. Divergence: Events in a case having the same
activity may be related to different objects (next
to the object selected as the case), creating ap-
parent causalities. E.g., the Ship Item events for
different items belonging to the same order may
appear sequentially in the same case, suggesting
a false dependency.

In contrast, an object-centric event log allows
events to be associated with multiple objects (Aalst
2019, 2022). Table 2 presents the same online
order process using an object-centric approach.
The object-centric view was formalized in the
Object-Centric Event Log (OCEL) format (Ghah-
farokhi et al. 2021). OCEL extends the traditional
event log model by allowing events to reference
multiple objects, of potentially different types.
Our object-centric example event log in Table 2
aligns with the OCEL format. Each event can
relate to all relevant objects – orders, items, in-
voices – providing a more accurate representation
of the process. By supporting multiple object
references per event, OCEL overcomes the issues
of the XES format in complex scenarios: All
events are included without forcing a single case
notion; Relationships between objects are inferred
through shared events, allowing for better under-
standing of interactions; By capturing the correct
associations between events and objects, OCEL
prevents misleading dependencies.

Building upon the foundation of OCEL, the
release of OCEL 2.0 (Berti et al. 2024) introduced
extensions to better model relationships within
event data. Key improvements in OCEL 2.0 in-
clude:

• Qualified event-to-object relationships: Events
can have relationships to objects with specific
roles or qualifiers, allowing for dynamic role

http://dx.doi.org/10.18417/emisa.20.2


International Journal of Conceptual Modeling
Vol. 20, No. 2 (2025). DOI:10.18417/emisa.20.2

4

Table 1: Traditional case-centric event log (flattened
on order ID)

Case ID Timestamp Activity Attributes

Order_1 2024-11-01 10:00 Create Order
Order_1 2024-11-01 10:05 Add Item Item ID: Item_A
Order_1 2024-11-01 10:10 Add Item Item ID: Item_B
Order_1 2024-11-02 09:00 Ship Item Item ID: Item_A
Order_1 2024-11-03 08:30 Ship Item Item ID: Item_B
Order_1 2024-11-04 12:00 Generate Invoice Invoice ID: Inv_1
Order_0 2024-11-04 12:00 Generate Invoice Invoice ID: Inv_1

Table 2: Object-centric event log capturing multiple objects
per event

Event ID Timestamp Activity Object

E1 2024-11-01 10:00 Create Order Order_1
E2 2024-11-01 10:05 Add Item Order_1,Item_A
E3 2024-11-01 10:10 Add Item Order_1,Item_B
E4 2024-11-02 09:00 Ship Item Item_A
E5 2024-11-03 08:30 Ship Item Item_B
E6 2024-11-04 12:00 Generate Invoice Order_1,Order_0,Inv_1
E7 2024-11-05 15:00 Receive Payment Inv_1

The scenario assumes the existence of an Order_0 that was created outside of the event log snippets as well as a bulk invoice creation for orders.

assignments during the process. E.g., the
event Add Item involves Order and Item. With
OCEL 2.0, we can qualify these relationships
to specify that Order acts as a container and
Item as content being added, enhancing the
semantics of the log.

• Qualified object-to-object relationships: Rela-
tionships between objects are explicitly mod-
eled rather than inferred through shared events.
E.g., the relationship between Order_1 and
Item_A can be represented as a contains rela-
tionship. E.g., knowing that Item_A is part of
Order_1 allows analysts to trace the lifecycle of
items within orders.

• Evolution of object attributes over time:
OCEL 2.0 captures changes in object attributes
in the process lifecycle, providing a temporal
view of object states. E.g., an Item’s status may
change from Pending to Shipped to Delivered.
By recording these attribute changes over
time, analysts can identify patterns, delays, or
bottlenecks in the process.

Formally, an OCEL 2.0 log is described as a
tuple L (Berti et al. 2024):

𝐿 =
(
𝐸, 𝑂, 𝐸𝐴, 𝑂𝐴, evtype, time, objtype,
eatype, oatype, eaval, oaval, 𝐸2𝑂, 𝑂2𝑂

)
where:

• 𝐸 ⊆ Uev is the set of events.
• 𝑂 ⊆ Uobj is the set of objects.
• evtype : 𝐸 → Uetype assigns types to events.
• time : 𝐸 → Utime assigns timestamps to events.
• 𝐸𝐴 ⊆ Uattr is the set of event attributes.

• eatype : 𝐸𝐴 → Uetype assigns event types to
event attributes.

• eaval : (𝐸 × 𝐸𝐴) ↛ Uval assigns values to
event attributes.

• objtype : 𝑂 → Uotype assigns object types to
objects.

• 𝑂𝐴 ⊆ Uattr is the set of object attributes.
• oatype : 𝑂𝐴 → Uotype assigns object types to

object attributes.
• oaval : (𝑂×𝑂𝐴×Utime) ↛ Uval assigns values

to object attributes over time.
• 𝐸2𝑂 ⊆ 𝐸 × Uqual × 𝑂 are the qualified event-

to-object relations.
• 𝑂2𝑂 ⊆ 𝑂 × Uqual ×𝑂 are the qualified object-

to-object relations.

Here, Uev, Uobj, Uetype, Uotype, Uattr, Uval, Utime,
and Uqual are sets of strings called universes.
They represent the universes of events, objects,
event types, object types, attribute names, at-
tribute values, timestamps, and qualifiers, respec-
tively. Figure 1 contains the conceptualization
of the OCEL 2.0 metamodel. Implementations of
OCEL 2.0 are available in various formats.2

Goossens et al. (2024) compared OCEL 2.0 to
other object-centric event log formats. They made
the following assessments: eXtensible Object-
Centric logs (XOC) (Li et al. 2018) suffer from data
quality issues due to data duplication during ob-
ject attribute updates; Data-aware Object-Centric
Event Log (DOCEL) (Goossens et al. 2023) does
not support central object-to-object characteris-
tics; Artifact-Centric Event Log (ACEL) (Moctar

2 https://www.ocel-standard.org/, accessed 20-03-2025

http://dx.doi.org/10.18417/emisa.20.2
https://www.ocel-standard.org/


Enterprise Modelling and Information Systems Architectures
Vol. 20, No. 2 (2025). DOI:10.18417/emisa.20.2
Object-Centric Process Mining for Blockchain Applications 5

event attribute

value

object attribute

value

object

attribute

object

type

object

event

attribute

event

type

event

time

qualifier qualifier

1

*

1

*

1

*

1

*

1
*

1
*

1
*

1
*

*

1

* *
*

* *

1

Figure 1: UML diagram conceptualizing OCEL 2.0
(adapted from (Berti et al. 2024)).

M’Baba et al. 2023), although tailored to artifact-
centric processes prevalent in blockchain environ-
ments, faces scalability issues; and Event Knowl-
edge Graphs’s (EKG) (Fahland 2022) low-level
of storage formalisms limits analysis tool support.
OCEL 2.0 does not fully support object-to-object
relations but otherwise offers a wide range of de-
sired object-centric logging format characteristics
according to Goossens et al. (2024). Therefore,
we opt for OCEL 2.0 as the target logging format
for this paper.

3 Key Blockchain Concepts
This section outlines fundamental technical con-
cepts relevant to understanding the methods and
analyses presented in the paper.

Blockchain is an append-only store of trans-
actions distributed across computational nodes
and structured as a linked list of blocks, each
containing a set of transactions. (Xu et al. 2019,
Chapter 1). The blocks in the data structure,
which is also called ledger, are linked sequentially
through cryptographic hashes. Each block con-
tains a list of transactions that are verified and
agreed upon by network participants through a
consensus mechanism. This architecture ensures
the integrity and immutability of data once entered
in the blockchain (Nakamoto 2008).

Ethereum is a second-generation blockchain
platform that extends the basic blockchain func-
tionality to support executing programs, called
smart contracts. Smart contracts are written in
high-level programming languages like Solidity
and are compiled into bytecode executed by the
Ethereum Virtual Machine (EVM). The interfaces
of smart contracts are documented in Application

Binary Interfaces (ABIs). ABIs are created at
compile time and document a smart contract’s in-
terface functions (which can be called) as well as a
set of log entries that are defined in the smart con-
tract or inherited from other contracts.3 Ethereum
enhances the basic concept of blockchain by incor-
porating a built-in Turing-complete programming
language, enabling the execution of complex pro-
grams. The native currency of the Ethereum
blockchain is Ether (ETH) (Buterin et al. 2014).

Accounts on the Ethereum blockchains can be
one of two types. Externally Owned Accounts
(EOA) are controlled by the private key holder
(e. g., a user). Contract Accounts (CA) capture
smart contract code that can be executed on the
Ethereum network and the program’s state. Both
types of accounts get assigned a 42-character
address that they can be addressed with. Accounts
have an Ether balance and can call other smart
contracts via their CAs (Xu et al. 2019, p.37f).4

Decentralized Applications (DApps) are appli-
cations whose core functionality is implemented
as a set of smart contracts. DApp source code
is publicly available on the blockchain network
(as byte code and often published open source),
so users can perform code reviews. Also, the
execution of DApp code is guaranteed to be de-
terministic (Xu et al. 2019, p. 39f), and Turing
complete so that logic can be executed reliably.
Among the best-known Ethereum DApps are the
game CryptoKitties, the betting platform Augur,
and the cryptocurrency exchange Uniswap.

Ethereum Virtual Machine (EVM) is a run-
time environment for deterministic smart contract
execution. The EVM is included in every node
of the Ethereum blockchain, and executions do
not affect the network until they are validated and
completed (Buterin et al. 2014).

Transactions on a blockchain refer to the ac-
tions initiated by EOAs to alter the state of the
blockchain, such as transferring cryptocurrency or

3 https://docs.soliditylang.org/en/develop/abi-spec.html, ac-
cessed 20-03-2025
4 https://ethereum.org/en/developers/docs/accounts/, ac-
cessed 20-03-2025

http://dx.doi.org/10.18417/emisa.20.2
https://docs.soliditylang.org/en/develop/abi-spec.html
https://ethereum.org/en/developers/docs/accounts/


International Journal of Conceptual Modeling
Vol. 20, No. 2 (2025). DOI:10.18417/emisa.20.2

6

executing a function in a smart contract (Buterin
et al. 2014).

Transaction Traces are detailed step-by-step
executions of Ethereum transactions that show
how the state of the blockchain changes with each
operation within a transaction. These traces offer
information for understanding interactions within
and across smart contracts5 (also called internal
transactions).

4 Related Work

Prior research proposed frameworks to transform
blockchain data to event logs in various formats,
but these often exhibit limitations in capturing
the dynamic, multi-entity nature of blockchain
applications.

Klinkmüller et al. (2019) introduced the
Ethereum Logging Framework (ELF) for trans-
forming Ethereum on-chain data into event logs.
Beck et al. (2021) advanced this work with the
Blockchain Logging Framework (BLF), a versa-
tile extract-transform-load (ETL) tool designed for
various blockchain platforms. ELF and BLF facil-
itate systematic logging but rely on user-defined
queries with predefined target contracts, poten-
tially overlooking DApp behavior changes that fall
outside the scope of initial specifications.

Mühlberger et al. (2019) presented an approach
for extracting event logs from replayed Ethereum
transactions. They were the first ones to use
smart contract function signatures as a basis for
event identification. However, their approach left
available blockchain data attributes unconsidered,
such as log entries and contract creations.

Alzhrani et al. (2024) developed an Event Log
Generator (ELG) as part of their framework for
rule-based DApp classifications to automate log
generation. Their ELG is limited to retrieving log
entries from Ethereum and decoding them using
the emitting contract’s ABI.

Further extending these concepts, Corradini
et al. (2024) emphasized the need for capturing

5 https://geth.ethereum.org/docs/developers/evm-tracing, ac-
cessed 20-03-2025

account
address
...

log entry
address
data
topic0
topic1
...

transaction
transactionHash
from
to
value
transactionIndex
...

*

0...*

*

call frame 
callType
from
to
input
gas
gasUsed
gasPrice
value
output
error

0...*

0...*

1

0...*

1
1

*

block
timestamp
blockNumber
...

*
1 1

0...*

* *
*

1

Figure 2: Class diagram showing relations between
contracts, transactions, events, and call frames.

additional data from Ethereum smart contract exe-
cutions, such as state transitions and internal trans-
actions. The approach requires little preliminary
knowledge about the smart contract. Morichetta et
al. (2024)’s EveLog operates in a similar fashion.
Their approach also avoids the need for prede-
fined configurations, allowing it to operate across
a broader range of applications by systematically
extracting and structuring logs into an XES format.
Both approaches offer a comprehensive view by
considering internal transactions and state changes.
They still face limitations in going beyond a prede-
fined set of smart contracts, and handling DApps
consisting of multiple dynamically deployed smart
contracts.

In addition to the above approaches, we broaden
the data scope from individual smart contracts to
entire DApps by considering contract creations.
Additionally, our approach leverages the Object-
Centric Event Log (OCEL) 2.0 to capture the data
with interactions and multi-object dependencies
within Ethereum-based DApps in a scalable way.

5 Data Attributes for Object-Centric
Event Logs from the Ethereum
Blockchain

The Ethereum blockchain contains various data at-
tributes that can be analyzed with process mining.
Figure 2 is a class diagram depicting the relations
between blockchain data structures. Transactions
are included in blocks. Transactions capture tran-
sitions from one state of the blockchain to an-
other (Wood 2014). The result of executing a

http://dx.doi.org/10.18417/emisa.20.2
https://geth.ethereum.org/docs/developers/evm-tracing


Enterprise Modelling and Information Systems Architectures
Vol. 20, No. 2 (2025). DOI:10.18417/emisa.20.2
Object-Centric Process Mining for Blockchain Applications 7

transaction is hashed, and the hash is stored in the
respective transaction receipt.

On the Ethereum blockchain, transactions may
contain invocations of smart contract functions,
which result in computational operations being ex-
ecuted on the Ethereum Virtual Machine (EVM).
These computational operations can be captured
in transaction traces. Transaction traces exist
on different levels of granularity. They can in-
clude assembly-level operations, e. g., compar-
isons and bit-wise logic operations, or push oper-
ations (within the EVM’s computational stack),
but they also comprise log entries and system op-
erations (e. g., creations of CAs and message calls
between CAs) (Wood 2014). Transaction traces
exist temporarily and are not stored permanently
in blocks of the Ethereum blockchain. In order to
retrieve traces for historical transactions, transac-
tions have to be replayed on the EVM (replaying
the transition from one state of the blockchain to
the next), and the computational steps have to be
stored separately from the blockchain. For that
purpose, different tracers exist for the most widely
used Ethereum execution client Geth.6 7

A transaction trace is hierarchically structured.
In the transaction depicted in Listing 1, multiple
CAs were invoked. Each CA invocation appears on
subsequent hierarchical levels within call frames
(sometimes called internal transactions). Call
frames include additional attributes, such as from:
initiating address; to: target address; gas: bud-
get available for the operation; gasUsed: budget
consumed for the operation; input: data payload;
output: result of the operation; value: Ether value
sent with the operation; type: operation type; and
logs: log entries emitted during the operation. In
the transaction in Listing 1, a call was issued from
address 0xd...d6 to CA 0x75...99. To compute
the call, 0x75...99 issued calls to other contracts
and emitted a log entry. In transaction traces, the
following operation types are defined:

6 https://ethereum.org/en/developers/docs/
nodes-and-clients/, accessed 20-03-2025
7 https://geth.ethereum.org/docs/developers/evm-tracing/
built-in-tracers, accessed 20-03-2025

Listing 1: Example transaction trace

1 {
2 'from ': '0xd82369aaec27c7a749afdb4eb71add9e64154cd6',
3 'gas ': '0xc578c',
4 'gasUsed ': '0xb74f3',
5 'to ': '0x75228dce4d82566d93068a8d5d49435216551599',
6 'input ': '0x9684da1a',
7 'output ': '0x00...77',
8 'calls ': [
9 {

10 'from ': '0x75228dce4d82566d93068a8d5d4943521655159
↩→ 9',

11 'gas ': '0xc1b19',
12 'gasUsed ': '0x3a6',
13 'to ': '0xb3337164e91b9f05c87c7662c7ac684e8e0ff3e7'

↩→ ,
14 'input ': '0xf3...00',
15 'output ': '0x00...95',
16 'value ': '0x0',
17 'type ': 'CALL '
18 },
19 {
20 'from ': '0x75228dce4d82566d93068a8d5d4943521655159

↩→ 9',
21 'gas ': '0xc0f85',
22 'gasUsed ': '0xab0ae',
23 'to ': '0xe62e470c8fba49aea4e87779d536c5923d01bb95'

↩→ ,
24 'input ': '0x48...00',
25 'output ': '0x00...77',
26 'calls ': [
27 {
28 'from ': '0xe62e470c8fba49aea4e87779d536c5923d0

↩→ 1bb95',
29 'gas ': '0xb6295',
30 'gasUsed ': '0x2a4c6',
31 'to': '0xe991247b78f937d7b69cfc00f1a487a293557

↩→ 677',
32 'input ': '0x60...00',
33 'output ': '0x60...29',
34 'value ': '0x0',
35 'type ': 'CREATE '
36 }
37 // ...
38 ]
39 'value ': '0x0',
40 'type ': 'CALL '
41 }
42 ],
43 // ...
44 'logs ': [
45 {
46 'address ': '0x75228dce4d82566d93068a8d5d4943521655

↩→ 1599',
47 'topics ': [
48 '0x299eaafd0d27519eda3fe7195b73e5269e442b3d80928

↩→ f19afa32b6db2f352b6',
49 '0x000000000000000000000000000000000000000000000

↩→ 0000000000000000000',
50 '0x000000000000000000000000e991247b78f937d7b69

↩→ cfc00f1a487a293557677'
51 ],
52 'data ': '0x00...00'
53 }
54 ],
55 'value ': '0x0',
56 'type ': 'CALL '
57 }

Notes: Enabled log tracing; input and
output are abbreviated; transaction hash:
0x44c09f8eeff886723b79890e14743192a8c8d8a8eac158ed-
17600c94e502cce8.

http://dx.doi.org/10.18417/emisa.20.2
https://ethereum.org/en/developers/docs/nodes-and-clients/
https://ethereum.org/en/developers/docs/nodes-and-clients/
https://geth.ethereum.org/docs/developers/evm-tracing/built-in-tracers
https://geth.ethereum.org/docs/developers/evm-tracing/built-in-tracers


International Journal of Conceptual Modeling
Vol. 20, No. 2 (2025). DOI:10.18417/emisa.20.2

8

0xE0xC

0xF

CALL

CREATE CREATE

0xA

CREATE

CREATE CREATE

(sub)

root

0xB

CALL

DELEGATE-

CALL

0xD

Figure 3: Schema of a single tree-like deployment
structure of smart contracts and possible message
calls between accounts.

Contract creations. Type mnemonic: CREATE
or CREATE2. Contract creations are deployments
of new smart contracts. When a smart contract
creation is triggered, the EVM interprets the ac-
companying input data and attempts to deploy it
as smart contract code in a newly created CA. A
contract creation is depicted in Listing 1 between
lines 27 and 36. Our approach assumes that when
a DApp CA creates a new CA, the newly created
CA also belongs to the DApp. CAs can be added
to a DApp at initial deployment, but there are
also mechanisms for updating or adding smart
contracts to running DApps, e. g., the factory pat-
tern, registry pattern (Xu et al. 2018), or diamond
proxy.8 A set of CAs belonging to one DApp that
gets deployed can be seen as a tree structure (or
a forest consisting of several trees or sub-trees).
Every CA of a DApp has a single creator (parent)
and can have several children that it can create.
Additionally, the CAs of the DApp can send each
other message calls laterally without traversing the
creation branches. Contracts of the DApp can also
be called from outside of the DApp (see Figure 3).

Calls. Type mnemonic: CALL. Two different
types of calls exist. (1) Ether transfers without
function calls are solely directed to value transfers
without additional input data and without trig-
gering the execution of smart contract logic. (2)
Function calls appear when an account calls a CA’s
function. A function call depicted in Listing 1
between lines 9 an 18. Function calls to contracts
preserve the context of the caller and callee as
separate (in contrast to delegated calls).

8 https://eips.ethereum.org/EIPS/eip-2535, accessed 20-03-
2025

Delegated calls. Type mnemonic:
DELEGATECALL. DELEGATECALLs execute code
in the context of the calling contract (in contrast
to function calls). The DELEGATECALL function
allows a contract to invoke a function in another
contract. During a DELEGATECALL, the code of
the called contract is executed with the storage,
sender, and ETH value of the calling contract.
This means that while the code is defined in the
called contract, it manipulates the state variables
of the calling contract. The primary application of
DELEGATECALL is to enable updates of smart con-
tract functionality. Since deployed smart contracts
on Ethereum are immutable, DELEGATECALL pro-
vides an option to alter a contract’s behavior
post-deployment by delegating certain function
calls to separate interchangeable contracts. 9

Log entries. Log entries are used to commu-
nicate information about CAs’ code execution to
entities outside of the smart contract.10 A log
entry is depicted in Listing 1 between lines 44
and 54. This particular log entry has three topics.
The first topic usually contains a hashed signature
of the event. The remaining topics hold up to
three indexed parameters specified in the event
definition, usually encoded. Log entries have to
be specified in smart contract code in order to
be emitted. Within limits, developers can choose
what information shall be exposed with log entries.
If smart contracts operate with ERC-tokens, how-
ever, developers are advised to implement standard
interfaces, including certain sets of events, e. g., to
document token creation and transfers (ERC-2011

, ERC-72112 ).

6 Data Extraction Method (RQ1)

The goal of our data extraction method is to gather
as much data about a DApp as possible with mini-
mum knowledge about the DApp. Therefore, the

9 https://eips.ethereum.org/EIPS/eip-7, accessed 20-03-2025
10 https://ethereum.org/en/developers/docs/smart-contracts/
anatomy/#events-and-logs, accessed 20-03-2025
11 https://eips.ethereum.org/EIPS/eip-20#events, accessed
20-03-2025
12 https://eips.ethereum.org/EIPS/eip-721#specification, ac-
cessed 20-03-2025

http://dx.doi.org/10.18417/emisa.20.2
https://eips.ethereum.org/EIPS/eip-2535
https://eips.ethereum.org/EIPS/eip-7
https://ethereum.org/en/developers/docs/smart-contracts/anatomy/#events-and-logs
https://ethereum.org/en/developers/docs/smart-contracts/anatomy/#events-and-logs
https://eips.ethereum.org/EIPS/eip-20#events
https://eips.ethereum.org/EIPS/eip-721#specification


Enterprise Modelling and Information Systems Architectures
Vol. 20, No. 2 (2025). DOI:10.18417/emisa.20.2
Object-Centric Process Mining for Blockchain Applications 9

Lo
ca

l m
ac

hi
ne

Discover the creation (sub-)tree

Identify DApp 
CAs

Query 
transactions

Compute 
transaction 

traces
Transactions 

received
Transaction

traces
received

New contracts

No new contracts

Decode and transform execution data

Query ABIs Decode trace 
data

Receive ABIs Compose 
object-centric 

log

Etherscan

Ethereum blockchain node

approach_EMISAJ_R1_hz_1121.bpmn
Powered by TCPDF (www.tcpdf.org)

Powered by TCPDF (www.tcpdf.org)

Figure 4: Extraction method for retrieving transaction trace-based event data.

extraction method has to be capable of identifying
DApp information from a small amount of input
data. Hence, the extraction method takes as input
a non-empty set of accounts of a DApp, and a
block range. In order to extract the execution
data of the DApp, three steps follow: (1) discover
the creation sub-tree(s) of the DApp, (2) decode
and transform execution data, and (3) compose
object-centric event log. Figure 4 visualizes the
extraction method that is described in this section.
Discover the creation sub-tree(s) of a DApp.
We begin with the input set of accounts of the
DApp and a specified block range. All operations
are confined to this block range. First, we retrieve
transactions involving any of the input accounts
as a sender or receiver. These transactions are
queried both as regular transactions and internal
transactions from Etherscan, as well as log en-
try transactions from an Ethereum node. Next,
we identify transactions that contain CALLs from
or to input accounts. The identified transactions
are then replayed using an EVM on an Ethereum
Archival node to obtain complete execution traces,
including CREATE relationships between accounts.
To achieve this, we use a build-in debug tracer
with the call tracer setting configured to output
log entries.13 We then perform a forward and
backward search for DApp accounts along the
creation sub-tree to identify additional DApp ac-
counts. Specifically, based on CREATE-relations
between accounts we identify: a) Child CAs: If

13 https://geth.ethereum.org/docs/interacting-with-geth/rpc/
ns-debug#debug_tracetransaction, accessed 20-03-2025

the trace data includes contract creations by known
DApp accounts, these newly created CAs (chil-
dren) are added to the DApp account set. b) Parent
accounts: If the trace data shows that accounts
already identified as part of the DApp were created
by other accounts, these creator accounts (parents)
are added to the DApp account set. Whenever
previously unknown accounts are added to the
DApp account set, the previous steps are repeated.
This iterative process is repeated until the entire
creation sub-tree of the DApp is identified within
the specified block range. If the input set contains
accounts from multiple creation sub-trees, mul-
tiple creation sub-trees may be discovered. The
resulting transaction traces are further processed
in the next step.

Decode and transform execution data.
Apart from CREATE-relations, the previously
replayed transaction traces contain CALLs,
DELEGATECALLs, and log entries. The CALL
/ DELEGATECALL parameters, and log entry pa-
rameters within this data are encoded. We utilize
the corresponding contract’s ABI specifications
to decode the raw data of log entries and function
calls with existing libraries.14 ,

15 ABIs can be
inserted manually or if publicly available, they
can be queried from Etherscan. Since some of
the ERC standard events were not documented in

14 https://github.com/iamdefinitelyahuman/eth-event/blob/
master/eth_event/main.py, accessed 20-03-2025
15 https://web3py.readthedocs.io/en/latest/web3.contract.
html#web3.contract.Contract.decode_function_input,
accessed 20-03-2025

http://dx.doi.org/10.18417/emisa.20.2
https://geth.ethereum.org/docs/interacting-with-geth/rpc/ns-debug#debug_tracetransaction
https://geth.ethereum.org/docs/interacting-with-geth/rpc/ns-debug#debug_tracetransaction
https://github.com/iamdefinitelyahuman/eth-event/blob/master/eth_event/main.py
https://github.com/iamdefinitelyahuman/eth-event/blob/master/eth_event/main.py
https://web3py.readthedocs.io/en/latest/web3.contract.html#web3.contract.Contract.decode_function_input
https://web3py.readthedocs.io/en/latest/web3.contract.html#web3.contract.Contract.decode_function_input


International Journal of Conceptual Modeling
Vol. 20, No. 2 (2025). DOI:10.18417/emisa.20.2

10

the ABIs, we created custom ABIs and attempted
to decode log entry values as a fallback option.
The extracted data was organized into a tabular
form, with each row representing a CALL, a
DELEGATECALL, a CREATE, or a log entry. The
extraction method makes use of the third-party
service Etherscan,16 which provides access to
Ethereum data. We used Etherscan to retrieve the
transactions and ABIs of identified DApp CAs.
The implementation of the data extraction method
is available.17
Compose object-centric event log
After decoding, the blockchain data needs to be
transferred into an OCEL 2.0 event log. In Ta-
ble 3 we mapped components of Ethereum data
(see Figure 2) to elements of the OCEL 2.0 meta-
model (see Figure 1). This mapping categorizes
blockchain operations into the three primary types:
CREATE, CALL/DELEGATECALL, and LOG ENTRY.
Each of these operations is systematically mapped
to corresponding OCEL 2.0 elements. E.g., the
CREATE operation, which signifies contract cre-
ation, is mapped to an OCEL event with the event
type “Contract creation” and includes event at-
tributes derived from callframe (CF-A), transac-
tion (TX-A), and block attributes (B-A). Similarly,
CALL and DELEGATECALL operations are mapped
based on decoded function names and their param-
eters, while log entry operations are associated
with decoded event names and relevant log pa-
rameters. Object-to-object relationships are cap-
tured through qualifiers that describe the nature
of interactions between entities, such as “creates”
or “owned by”. Algorithm 1 is an algorithmic
description of how the mapping is applied to en-
sure the conversion from blockchain data to an
OCEL 2.0 log. To convert the tabular blockchain
data to OCEL 2.0, we use the PM4Py library’s
OCEL package18 . Note that while little domain
knowledge is needed to extract the event log data,
a certain level of domain knowledge is still needed

16 https://etherscan.io/, accessed 20-03-2025
17 https://github.com/rhobeck/trace_based_logging, accessed
20-03-2025
18 https://pm4py-source.readthedocs.io/en/latest/pm4py.
objects.ocel.html, accessed 20-03-2025

to format the data to OCEL 2.0 (e. g., for choosing
data attributes as objects). The extracted object-
centric event log is available on Zenodo.19

Algorithm 1 OCEL 2.0 event log composition
Require: Transaction traces 𝑇 in blocks 𝐵, and mapping 𝑚

Ensure: OCEL 2.0 log 𝐿 with events, objects, and relationships
1: Initialize empty OCEL 2.0 log 𝐿

2: for each transaction trace 𝑡 ∈ 𝑇 do
3: Extract operations 𝑂𝑡 from 𝑡

4: for each operation 𝑜𝑝 ∈ 𝑂𝑡 do
5: Create Event 𝑒:
6: 𝑒← 𝑚(𝑜𝑝) (𝑒𝑣𝑡𝑦𝑝𝑒, 𝑒𝑎𝑡𝑦𝑝𝑒, 𝑒𝑎𝑣𝑎𝑙)
7: assign 𝑒 block timeStamp 𝑡𝑖𝑚𝑒𝑏
8: for each related object 𝑜 do
9: if Object 𝑜.𝑖𝑑 exists in 𝐿 then

10: update 𝑜:
11: 𝑜← 𝑚(𝑜𝑝) (𝑜𝑏 𝑗𝑡 𝑦𝑝𝑒, 𝑜𝑎𝑡𝑦𝑝𝑒, 𝑜𝑎𝑣𝑎𝑙)
12: Update 𝑟𝑜 history with 𝑡𝑖𝑚𝑒𝑏
13: else
14: create 𝑜:
15: 𝑜← 𝑚(𝑜𝑝) (𝑜𝑏 𝑗𝑡 𝑦𝑝𝑒, 𝑜𝑎𝑡𝑦𝑝𝑒, 𝑜𝑎𝑣𝑎𝑙)
16: Initialize 𝑟𝑜 history with 𝑡𝑖𝑚𝑒𝑏
17: end if
18: Establish event-to-object relationship 𝑒2𝑜:
19: 𝑒2𝑜← 𝑚(𝑜𝑝) (𝐸2𝑂)
20: end for
21: for each object-to-object relationship 𝑜2𝑜 ∈

𝑚(𝑜𝑝) (𝑂2𝑂) do
22: Establish object-to-object relationship:
23: 𝑜2𝑜← 𝑚(𝑜𝑝) (𝑂2𝑂)
24: end for
25: Add 𝑒, 𝑜, 𝑒2𝑜, 𝑜2𝑜 to 𝐿

26: end for
27: end for

7 Distinct Characteristics of Blockchain
Execution Data

In this section, we present distinct characteristics
within the blockchain transaction traces. In a sec-
ond step, we intend to check if these characteristics
can be represented in OCEL 2.0 without loss or
duplication of information. Therefore, we answer
RQ2.

Ordering of Operations. Operations within
transaction traces have no direct timestamps.
Therefore, a challenge lies in preserving the tempo-
ral and hierarchical integrity of operations within
the transaction traces. Temporal ordering of op-
erations in Ethereum is only possible with the
block timestamps. Each transaction included in

19 https://zenodo.org/records/14228751, accessed 20-03-
2025

http://dx.doi.org/10.18417/emisa.20.2
https://etherscan.io/
https://github.com/rhobeck/trace_based_logging
https://pm4py-source.readthedocs.io/en/latest/pm4py.objects.ocel.html
https://pm4py-source.readthedocs.io/en/latest/pm4py.objects.ocel.html
https://zenodo.org/records/14228751


Enterprise Modelling and Information Systems Architectures
Vol. 20, No. 2 (2025). DOI:10.18417/emisa.20.2
Object-Centric Process Mining for Blockchain Applications 11

Table 3: Mapping blockchain data to OCEL 2.0 elements
OCEL 2.0 Element CREATE CALL / DELEGATECALL LOG ENTRY

time Block timestamp Block timestamp Block timestamp

Event E CREATE occurs CALL or DELEGATECALL occurs LOG ENTRY occurs

evtype Contract creation Decoded CALL / DELEGATECALL
function name

Decoded LOG ENTRY name

eatype CF-A, TX-A, B-A Decoded CALL / DELEGATECALL
parameters, CF-A, TX-A, B-A

Decoded LOG ENTRY parameters, TX-A,
B-A

eaval “create new contract”, CF-A values,
TX-A values, B-A values

Decoded CALL / DELEGATECALL
parameter values, CF-A values, TX-A
values, B-A values

Decoded LOG ENTRY parameter values,
TX-A values, B-A values

𝐸2𝑂 “creator” (from), “created contract”
(to)

“caller” (from), “callee” (to), qualifiers
based on CALL / DELEGATECALL
parameters

Qualifiers based on LOG ENTRY
parameters

Object O Entities involved during CREATE Entities involved during CALL /
DELEGATECALL

Entities involved in LOG ENTRY

objtype Role in DApp (e. g., based on smart
contract logic)

Domain-specific object types from CALL
/ DELEGATECALL parameters (e. g.,
MARKET, ORDER)

Domain-specific object types from LOG
ENTRY parameters (e. g., MARKET,
ORDER, TOKEN), log entry emitter

oatype Address, type of account Domain-specific object attributes from
CALL / DELEGATECALL parameters
(e. g., for MARKET: MarketType,
EndTime, Price)

Domain-specific object attributes from
LOG ENTRY parameters (e. g., for
TOKEN: TokenId, TokenType), address

oaval Address value, “EOA”/“CA” Address values, domain-specific CALL /
DELEGATECALL attribute values (e. g.,
for MarketType: “binary market”)

Address values, domain-specific LOG
ENTRY attribute values (e. g., for
TokenType: type value), address value

𝑂2𝑂 Relation during creation (“creates”,
“created by”)

domain-specific relations (e. g., for
MARKET: “report submitted by”)

domain-specific relations (e. g., for
TOKEN: “owned by”)

B-A ... Block attributes: blockNumber
TX-A ... Transactions attributes: transactionHash, transactionIndex
CF-A ... Callframe attributes: from, to, gas, gasUsed, value, input, output, and error

a block inherits the block’s timestamp, causing
a form-based event capture (Suriadi et al. 2017).
Additionally, within a block, transactions have a
strict order20 that is documented as transactionIn-
dex as part of the transaction receipt.21 Operations
within a transaction trace lack individual times-
tamps or pre-defined ordering attributes but follow
a tree-structured execution logic. When transform-
ing a transaction trace into an event log format, the
order of operations can be preserved in attributes
using two approaches:

Sequential enumeration (see tracePos in List-
ing 2): A straightforward option is to enumerate
operations from the beginning to the end of the

20 https://ethereum.org/en/developers/docs/blocks/, accessed
20-03-2025
21 https://web3py.readthedocs.io/en/stable/web3.eth.html#
web3.eth.Eth.get_transaction_receipt, accessed 20-03-2025

transaction trace. While preserving a basic order
of execution and offering a simple secondary or-
dering attribute, this option does not capture the
hierarchical structure of a transaction trace.

Hierarchical enumeration (see tracePosDepth
in Listing 2): A more nuanced option is to enumer-
ate operations based on their hierarchical depth,
preserving the tree structure of nested calls within
the trace. This method assigns identifiers that
reflect both the sequential position and the depth
within the trace hierarchy by assigning the position
of the parent operation as a prefix.

In part, the representation in sub-processes is
relevant to accurately represent Ethereum-specific
implementations. E.g., DELEGATECALLs are not
annotated with ETH transfers, although ETH trans-
fers could happen. Instead, a DELEGATECALL
“propagates the sender and value from the parent

http://dx.doi.org/10.18417/emisa.20.2
https://ethereum.org/en/developers/docs/blocks/
https://web3py.readthedocs.io/en/stable/web3.eth.html#web3.eth.Eth.get_transaction_receipt
https://web3py.readthedocs.io/en/stable/web3.eth.html#web3.eth.Eth.get_transaction_receipt


International Journal of Conceptual Modeling
Vol. 20, No. 2 (2025). DOI:10.18417/emisa.20.2

12

Listing 2: Schematic transaction trace with inserted
position options

1 {
2 'type ': 'CALL ', 'tracePosDepth ': '1', 'tracePos ': 1, '

↩→ calls ': [
3 {'type ': 'CALL ', 'tracePosDepth ': '1.1', 'tracePos ':

↩→ 2, 'calls ': [
4 {'type ': 'CALL ', 'tracePosDepth ': '1.1.1', '

↩→ tracePos ': 3},
5 {'type ': 'DELEGATECALL ', 'tracePosDepth ': '1.1.2

↩→ ', 'tracePos ': 4, 'calls ': [
6 {'type ': 'CALL ', 'tracePosDepth ': '1.1.2.1',

↩→ 'tracePos ': 5}
7 ]
8 }
9 ],

10 'logs ': [
11 {'topics ': ['0xA', '0xB'], 'tracePosDepth ': '1.1

↩→ .3', 'tracePos ': 6},
12 {'topics ': ['0xC'], 'tracePosDepth ': '1.1.4', '

↩→ tracePos ': 7}
13 ]
14 },
15 {'type ': 'CALL ', 'tracePosDepth ': '1.2', 'tracePos ':

↩→ 8}
16 ],
17 'logs ': [
18 {'topics ': ['0xD '], 'tracePosDepth ': '1.3', '

↩→ tracePos ': 9}
19 ]
20 }

Notes: Enabled log tracing.

scope [i. e., the call the delegated call is nested
within] to the child scope [i. e., the delegated
call]”.22 This association information is lost if the
event log data does not explicitly capture delegated
calls in the context of their parent calls.

Undecodable Data. The transaction traces con-
tain encoded data that requires the ABIs of the
corresponding CAs for decoding. However, chal-
lenges emerge from incomplete or unavailable
ABIs. ABIs may not document every public func-
tion and log entry of a smart contract. E. g., before
the recent introduction of Solidity v0.8.20, log
entries according to the ERC standard, as well
as log entries emitted through invoked code from
imported libraries, were not included in an ABI.
For other smart contracts, ABIs may not be pub-
licly accessible altogether. As an example: Using
the ABI of CA 0x75...99, the log entry in List-
ing 1 between lines 44 and 54 can be decoded
to log entry name: “UniverseCreated” with the
parameters “parentUniverse” and “childUniverse”
giving the log entry semantic meaning. Without

22 https://eips.ethereum.org/EIPS/eip-7, accessed 20-03-
2025

the ABI that decoding would not have been pos-
sible. To reduce the amount of undecodable data
and to expand options for token tracking, ABIs of
DApp CAs can be extended by adding standard
events of ERC tokens.23 This extension allows
decoding ERC-token standard events irrespective
of the availability and completeness of a CA’s
ABI. Nonetheless, without the ABI a number of
function calls and log entries cannot be decoded.
As a result, function names, parameters, or log
entry details remain encoded. Yet, undecodable
data contains information, incl. type of call, gas,
from address, to address, and value of transferred
ETH. That information can be included in the
event log for further analysis.

Identification of Objects and Object Types.
Identifying objects and object types in the
Ethereum environment remains largely case-
specific and poses challenges to an automated
approach. However, certain object types are con-
sistently applicable on Ethereum. For example,
independent from the specific DApp, EOAs can
serve as users, CAs serve as code executing units,
or tokens are transferrable assets. In this con-
text, distinguishing between EOAs, DApp CAs,
and non-DApp CAs presents a challenge. Both
EOAs and CAs are represented by a 42-character
hexadecimal address that does not differentiate be-
tween the two types of entities. One way to identify
an EOA is to recognize the account as the initiator
of a transaction, a role that is reserved for EOAs.
Another option is to query the bytecode for an
account; for CAs, the query will return bytecode.
For EOAs, the query will return 0x.24 Further-
more, knowing the CREATE-relations among the
DApp CAs allows to differentiate between DApp
CAs and a Non-DApp CAs. Differentiating be-
tween the types of CAs helps to diversify objects
in an object-centric event log. Access to a CA’s
smart contract code can help to understand a CA’s

23 https://ethereum.org/en/developers/docs/standards/tokens/,
accessed 20-03-2025
24 https://web3py.readthedocs.io/en/v5/web3.eth.html#web3.
eth.Eth.get_code, accessed 20-03-2025, note that the query
also returns 0x for self-destructed contracts and contracts of
which the most recent creating transaction failed.

http://dx.doi.org/10.18417/emisa.20.2
https://eips.ethereum.org/EIPS/eip-7
https://ethereum.org/en/developers/docs/standards/tokens/
https://web3py.readthedocs.io/en/v5/web3.eth.html#web3.eth.Eth.get_code
https://web3py.readthedocs.io/en/v5/web3.eth.html#web3.eth.Eth.get_code


Enterprise Modelling and Information Systems Architectures
Vol. 20, No. 2 (2025). DOI:10.18417/emisa.20.2
Object-Centric Process Mining for Blockchain Applications 13

functionality and provide context to its operations.
For example, function calls to a CA that is known
to govern a type of token or a dispute process
will be related to the token or dispute process.
Code analysis can be particularly helpful in the
context of factory CAs. Factory CAs deploy mul-
tiple CAs that each inherit the same functionality
from the factory. Therefore, knowing the factory
CA’s functionality and the CREATE-relation helps
to contextualize the factory’s deployments and
their operations and group deployed CAs by their
functionality.

The implication is that an address, when chosen
as an object type, can represent multiple object
types. This can cause complications when anno-
tating object types. An address could refer to the
generic object type DApp CA and, more specifi-
cally, to the object sub-type Dispute if disputes are
handled by dedicated CAs. Additionally, EOAs
can assume dynamic roles throughout the process
execution, introducing further complications in
object-type annotation in the event log. For exam-
ple, a user can function as market creator for one
event (event A) and as a reporter for another event
(event B). This transition poses a challenge in the
object annotation when aiming to 1) accurately
represent the EOA’s involvement as an object type,
2) capture the EOA’s role as a market creator in
one event (event A), and 3) capture the EOA’s sub-
sequent role as a reporter in another event (event
B), while preventing information loss or duplicat-
ing the EOA’s address in the log for specification –
which would introduce object convergence.

Handling Reverted Transactions. Transactions
can fail for different reasons, such as insufficient
gas or invalid execution instructions. Failed trans-
actions revert, i. e., all changes made to the ledger
by the execution of the failed transactions are
set to the state prior to the transaction (Wood
2014). Despite reversion, failed transactions are
processed (mined) and consequently are part of
the blockchain (Xu et al. 2019, p.230). This in-
clusion enables the recomputation of traces for
failed transactions. However, since changes to
the blockchain by failed transactions are reverted,
the operations of reverted transactions need to be

Listing 3: Reverted example transaction trace

1 {
2 'from ': '0x51bf919cc3af947265b0a94820445e9322b375a3',
3 'gas ': '0x15298',
4 'gasUsed ': '0x70c4',
5 'to ': '0x1985365e9f78359a9b6ad760e32412f4a445e862',
6 'input ': '0xa9059cbb000000000000000000000000d4e63d63a4

↩→ 18140636155b41ccae365f95a15c520000000000000000
↩→ 0000000000000000000000000000000012dacafbb5e7c3
↩→ 80',

7 'error ': 'execution reverted ',
8 'calls ': [
9 {

10 // ...
11 'from ': '0x1985365e9f78359a9b6ad760e32412f4a445e86

↩→ 2',
12 'gas ': '0x13d9c',
13 'gasUsed ': '0x59d',
14 'to ': '0x6c114b96b7a0e679c2594e3884f11526797e43d1'

↩→ ,
15 'input ': '0xa9059cbb000000000000000000000000d4e63d

↩→ 63a418140636155b41ccae365f95a15c5200000000
↩→ 000000000000000000000000000000000000000012
↩→ dacafbb5e7c380',

16 'error ': 'execution reverted ',
17 'type ': 'DELEGATECALL '
18 }
19 ],
20 'value ': '0x0',
21 'type ': 'CALL '
22 }

Notes: Transaction hash:
0x9ab3c2831caa81d58344b3fbbd74f3a90caf386eead08169-
bdff61226da8afad.

excluded from subsequent analysis. Hence, such
transactions should be filtered out before apply-
ing process mining techniques. The trace of a
reverted transaction is depicted in Listing 3; the er-
ror was initially noted in line 16 and subsequently
escalated back to line 7.

8 Case Study: Augur Prediction Market

After exploring the extraction method and
blockchain data characteristics, the following sec-
tion moves towards the application of OCEL 2.0
to data of a real-world DApp: the betting market
platform Augur (v1.0) (Peterson et al. 2018). This
case study serves two purposes:

1. Evaluate the practicality of the data extrac-
tion method (RQ3): By applying our method
to a complex, real-world DApp, we assess its
ability to extract meaningful data from a dynam-
ically evolving blockchain environment. We
also investigate how the identified challenges in
data extraction and representation (Section 7)
manifest in a practical scenario.

http://dx.doi.org/10.18417/emisa.20.2


International Journal of Conceptual Modeling
Vol. 20, No. 2 (2025). DOI:10.18417/emisa.20.2

14

2. Investigate the analytical benefits of object-
centric process mining (RQ4): We explore
how the object-centric perspective, enabled by
OCEL 2.0, allows us to gain insights into DApp
behavior that would not be readily accessible
with traditional, case-centric approaches.

Augur was chosen for this case study due
to its popularity, public data availability on the
Ethereum Mainnet, and the existence of a prior
process mining case study using a single-case no-
tion event log (Hobeck et al. 2021). This previous
work provides a partial basis for validating our
extracted data and comparing the insights gained
from different analytical perspectives.

Our data extraction covered the period from
Augur’s initial deployment on July 8, 2018
(block 5,926,229) to November 10, 2020 (block
11,229,577). Applying the method described in
Section 6, we traversed the CREATE relations to
discover 21,096 Augur-related addresses. We suc-
cessfully retrieved valid ABIs for 241 of these
addresses and decoded a significant portion of the
extracted data. The extraction yielded 20,082,623
operations related to Augur, including interactions
with external DApps. Focusing specifically on op-
erations executed by Augur’s core contracts, we de-
coded 1,514,608 log entries, 5,225,410 calls, and
4,313,674 delegated calls. Importantly, all 22,772
events from the previous case study (Hobeck et al.
2021) were present in our extracted data, providing
a degree of validation for our method.

From the extracted data, we identified the fol-
lowing object types within the Augur ecosystem:

• EOA (Externally Owned Account): Represents
users who interact with the platform.

• ORDER: Represents a buy or sell request for
shares in a market.

• CONTRACT: Represents an Augur-related
smart contract deployed on the blockchain.

• TOKEN: Represents a digital asset or a unit of
value.

• MARKET: Represents a prediction market for
betting on the outcome of events.

Representing blockchain data in OCEL 2.0.
Addressing RQ3 we evaluate the adequacy of
OCEL 2.0 (Berti et al. 2024) for representing data
extracted from Augur. OCEL 2.0 offers constructs
like qualified object relationships and evolving
object attributes, which are beneficial for object-
centric process mining. However, we encountered
representational challenges. One challenge is the
hierarchical nature of the transaction traces (as
illustrated in Listing 2). Transaction traces com-
prise events in a tree structure, rather than a linear
sequence. OCEL 2.0 lacks a mechanism to explic-
itly represent this tree structure and the relation-
ships between higher- and lower-level events. As a
workaround, we introduced new objects within the
OCEL 2.0 log to link higher-level events to their
corresponding lower-level events. Another limi-
tation relates to the hierarchical structure of object
types in blockchain systems. A single object may
belong to multiple (sub)object types. E.g., a “Mar-
ket” in Augur is also a “Contract Account (CA)”.
Ideally, an object could possess both “Market”
and “CA” types simultaneously. OCEL 2.0 cur-
rently lacks this feature. Our solution involved
creating multiple objects of different types repre-
senting the same logical entity, linking them to
the same set of events. Despite these limitations,
we managed to represent dynamic object roles in
the data using qualifications for event-to-object
relationships. E.g., a single EOA (user) can act as
a “market creator” in one event and as a “reporter”
in another. OCEL 2.0’s qualifications allow us to
capture these evolving roles. It enables additional
analysis compared to single-case notion event logs,
e. g., to understand interactions and dynamic role
changes of objects within DApps.

OCEL lifecycle analysis. We proceed to inves-
tigating the analytical benefits of object-centric
process mining and analyze the lifecycle of individ-
ual object types within Augur using the OCEL 2.0
event log (RQ4). Figure 6 depicts histograms of
the number of unique activities executed for each
object type. The histograms show patterns for
different object types. Most EOAs (representing
users) perform only 1 or 2 unique activities, in-
dicating consistent and often simple interaction

http://dx.doi.org/10.18417/emisa.20.2


Enterprise Modelling and Information Systems Architectures
Vol. 20, No. 2 (2025). DOI:10.18417/emisa.20.2
Object-Centric Process Mining for Blockchain Applications 15

patterns with the platform. Markets exhibit a
wider range of unique activity counts between 11
and 30 activities, with 28 being the most frequent.
This suggests that it takes 11 activities to resolve a
market free of disputes and complications. If com-
plications occur, the number of activities involved
jumps to 17-21 and 26-30 activities, respectively.
Orders also show a varying number of unique
activities with a leap between 3 and 13 activities,
also likely influenced by exception mechanisms
such as disputes. Figure 5 shows the lifecycle
durations of EOAs and orders. Almost all EOAs
stay active on Augur for longer than a week, with
around half having a lifespan of more than a month.
Most orders are processed within a week, but can
take up to a year to be fulfilled.

Object-interaction analysis. Building upon the
individual object lifecycle analysis, we explore
RQ4 and examine the interactions between dif-
ferent object types within Augur. Drawing from
the object relationships captured in the OCEL 2.0
log, we can analyze the cardinality and frequency
of interactions, providing a more comprehensive
view of the DApp’s behavior. As depicted in Fig-
ure 7, most EOAs interact with a limited number
of markets (primarily one or two), suggesting that
users focus their participation on selected markets.
Changing the perspective, Figure 8 shows that
a single market always involves multiple EOAs,
with a peak between 5 and 7, suggesting active
participation in most markets. Figure 8 also shows
that most Augur CAs are created to serve in only a
single market, suggesting that the developer encap-
sulated market functions using a factory pattern.
Figure 9 shows that most orders involve a single

≤1 H 1 H-1 D 1 D-1 W 1 W-1 M 1 M-1 Y >1 Y
100

101

102

103

104

Lifecycle Duration

N
um

be
ro

fE
nt

iti
es

Figure 5: Lifecycle durations of EOAs (orange) and
orders (green).

contract. This object-centric interaction analysis
enables a more detailed understanding of DApp
behavior compared to single-case notion event log
analysis, which often focuses on individual pro-
cess instances rather than the interplay between
multiple objects.

The dispute resolution process. To further
investigate the analytical capabilities of object-
centric process mining, we focus on the dispute
resolution process within Augur. This process is
triggered when participants challenge the reported
outcome of a market event. It provides an example
of multi-object interactions.

A dispute resolution process in Augur typically
involves the following steps:

• Initial Reporting: After a market event has
occurred, the designated reporter submits a
report on the outcome within a set time frame.

• Dispute Round: If the reported outcome is
disputed, the market enters a dispute round.
Participants stake tokens on what they believe
is the correct outcome.

• Outcome Shift: If enough tokens are staked on
an alternative outcome, the market outcome
shifts to this new outcome.

• Further Disputes: If the new outcome is dis-
puted, the process repeats, with each dispute
round requiring more tokens to shift the out-
come again.

• Finalization: If no disputes occur within a dis-
pute round or if a dispute bond cannot be filled,
the market finalizes with the current outcome.
The winning tokens are then distributed to the
correct reporters.

We selected a subset of activities and object
types to represent the dispute resolution process.
The selected activities include delegate call to
report, call to log initial report submission, create
dispute, call to create dispute, contribute to dis-
pute, redeem dispute, complete dispute, call to log
market finalization, redeem as initial reporter, and
redeem dispute crowdsourcer. Furthermore, we
focus on MARKET and ORDER as object types,
considering their roles in the context of market

http://dx.doi.org/10.18417/emisa.20.2


International Journal of Conceptual Modeling
Vol. 20, No. 2 (2025). DOI:10.18417/emisa.20.2

16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
100

101

102

103

104

Number of Unique Activities

N
um

be
ro

fE
nt

iti
es

Figure 6: Unique activities performed by EOAs (orange), per order (green), and per market (blue).

1 2 3 4 5 6 7 8 9 10
100

101

102

103

104

Number of Markets per EOA

N
um

be
ro

fE
OA

s

Figure 7: Distribution of markets
based on the count of EOAs oper-
ating in each market.

1 2 3 4 5 6 7 8 9 10 11
100

101

102

103

Number of Entities per Market

N
um

be
ro

fM
ar

ke
ts

Figure 8: Distribution of markets by the
number of EOAs (orange) and contracts
(red) involved.

1 2 3 4 5 6 7 8 9 10
100

101

102

103

104

Number of Contracts per Order

N
um

be
ro

fO
rd

er
s

Figure 9: Distribution of orders,
categorized by the number of con-
tracts associated with each order.

disputes. MARKET objects represent a link to the
specific events being bet on, while ORDER objects
are involved in the creation and fulfillment of bets
within these markets. Figure 10a and Figure 10b
show two object-centric directly-follows graphs,
respectively annotated with frequency and perfor-
mance (median of the arcs’ performance) infor-
mation. An object-centric directly-follows graph
is a collaboration of the directly-follows graphs
discovered for the single object types (Berti and
Aalst 2023). The (frequency-based) object-centric
directly-follows graph proposed in Figure 10a
shows that it is less frequent to have disputes than
not. Also, there are frequent loops over all the
activities involved in the market object type (e. g.,
many users may claim redemption or contribute
to disputes). Also, we show that for 587 times
a dispute has been opened for the same market
after another dispute has just been closed. Ac-
cording to our extraction, the event with activity
complete dispute may be skipped, indicating that
other events could alternatively lead to the con-
clusion of disputes. The figures also show that
orders can be made at any time during a dispute
so users can place tokens on either outcome.

9 Discussion
During the implementation of the data extraction
method and the data handling with OCEL 2.0
we encountered observations and challenges we
reflect on in this section.

Data dependency and extraction. The current
implementation of the data extraction method
(presented in Section 6 and responding to RQ1)
relies on the third-party service Etherscan. The
Etherscan source code is not fully public, so its
use for data retrieval reduces the transparency of
the research process. However, that dependence
was accepted for two reasons:

• Etherscan is an indexed data store of the
Ethereum blockchain. In order to reduce the
size of the Ethereum blockchain, only the results
of transactions are stored on-chain, whereas the
operations leading up to the transactions’ out-
comes (transaction traces) are not. For query-
ing data from a blockchain archival node, that
means that for a CA 0xA, only those transac-
tions that have 0xA as a sender or receiver of
a transaction in a certain block range can be
queried. It is also possible that CA 0xA re-
ceived a function call during the execution of

http://dx.doi.org/10.18417/emisa.20.2


Enterprise Modelling and Information Systems Architectures
Vol. 20, No. 2 (2025). DOI:10.18417/emisa.20.2
Object-Centric Process Mining for Blockchain Applications 17

call to log initial report submission
E=2799

MARKET EC=242

call to log market finalization
E=586

MARKET EC=71

create dispute
E=904

MARKET EC=290

delegate call to report
E=691

MARKET EC=145

redeem as initial reporter
E=3260

MARKET EC=1955

MARKET

MARKET EC=524

ORDER

ORDER EC=273

MARKET EC=137

MARKET EC=180

ORDER EC=245

complete dispute
E=782

MARKET EC=587

redeem dispute crowdsourcer
E=1412

MARKET EC=179

ORDER EC=111

contribute to dispute
E=1602

MARKET EC=788ORDER EC=68

MARKET EC=721

MARKET EC=56

MARKET EC=90

ORDER EC=189

MARKET EC=913 ORDER EC=73

ORDER EC=69

MARKET EC=205

MARKET EC=337

ORDER EC=82

MARKET EC=1285ORDER EC=132

MARKET EC=135

MARKET EC=1932ORDER EC=429

MARKET EC=177

MARKET EC=1102

MARKET EC=199ORDER EC=203

MARKET

MARKET EC=2460

MARKET EC=82 MARKET EC=69

ORDER

ORDER EC=292

ORDER EC=254

ORDER EC=54

ORDER EC=185

ORDER EC=122ORDER EC=85

ORDER EC=408

ORDER EC=200

(a) Frequency object-centric directly-follows graph of the dispute resolution process.

call to log initial report submission MARKET EC=2D

call to log market finalization

MARKET EC=8h

create dispute

MARKET EC=5D

delegate call to report

MARKET EC=4h

redeem as initial reporter

MARKET EC=17D

MARKETORDER

MARKET EC=1MO

MARKET EC=10m

complete dispute

MARKET EC=6D

redeem dispute crowdsourcer

MARKET EC=13D

contribute to dispute

MARKET EC=0nsORDER EC=0ns

MARKET EC=4h

MARKET EC=6D

MARKET EC=4D

MARKET EC=0ns ORDER EC=0ns

MARKET EC=1h

MARKET EC=6m

MARKET EC=0nsORDER EC=7s

MARKET EC=10D MARKET EC=4D

MARKET EC=15m

MARKET ORDER

(b) Performance object-centric directly-follows graph of the dispute resolution process.

Figure 10: Object-centric directly-follows graphs

http://dx.doi.org/10.18417/emisa.20.2


International Journal of Conceptual Modeling
Vol. 20, No. 2 (2025). DOI:10.18417/emisa.20.2

18

a transaction from the sender EOA 0xB to the
receiver CA 0xC. In that case, the function call
0xC → 0xA is not stored on-chain. Indexing
services such as Etherscan provide data stores
that save (a subset of) such function calls and
make them easily queriable. We tried to miti-
gate the dependence and validate the Etherscan
data by querying transactions of log entries
(which are emitted upon function call, not upon
reception of a transaction) from an Ethereum
node. However, the dependence on an indexed
data store remains. It is possible to circumvent
using a third-party service by creating a local
database containing message calls between all
active accounts within a block range.

• Retrieving DApp CA’s ABIs. Log entry data, as
well as function names and inputs, are stored
and encoded on the blockchain. Decoding the
data requires information from the CA’s ABI.
Etherscan provides a number of verified ABIs
for CAs, which we used. If the smart contract
code of the CA is known, the ABI can also be
computed by a Solidity compiler.

Client-specific implementations. The data ex-
traction was implemented with the Geth-based
Ethereum client Erigon so that the rich features of
Geth were available for re-computations of trans-
action traces. We cannot make a statement about
reproducibility with other clients except Geth and
Erigon. However, both clients have a combined
market share of about 46% of all Ethereum clients,
making the approach accessible for a large share
of node operators.25

Transferability to other blockchains. The pre-
sentation of the paper’s approach is based on the
technology of Ethereum blockchains. Some of
the concepts we used are transferable to other
blockchains. For one, executable code is also
deployed as smart contracts in other second-
generation blockchains, e. g., Hyperledger Fab-
ric.26 Also, the notion of transactions of assets is

25 https://clientdiversity.org/#distribution, accessed 20-03-
2025
26 https://hyperledger-fabric.readthedocs.io/en/latest/
smartcontract/smartcontract.html, accessed 20-03-2025

a concept shared by all blockchains (Xu et al. 2019,
p.5) and can be exploited to retrieve object-centric
process mining logs across platforms.

Challenges in data handling and data analysis.
Section 7 explores the challenges related to the
handling of blockchain data in process mining,
particularly the ordering of operations and the
integration of comprehensive smart contract data.
Alternative methods are required to maintain tem-
poral accuracy, such as sequential and hierarchical
enumeration. Additionally, the dynamic roles of
accounts and the complexity of smart contract
interactions present challenges in applying the
OCEL 2.0 standard. Despite these challenges,
OCEL 2.0 provides a structured format that sup-
ports the nuanced requirements of blockchain data.
The Augur case study investigated the practical
application of the data extraction method and the
analytical benefits of using OCEL 2.0 for object-
centric process mining for blockchain applications.
The analysis of object lifecycles, interactions, and
the dispute resolution process provided insights
into the behavior and implementation of the Augur
DApp, which would be difficult to obtain using
single-case notion event logs.

10 Conclusion and Future Work

This paper introduced a novel methodology for
extracting and analyzing execution data from
Ethereum-based DApps using object-centric pro-
cess mining. We addressed the challenges of dy-
namic contract deployments, operation ordering
within transaction traces, handling undecodable
data due to ABI limitations, and representing evolv-
ing object types and roles within the OCEL 2.0
framework. While OCEL 2.0 effectively cap-
tures the multi-object interaction characteristics
of DApps, limitations regarding hierarchical ob-
ject typing and event granularity give reason for
further development of the standard. Our pro-
posed workarounds provide practical solutions to
these limitations, enabling more comprehensive
DApp analysis. The Augur case study showed
the practical application of our method and the
analytical benefits of an object-centric perspective.

http://dx.doi.org/10.18417/emisa.20.2
https://clientdiversity.org/#distribution
https://hyperledger-fabric.readthedocs.io/en/latest/smartcontract/smartcontract.html
https://hyperledger-fabric.readthedocs.io/en/latest/smartcontract/smartcontract.html


Enterprise Modelling and Information Systems Architectures
Vol. 20, No. 2 (2025). DOI:10.18417/emisa.20.2
Object-Centric Process Mining for Blockchain Applications 19

By analyzing object lifecycles, interactions, and
the dispute resolution process within Augur, we
gained additional insights offered by the object-
centric approach – insights not readily attainable
with traditional, case-centric process mining tech-
niques. While some of the technical details of our
work are specific to Ethereum DApps, we estimate
that many insights and aspects apply to the broader
class of dynamic software applications in general.

Future work can improve the transparency and
autonomy of data extraction processes, e. g., by
using or creating open-source blockchain indexing
databases. The discovery of DApp contracts is cur-
rently limited to traversing the CREATE relations
between accounts, and can be improved to handle
DApps consisting of multiple address sub-trees
that interact only via CALL / DELEGATECALL with
no linking CREATE relations. Future work may
also automate object discovery in the raw extrac-
tion data to reduce the manual effort necessary
to construct the OCEL 2.0 log. Additionally, the
capabilities of OCEL 2.0 can be extended to better
handle the specific requirements of blockchain
data, such as the ordering of operations and role
dynamics.

References

van der Aalst W. M. P. (2019) Object-Centric
Process Mining: Dealing with Divergence and
Convergence in Event Data. In: Software Engi-
neering and Formal Methods - 17th International
Conference, SEFM 2019, Oslo, Norway, Septem-
ber 18-20, 2019, Proceedings. Lecture Notes in
Computer Science Vol. 11724. Springer, pp. 3–25

van der Aalst W. M. P. (2022) Process Mining: A
360 Degree Overview. In: Process Mining Hand-
book. Lecture Notes in Business Information Pro-
cessing Vol. 448. Springer, pp. 3–34

Acampora G., Vitiello A., Stefano B. N. D., van der
Aalst W. M. P., Günther C. W., Verbeek E. (2017)
IEEE 1849: The XES Standard: The Second IEEE
Standard Sponsored by IEEE Computational Intel-
ligence Society [Society Briefs]. In: IEEE Comput.
Intell. Mag. 12(2), pp. 4–8

Alzhrani F. E., Saeedi K., Zhao L. (2024) A
process-aware framework to support Process Min-
ing from blockchain applications. In: J. King Saud
Univ. Comput. Inf. Sci. 36(2), p. 101956

Beck P., Bockrath H., Knoche T., Digtiar M.,
Petrich T., Romanchenko D., Hobeck R., Pu-
fahl L., Klinkmüller C., Weber I. (2021) BLF:
A Blockchain Logging Framework for Mining
Blockchain Data. In: Proceedings of the Best
Dissertation Award, Doctoral Consortium, and
Demonstration & Resources Track at BPM 2021
co-located with 19th International Conference
on Business Process Management (BPM 2021),
Rome, Italy, September 6th - to - 10th, 2021.
CEUR Workshop Proceedings Vol. 2973. CEUR-
WS.org, pp. 111–115

Berti A., van der Aalst W. M. P. (2023) OC-PM:
analyzing object-centric event logs and process
models. In: Int. J. Softw. Tools Technol. Transf.
25(1), pp. 1–17

Berti A., Koren I., Adams J. N., Park G., Knopp B.,
Graves N., Rafiei M., Liß L., Unterberg L. T. G.,
Zhang Y., Schwanen C., Pegoraro M., van der
Aalst W. M. P. (2024) OCEL (Object-Centric
Event Log) 2.0 Specification

Buterin V. et al. (2014) A next-generation smart
contract and decentralized application platform.
In: white paper 3(37), pp. 1–37

Corradini F., Marcantoni F., Morichetta A., Polini
A., Re B., Sampaolo M. (2019) Enabling Auditing
of Smart Contracts Through Process Mining. In:
From Software Engineering to Formal Methods
and Tools, and Back - Essays Dedicated to Stefa-
nia Gnesi on the Occasion of Her 65th Birthday.
Lecture Notes in Computer Science Vol. 11865.
Springer, pp. 467–480

Corradini F., Marcelletti A., Morichetta A., Re
B. (2024) A Data Extraction Methodology for
Ethereum Smart Contracts. In: 2024 IEEE Inter-
national Conference on Pervasive Computing and
Communications Workshops and other Affiliated
Events (PerCom Workshops), pp. 524–529

http://dx.doi.org/10.18417/emisa.20.2


International Journal of Conceptual Modeling
Vol. 20, No. 2 (2025). DOI:10.18417/emisa.20.2

20

Fahland D. (2022) Process Mining over Multiple
Behavioral Dimensions with Event Knowledge
Graphs In: Process Mining Handbook Springer
International Publishing, pp. 274–319

Ghahfarokhi A. F., Park G., Berti A., van der Aalst
W. M. P. (2021) OCEL: A Standard for Object-
Centric Event Logs. In: New Trends in Database
and Information Systems - ADBIS 2021 Short
Papers, Doctoral Consortium and Workshops: DO-
ING, SIMPDA, MADEISD, MegaData, CAoNS,
Tartu, Estonia, August 24-26, 2021, Proceedings.
Communications in Computer and Information
Science Vol. 1450. Springer, pp. 169–175

Goossens A., De Smedt J., Vanthienen J.
(2024). In: Business Process Management Forum.
Springer Nature Switzerland, pp. 37–54

Goossens A., De Smedt J., Vanthienen J., van der
Aalst W. M. P. (2023) Enhancing Data-Awareness
of Object-Centric Event Logs. In: Process Mining
Workshops. Springer Nature Switzerland, pp. 18–
30

Hobeck R., Klinkmüller C., Bandara H. M. N. D.,
Weber I., van der Aalst W. (2024) On the Suitabil-
ity of Process Mining for Enhancing Transparency
of Blockchain Applications. In: Business & Infor-
mation Systems Engineering

Hobeck R., Klinkmüller C., Bandara H. M. N. D.,
Weber I., van der Aalst W. M. P. (2021) Process
Mining on Blockchain Data: A Case Study of
Augur. In: Business Process Management - 19th
International Conference, BPM 2021, Rome, Italy,
September 06-10, 2021, Proceedings. Lecture
Notes in Computer Science Vol. 12875. Springer,
pp. 306–323

Hobeck R., Weber I. (2023) Towards Object-
Centric Process Mining for Blockchain Ap-
plications. In: Business Process Management:
Blockchain, Robotic Process Automation and
Educators Forum. Springer Nature Switzerland,
pp. 51–65

Klinkmüller C., Ponomarev A., Tran A. B., We-
ber I., van der Aalst W. M. P. (2019) Mining
Blockchain Processes: Extracting Process Mining
Data from Blockchain Applications. In: Business
Process Management: Blockchain and Central and
Eastern Europe Forum - BPM 2019 Blockchain
and CEE Forum, Vienna, Austria, September 1-6,
2019, Proceedings. Lecture Notes in Business In-
formation Processing Vol. 361. Springer, pp. 71–
86

Li G., de Murillas E. G. L., de Carvalho R. M.,
van der Aalst W. M. P. (2018) Extracting Object-
Centric Event Logs to Support Process Mining
on Databases. In: Information Systems in the
Big Data Era. Springer International Publishing,
pp. 182–199

Moctar M’Baba L., Assy N., Sellami M., Gaaloul
W., Farouk Nanne M. (2023) Process mining
for artifact-centric blockchain applications. In:
Simulation Modelling Practice and Theory 127,
p. 102779

Moctar-M’Baba L., Assy N., Sellami M., Gaaloul
W., Nanne M. F. (2022a) Extracting Artifact-
Centric Event Logs From Blockchain Applica-
tions. In: IEEE International Conference on Ser-
vices Computing, SCC 2022, Barcelona, Spain,
July 10-16, 2022. IEEE, pp. 274–283

Moctar-M’Baba L., Sellami M., Gaaloul W.,
Nanne M. F. (2022b) Blockchain logging for
process mining: a systematic review. In: 55th
Hawaii International Conference on System Sci-
ences, HICSS 2022, Virtual Event / Maui, Hawaii,
USA, January 4-7, 2022. ScholarSpace, pp. 1–10

Morichetta A., Paoloni Y., Re B. (2024) Event
log extraction methodology for ethereum applica-
tions. In: Future Generation Computer Systems,
p. 107566

Mühlberger R., Bachhofner S., Ciccio C. D.,
García-Bañuelos L., López-Pintado O. (2019) Ex-
tracting Event Logs for Process Mining from Data
Stored on the Blockchain. In: Business Process
Management Workshops - BPM 2019 Interna-
tional Workshops, Vienna, Austria, September

http://dx.doi.org/10.18417/emisa.20.2


Enterprise Modelling and Information Systems Architectures
Vol. 20, No. 2 (2025). DOI:10.18417/emisa.20.2
Object-Centric Process Mining for Blockchain Applications 21

1-6, 2019, Revised Selected Papers. Lecture Notes
in Business Information Processing Vol. 362.
Springer, pp. 690–703

Nakamoto S. (2008) Bitcoin: A peer-to-peer elec-
tronic cash system. In: Satoshi Nakamoto

Peterson J., Krug J., Zoltu M., Williams A. K.,
Alexander S. (July 2018) Augur: A Decentralized
Oracle and Prediction Market Platform.. Forecast
Foundation. Last Access: accessed 2021-01-05

Suriadi S., Andrews R., ter Hofstede A. H. M.,
Wynn M. T. (2017) Event log imperfection patterns
for process mining: Towards a systematic approach
to cleaning event logs. In: Inf. Syst. 64, pp. 132–
150

Wood G. (2014) Ethereum: A secure decentralised
generalised transaction ledger. In: Ethereum
project yellow paper 151(2014), pp. 1–32

Xu X., Pautasso C., Zhu L., Lu Q., Weber I. (2018)
A Pattern Collection for Blockchain-based Appli-
cations. In: Proceedings of the 23rd European
Conference on Pattern Languages of Programs,
EuroPLoP 2018, Irsee, Germany, July 04-08, 2018.
ACM, 3:1–3:20

Xu X., Weber I., Staples M. (2019) Architecture
for Blockchain Applications. Springer

http://dx.doi.org/10.18417/emisa.20.2

