
Enterprise Modelling and Information Systems Architectures
Vol. 2, No. 1, May 2007
Using a Specification Data Model for Specification of Black-Box Software Components 3

Jörg Ackermann

Using a Specification Data Model for
Specification of Black-Box Software
Components

Compositional plug-and-play-like reuse of black-box components requires sophisticated techniques to specify
components. In the past little attention has been paid to the use of a conceptual data model to guide behavioral
specification of components. In this paper we show how specifications are limited if no such data model is used
and overcome these limitations by introducing the concept of a component specification data model. Additionally
we propose a solution on how to obtain interface specification data models that are integrated and consistent with
the component specification data model.

1 Motivation

Combining off-the-shelf software components of-
fered by different vendors to customer-individual
business application systems is a goal that is fol-
lowed-up for a long time [McIl68]. Applying this
approach promises (amongst others) a shorter time
to market, increased adaptability and reduced de-
velopment costs ([Brow00], [SzGM02]). Composing
software components developed independently from
each other to business application systems requires
that the components are compatible or that com-
patibility can be reached e.g. by adaptation. (If
compatibility is not attainable then different compo-
nents must be selected.) This requires the compati-
bility of the core data models of all employed
components. Compatibility would be increased and
necessary adaptation reduced if the components
were based on a common data or object model.

To be reused successfully a component must provide
all required information in form of a component
specification. A precise and reliable specification of
software components supports sound selection and
trust in its correct functioning [GeGh06]. Moreover,
component specifications are a prerequisite for the
success of component markets [HaTu02] as well as
for a composition methodology and tool support
[Over04]. For these reasons the specification of
software components is a critical success factor for
component-based development of information sys-
tems.

Many existing specification approaches use pre- and
postconditions to specify behavioral aspects of
black-box components (see Sect. 2). Here the ques-
tion arises if the component specification should be
equipped with some kind of specification data model
or if the behavioral specification should be based
alone on the interface specification. So far the use of
such a model is not wide-spread: Most publications
about black-box component specification do not
discuss this issue and implicitly decide not to use a
model – cf. e.g. [BJPW99], [Turo02] and [Over04].
Only some of our own publications ([AcTu03],
[Acke05], [AcTu06]) employ such a model but do
not sufficiently explain and justify its application.
Moreover, the justification of the approach was in
the past frequently questioned – the claim being
that such a model does not adhere to black-box
principles. We do not agree with this argument and
claim instead that specification data models promote
a simpler and more expressive behavioral specifica-
tion of components.

The contribution of this paper is the introduction of
specification data models in black-box component
specification: After a discussion on the relevance of
contracts for black-box components (Sect. 3) we
show how specifications are limited if no data model
is used, develop the concept of component specifica-
tion data models and discuss the advantages of its
application (Sect. 4). Additionally we propose a
solution how to obtain interface specification data
models that are integrated and consistent with the

 Enterprise Modelling and Information Systems Architectures

 Vol. 2, No. 1, May 2007
4 Jörg Ackermann

component specification data model (Sect. 5). In the
related work section we discuss in detail how other
specification approaches deal with the question of
data models and what limitations they have(Sect.6).
The paper concludes with a summary (Sect. 7).

2 Specification of Black-Box
Software Components

The comprehensive and standardized specification of
black-box software components is a critical success
factor for building component-based information
systems. With specification of a component we de-
note the complete, unequivocal and precise descrip-
tion of its external view – that is which services the
component provides under which conditions
[Turo02]. Currently there exists no generally ac-
cepted and supported specification standard cover-
ing all aspects relevant to component-based
software engineering (CBSE). Various authors ad-
dressed specifications for specific tasks of the devel-
opment process as e.g. design and implementation
([DSWi98], [ChDa01]), component adaptation
[YeSt97] or component selection [HeLi01]. Ap-
proaches towards a comprehensive specification of
black-box components are few and include the four-
layer model of [BJPW99], the memorandum for
standardized specification of business components
[Turo02] and the standardized framework for speci-
fication of software components (UnSCom)
[Over04].

As a specification must comprise different aspects it
is frequently divided into different specification lev-
els. Objects to be specified include business terms,
business tasks, interface signatures, behavioral and
coordination constraints, non-functional attributes as
well as general and commercial information. This
paper focuses on the technical levels which are
therefore discussed now in a bit more detail:
[BJPW99], [Turo02] and [Over04] largely agree on
its specification extent and use levels for signatures,
behavior and coordination. The signature (or syntac-
tic) level consists of signature lists which include
definitions for types, constants, operations, excep-
tions and events. Frequently used notations on this
level are OMG IDL [OMG02] and UML interface dia-

grams [OMG05c]. Agreements at behavioral level
describe how the component acts in general and in
borderline cases. This is achieved by defining con-
straints (pre- and postconditions) based on the idea
of designing applications by contract [Meye92]. Most
current specification approaches use the UML Object
Constraint Language (OCL) [OMG05a] to specify
behavioral aspects. Agreements at coordination level
regulate the sequence in which component services
may be invoked. Possible notations for this level
include finite state machines [OMG05c], temporal
operators [CoTu01] or Petri-Nets [Petr62].

Interface and behavioral specifications are now illus-
trated by a simplified exemplary component Sale-
sOrderProcessing which will be used as example
throughout the paper. The business task of the com-
ponent is to manage sales orders and customer
data. The component provides two interfaces ISale-
sOrder and ICustomer and has a required interface
IStockBooking. Using a UML component diagram
[OMG05c] an overview of the component and its
interfaces is given in Figure 1.

Using again UML the component interfaces are speci-
fied in detail in Figure 2. The interface ISalesOrder
features operations to create, check and cancel sales
orders. Similarly the interface ICustomer enables to
create, change and retrieve customer data. In order
to decide if a sales order can be accepted, the com-
ponent needs product stock information from an-
other component which is accessed via the required
interface IStockBooking. All interface specifications
refer to data types which are also part of Figure 2.

In addition to the interface signatures, a component
specification must describe the components behav-
ior. This is achieved by defining constraints (pre-
and postconditions) using UML OCL. An exemplary
constraint is depicted in Figure 3: First the context
of the constraint is defined – in our case the con-
straint is valid for the interface operation ISales-
Order.check. The keyword post indicates that the
constraint is a postcondition. The constraint expres-
sion guarantees that after performing the operation
the status of the sales order is either accepted or
rejected.

Figure 1: Component SalesOrderProcessing

«component»
SalesOrderProcessing

IStockBooking

ISalesOrder

ICustomer

Enterprise Modelling and Information Systems Architectures
Vol. 2, No. 1, May 2007
Using a Specification Data Model for Specification of Black-Box Software Components 5

3 Black-Box Reuse and Contracts

Reusing a software component black-box means that
information about the component is only available
from its interfaces and its specification. In difference
to that are situations where the component imple-
mentation can be studied (glass-box) or even ma-
nipulated (white-box) [SzGM02]. In the latter cases
it frequently occurs that component users rely on
internal implementation details – if the component
provider changes such details the client will break.
Therefore most authors recommend reusing soft-
ware components in a black-box fashion ([McIl68],
[Bosc97], [DSWi98], [SzGM02]).

The component specification, which serves as a
contract between component provider and compo-
nent user, is aimed at providing all necessary infor-
mation about a black-box component. Such a
contract specifies the components functionality and
must include all information necessary for using the
component correctly – any information not included
is not guaranteed and considered an internal imple-
mentation detail. A component user is obliged to rely
on the contract only and must not use information
outside of it.

In return, the component provider can only make
changes that do not invalidate the contract. In this
way the component specification regulates the rela-
tionship between provider and user of a component
and protects both sides from undesired expectations.

Here the issue arises, if information about the com-
ponents data structure shall be part of the contract
or not. Such information is often misused in white-
box reuse – resulting in sacrificing the benefits of
encapsulation. This has motivated the frequent con-
clusion not to reveal any information about the data
structure. However, in our opinion this is not a coer-
cive conclusion. Instead one must distinguish be-
tween information necessary for a component user
and information not intended for a user. We will
elaborate on this by discussing some examples that
are based on the exemplary component introduced
in Sect. 2:

 When creating a new sales order via opera-
tion ISalesOrder.create, it is necessary to
provide a customer id. The customer id for
this sales order can be retrieved at a later
time by using operation ISalesOr-
der.getData. An obvious and legitimate ex-

«component»
SalesOrderProcessing

create (in orderHeader: OrderHeaderData, in orderItem: OrderItemData [1..*],
out orderId: String, out: orderStatus: OrderStatus)

check (in orderId: String, out: orderStatus: OrderStatus)
cancel (in orderId: String, out: orderStatus: OrderStatus)

«interface»
ISalesOrder

checkStock (in quantity: Integer, in productId: String): Boolean
bookStock (in quantity: Integer, in productId: String, out bookingId: String):

Boolean
cancelStockBooking (in bookingId: String): Boolean

«interface»
IStockBooking

create (in customerData: CustomerData, out:
customerId: String)

change (in customerId:String, in
newCustomerData: CustomerData)

getData (in customerId: String, out: customerData:
CustomerData)

«interface»
ICustomer

orderDate: String
orderStatus: OrderStatus
customerId: String

«data type»
OrderHeaderData

itemId: String
itemQuantity: Integer
productId: String

«data type»
OrderItemData

name: String
address: String

«data type»
CustomerData

new
rejected
accepted
canceled

«enumeration»
OrderStatus

Figure 2: Interface specification for component SalesOrderProcessing

Figure 3: Postcondition for operation ISalesOrder.check

context ISalesOrder::check(orderId: string, orderStatus: OrderStatus)
 post: orderStatus = OrderStatus::accepted or orderStatus = OrderStatus::rejected

 Enterprise Modelling and Information Systems Architectures

 Vol. 2, No. 1, May 2007
6 Jörg Ackermann

pectation of a component user would be
that both customer ids coincide (if no
changes were made). Therefore this corre-
spondence should be part of the contract.

 Also relevant for a component user is the
multiplicity of the relationship between cus-
tomers and sales orders. Suppose that the
component allows each customer to have at
most 10 sales orders (for whatever reason).
If a client is not aware of this restriction he
will break at the eleventh sales order of a
customer.

 The component might assign sales order ids
for newly created sales orders in a chrono-
logical way. This is a piece of information
which is not necessary for a component
user and can therefore be considered an
implementation detail. If a client neverthe-
less relies on it (for instance by ordering
sales orders based on id) and the compo-
nent provider changes the algorithm (e.g.
to number ranges based on order type) the
client will break by its own fault. Note that
this example shows the following: it is pos-
sible to obtain implementation details by
mere observation without insight into the
implementation!

These examples show that the correct reuse of a
software component requires the contract to contain
the right amount of information. If the contract
includes too little information (e.g. information of
first example is missing), a component user might
either take the contract as final (and concludes that
the component is useless) or is forced to make as-
sumptions outside the contract. In the latter case it
is very likely that the user makes additional assump-
tions that are not justified. If the contract includes
too much information (e.g. information of third ex-
ample is provided) the component provider unneces-
sarily restricts his ability to maintain and enhance
the component.

To summarize, the component specification forms a
contract between provider and user of a component
and must provide all contract relevant information. A
piece of information is called contract relevant, if it
is necessary for a correct use of the component and
if it is (as a consequence) explicitly guaranteed by
the producer. Often it is necessary to include some
information about the components data structure
into the contract – this should be an abstraction of
the internal data structure which includes only these
properties that are relevant for the contract. Provid-
ing information in this way supports black-box reuse
and does not contradict it.

4 Component Specification Data
Model

In this section we demonstrate why behavioral
specifications of black-box components should be
equipped with a conceptual data model. We start
with discussing the limitations in the current state of
behavioral specifications using OCL. After that we
introduce the concept of component specification
data models and show how they make behavioral
specifications simpler and more expressive.

4.1 Current limitations for behavioral
specification of black-box compo-
nents

Figure 3 showed an exemplary postcondition for the
operation ISalesOrder.check. Besides that the opera-
tion and the interface might have the following addi-
tional constraints:

 A: Existence of a specific sales order in-
stance required: ISalesOrder.check requires
that the sales order with id orderId exists
within the component. Typically this means
the sales order was created earlier by op-
eration ISalesOrder.create – alternatively
the sales order could have been transferred
to the component by initial data transfer.

 B: Dependency on status of sales order:
The operation ISalesOrder.check can only
be performed if the sales order (with id or-
derId) is in status new.

 C: Invariant on sales order valid for all op-
erations: The order id plays the role of a
semantic key for a sales order – that is all
sales orders have a unique order id. This
constraint is a requirement for operation
ISalesOrder.check - without it the sales or-
der to be checked might be ambiguous.

These constraints, however, can not be expressed
adequately with OCL if only the interface specifica-
tion (as shown in Figure 2) is available. To under-
stand this we need to look closer at the component.
Business components often manage business data
and store them persistently. Our component Sale-
sOrderProcessing manages for instance sales orders
- it allows creating a sales order which is stored
within the component and allows checking or cancel-
ing this sales order at a later time. (The collection of
data stored by a component at a given time is some-
times referred to as the internal state of the compo-
nent [ChDa01].) The constraints A - C express
conditions about such business data – constraint A
for example demands that the sales order with id
orderId is known to the component. The business
data managed by the component is, however, not

Enterprise Modelling and Information Systems Architectures
Vol. 2, No. 1, May 2007
Using a Specification Data Model for Specification of Black-Box Software Components 7

represented in the interface specification in Figure 2.
Note that OCL constraints always refer to a UML
model and can only use elements of this model.
Therefore OCL constraints based on Figure 2 can
only use elements of the interface definitions (as
operations and parameters) and can not refer to the
business data stored by the component.

To summarize: Some behavioral constraints can not
be expressed using interface specifications alone
because interface specifications contain no represen-
tation of the business data managed by the compo-
nent. As a consequence the behavior of business
components can not be specified completely without
additional means.

4.2 Solution: defining a component
specification data model

To overcome these limitations one must include the
business data into the component specification. For
this purpose we introduce the concept of a compo-
nent specification data model – a specific model,
which is part of a component specification and which
aim is to represent the business data managed by
the component on a logical level. Such a model must
only contain contract relevant information and does
not need to correspond to the actual implementa-
tion. The model is an abstraction of the internal data
structure which omits internal details and structures
the data as it is seen from the outside.

A component specification data model is realized in
the following way:

 In UML 2.0 the model element component
can have an internal view. We use this in-
ternal view to represent the business data.

 Each contract relevant business entity type
is represented by a type and stands for a
number of business entities. The UML
metamodel element type is a class with the

standard stereotype «type» and is intro-
duced for such purposes: The stereotype
«type» is used to specify “a domain of ob-
jects … without defining the physical im-
plementation of those objects.” [OMG05c].

 Contract relevant properties of a business
entity are described by attributes of a type
and relationships between business entities
are represented by associations.

 Component services are only provided by
the component interfaces which are de-
scribed by the interface specification. The
assignment of operations to the types in the
specification data model is therefore super-
fluous and will potentially reveal internal
implementation details. (Note that in gen-
eral UML types are allowed to have opera-
tions.)

 How business data is exactly represented as
types, attributes and associations is a mod-
eling decision of the person who specifies
the component. Important is to include only
information that shall become part of the
components contract. The structure of the
data model should be oriented towards the
data structure in the component interfaces.
In this way the specification data model will
have a structure that is closer to the struc-
ture of the external visible data (instead of
the internal realization), will be easier un-
derstandable from the outside and will
make the resulting constraints simpler and
more intuitive.

 As the specification data model is intended
to enhance OCL expressiveness and to sim-
plify OCL constraints, it is possible to in-
clude additional or redundant features into
the model if this yields easier constraint
definitions. For example: If the model con-

Figure 4: Component specification data model for component SalesOrderProcessing

«component»
SalesOrderProcessing

*1

id: String
dateOfOrder: String
status: OrderStatus

«type»
SalesOrder

id: String
name: String
address: String

«type»
Customer

id: String
quantity: Integer
productId: String
bookingId: String

«type»
SalesOrderItem1..*1

IStockBookingISalesOrderICustomer

 Enterprise Modelling and Information Systems Architectures

 Vol. 2, No. 1, May 2007
8 Jörg Ackermann

tains a complex navigation path from type
A to type B and this navigation is needed in
several constraints, one can define a new
attribute for type A representing the navi-
gation result. Within constraints one can
now extract this feature directly from type
A making the constraints much easier to
write and to understand. This is in accor-
dance with the style guidelines recom-
mended in the standard book on OCL
[WaKl99].

A component specification data model for the exem-
plary component SalesOrderProcessing is depicted in
Figure 4. The model contains the types Customer,
SalesOrder and SalesOrderItem and thus shows that
the component manages an arbitrary number of
sales orders, sales order items and customers. The
attributes of the type Customer expose that the
component stores information about customer id,
name and address. Similarly the attributes of the
type SalesOrder show that the component knows for
each sales order its id, date of order and status. The
association between the types Customer and Sale-
sOrder reveals that each sales order is connected to
exactly one customer and that each customer can
request many sales orders. Beside the association
one could enhance the type SalesOrder by an addi-
tional derived attribute /customerId representing the
id of the associated customer. We forgo this exten-
sion, however, as the simplification would only be
minimal in this case.

Using the component specification data model from
Figure 4 we can now provide a precise behavioral
specification of the component. First we specify in
Figure 5 an invariant. This invariant is valid for the
type SalesOrder and thus independent from specific
operations. It guarantees that different sales orders
always differ in the value of their id – therefore the
attribute id is a semantic key for sales orders (com-
pare constraint C above).

In Figure 6 we show the behavioral specification of
the interface operation ISalesOrder.check. This op-
eration performs the checking of a specific sales
order. The sales order in question is identified by the
input parameter orderId and the result is returned in
the output parameter orderStatus. The first precon-
dition demands that the operation can only be per-
formed for existing sales orders – that is there must
exist a sales order instance which id equals the
value of orderId (compare constraint A above). Note
that the invariant in Figure 5 guarantees that there

is at most one sales order fulfilling the condition. The
second precondition demands that the sales order
must have status new (compare constraint B stated
earlier).

The postconditions assure that after the operation
call the manipulated sales order instance is either in
status accepted or in status rejected and its status is
returned in the parameter orderStatus. Note that
these postconditions are stronger than the constraint
formulated in Figure 3: Although one might rea-
sonably expect from Figure 3 that the status re-
turned in the parameter orderStatus corresponds to
the status of the sales order instance, this is not
explicitly specified.

4.3 Discussion of the solution

This section discusses the advantages of the solution
presented in Sect. 4.2 and explains why it does not
contradict the black-box paradigm. Additionally we
discuss alternative approaches (finite state ma-
chines, temporal operators) and explain why they
can not solve the problem at hand.

Using a component specification data model allows
to represent the business data managed by a com-
ponent directly in the specification. This provides the
following advantages: Firstly, one can express in-
variants that constrain the business data managed
by the component which avoids repeating such con-
straints in pre- and postconditions of several opera-
tions. Secondly, it becomes possible to request the
existence of business entities that are stored in the
component. Thirdly, one can express pre- and post-
conditions that concern data which is not part of an
operation interface (as parameters in configuration
files). To summarize, only the use of a component
specification data model allows specifying the com-
ponents behavior completely because it enables to
express the relationship between operations and
business data. As a side effect using a data model
also simplifies behavioral specifications.

A component specification data model is a means to
include all relevant information into the component
contract and shall contain only contract relevant
information. In this way the specification data model
supports black-box reuse and does not contradict it.

Alternatively to our solution some authors (e.g.
[Turo02]) employ coordination level techniques to
describe changes in business data. To express that a
sales order must be in status new one can state
(using for instance temporal operators [CoTu01])

context SalesOrder
 inv: SalesOrder.allInstances()->forAll(i1, i2 | i1 <> i2 implies i1.id <> i2.id)

Figure 5: Invariant for type SalesOrder

Enterprise Modelling and Information Systems Architectures
Vol. 2, No. 1, May 2007
Using a Specification Data Model for Specification of Black-Box Software Components 9

that the sales order must have been created earlier
(by operation create) and that it must not have been
changed afterwards by operations check or cancel.
The disadvantages of this approach are: Firstly, it
requires that all data needed for a constraint is
available in the operation signature and that all
changes to business data are always done via the
interface. These assumptions are not always fulfilled
[Acke01] - business data might for example have
come via initial data transfer to the component.
Secondly, the resulting constraints are complicated
and not easily understandable. Therefore the use of
temporal operators does not solve the problem iden-
tified earlier.

One might think that finite state machines [OMG05c]
are an alternative to a specification data model.
Finite state machines are used by some authors to
express constraints on coordination level [Over04].
For our example in Figure 2 one could e.g. define a
finite state machine for the attribute status of Sale-
sOrder (with the states new, rejected, accepted and
canceled) and specify that operation ISalesOr-
der.check can only be executed in state new. Em-
ploying finite state machines is a useful addition in
component specifications but can not replace a
specification data model: Listing alone all possible
states for a string attribute is virtually impossible.
Moreover, a data model in practice might have many
attributes and each of them many possible in-
stances. For a state machine approach one could
either define one state machine for the component
using multi-dimension states (one dimension for
each attribute) or define one state-machine for each
attribute and specify numerous constraints between
these machines. Both approaches are not feasible
and there are no clear advantages compared to a
specification data model.

5 Interface Specification Data
Models

In the last section we introduced the idea of a com-
ponent specification data model which represents
the business data managed by the component. Such
a model contains all the contract relevant data ma-
nipulated by all interfaces of the component. How-
ever, for component specifications it might not be
enough to have a conceptual data model only on the
component level. A component consumer might also

be interested in the data manipulated by one inter-
face, for instance if he does not plan to use all inter-
faces.

[ChDa01] introduce Interface Information Mod-
els (IIMs) that represent the state of the component
on which an interface depends. In their approach
they define information models only on interface
level (separately for each interface) and thus do not
have a model valid for the whole component. The
disadvantages of this solution are the missing “big
picture” and the necessity to finally tie the loose
ends together. For the latter they are forced to in-
troduce additional inter-interface constraints relating
the separate information models.

We have argued that component specifications need
conceptual data models both on component and
interface level and that those models should be
closely related. In this section we develop a solution
to this requirement.

A conceptual data model for an interface shall repre-
sent all business data of the component that is ma-
nipulated by that interface. We can observe that one
interface manipulates possibly less, but never more
business data than all interfaces together. Moreover,
the structure of the business data manipulated by
the interface can not be different from the structure
of all business data. Therefore it is possible to define
the conceptual data models on interface level as
projections of the model on component level. Follow-
ing this idea we define an interface specification data
model as subset of the component specification data
model containing all business data that is manipu-
lated by the interface. Note that we have chosen the
name interface specification data model instead of
interface information model [ChDa01] for two rea-
sons: First, the terms specification and data stress
that the issue is a data model only for specification
purposes and are therefore better suited for black-
box component specification than the rather general
term information. Second, because of their close
relationship we want to name the models on compo-
nent and interface level similarly, but the term com-
ponent information model is already used in other
contexts [Brow98].

To define the specification data model for an inter-
face, it is necessary to specify which elements
(types, attributes, associations) of the component

context ISalesOrder::check(orderId: string, orderStatus: OrderStatus)
 pre: SalesOrder.allInstances()->exists(id = orderId)
 pre: SalesOrder.allInstances()->select(id = orderId).status = OrderStatus::new
 post: let ord1: SalesOrder = SalesOrder.allInstances()->select(id = orderId) in
 ord1.status = OrderStatus::accepted or ord1.status = OrderStatus::rejected
 post: SalesOrder.allInstances()->select(id = orderId).status = orderStatus

Figure 6: Constraints for operation ISalesOrder.check

 Enterprise Modelling and Information Systems Architectures

 Vol. 2, No. 1, May 2007
10 Jörg Ackermann

specification data model are accessed by the inter-
face. In the UML model this is technically realized by
the “Uses” construct: For each (component specifi-
cation data) model element used by an interface a
“uses” relation is defined from the interface to the
element. In a tool used in praxis it will be better to
present this relation on some detail screen for the
elements – to show each relation as line in the
model would overcrowd the model and substantially
lower its clarity.

Figure 7 shows the component specification data
model from Figure 4 enhanced by the information
which interface uses which model elements. For
reasons of clarity we use a workaround to display
the uses-relations in the diagram: Each interface
was assigned a unique number that is displayed as
tagged value. As an example consider interface
ISalesOrder that carries the tagged value {2}. Addi-
tionally each element of the specification data model
shows the numbers of those interfaces it is related
to. The type Customer for instance carries the
tagged value {1,2} and is therefore used by the
interfaces ICustomer ({1}) and ISalesOrder ({2}).

Utilizing the component specification data model and
the defined uses-relations it is simple to derive an
interface specification data model. Figure 8 shows
the data model for the interface ICustomer. The data
model contains only the type Customer and all its
attributes.

The interface specification data model for the inter-
face ISalesOrder is displayed in Figure 9. The inter-
face manipulates sales orders and their items and
therefore its data model contains the types SalesOr-
der and SalesOrderItem, all their attributes and the
association between them. When creating a new
sales order a relation to the requesting customer is
created. Therefore the type Customer, its attribute
id and its association to SalesOrder are also part of

the Figure 9 – the other attributes of Customer,
however, are not accessed.

For reasons of completeness Figure 9 also contains
the required interface IStockBooking because it is a
requirement for the correct functioning of the inter-
face ISalesOrder. (Note that in difference ICustomer
does not need IStockBooking.) The relationship to
IStockBooking is, however, not kept by the specifi-
cation data model and therefore here of no further
interest.

To ensure that the resulting interface specification
data models are syntactically correct, it is necessary
to impose certain constraints. For instance an attrib-
ute can only be part of an interface specification
data model if its owning type is also included and an
association requires both related types to be pre-
sent. Those constraints are formulated as OCL con-
straints on the level of the UML metamodel (level M2
in the four-layer metamodel hierarchy of UML
[OMG05b]) and must be fulfilled when constructing
an interface specification data model. In practice
those constraints will be checked by a specification
tool.

6 Related Work

Although component specifications have already
been addressed by various authors, there are only
few approaches ([BJPW99], [Turo02], [Over04])
towards a comprehensive specification of black-box
components (see Sect. 2).

All of these comprehensive approaches identify the
need for behavioral specifications and propose to use
pre- and postconditions based on UML OCL
[OMG05a]. All of them neither use an (explicit)
specification data model nor discuss the issue of
employing one nor give any detailed account how
pre- and postconditions shall be formed. To under-

Figure 7: Component specification data model for component SalesOrderProcessing including
dependency on interfaces

«component»
SalesOrderProcessing

 {2}
*1

id: String {2,3}
dateOfOrder: String {2}
status: OrderStatus {2}

«type»
SalesOrder {2,3}

id: String {1,2}
name: String {1}
address: String {1}

«type»
Customer {1,2}

id: String {2,3}
quantity: Integer {2,3}
productId: String {2,3}
bookingId: String {2,3}

«type»
SalesOrderItem {2,3}

 {2,3}
1..*1

ICustomer {1} ISalesOrder {2} IStockBooking {3}

Enterprise Modelling and Information Systems Architectures
Vol. 2, No. 1, May 2007
Using a Specification Data Model for Specification of Black-Box Software Components 11

stand their method of behavioral specification we
can only resort to analyzing the given examples.
[Turo02] and [Over04] refer in their examples to the
business data of the component (for instance a pre-
condition demands that a certain account exists)
using interface specification elements alone. While
the intention is right, its realization via interface
constructs is technically not correct. Resolving the
problem requires a specification data model. The
examples in [BJPW99] use business data of the
component in a technically correct way. One must
note, however, that the examples in the given form
only work under very strong prerequisites: all data
needed in constraints is available via query opera-
tions, the component manages only one business
entity type and for each business entity instance a
new component instance is invoked. As these condi-
tions can not be assumed in all situations the behav-
ioral specification method of [BJPW99] does not
present a general solution. We only know about our
own publications ([AcTu03], [Acke05], [AcTu06])
that employ a specification data model for black-box
specification. In those works such a model is em-

ployed, but its application is neither justified nor
sufficiently explained.

Closest to our approach is the work of
[ChDa01] - they explicitly discuss the need to repre-
sent business data of a component in a model and
introduce the idea of interface information models.
Our work presents an extension of their concept in
two ways: Firstly, by introducing information models
on component level from which models on interface
level can be deduced we overcome their shortcom-
ings of a missing “big picture” and of having sepa-
rate models that need to be integrated by additional
inter-interface constraints. Secondly, we extended
their idea to black-box component specification and
have argued that this approach is indeed justified.
Regarding the black-box issue note the following:
[ChDa01] presents a component-based development
process. Due to their top-down approach they focus
on component identification, design and implemen-
tation but not on component reuse and discovery.
Consequently they use component specifications to
denote requirements and to guide component im-

«component»
SalesOrderProcessing

id: String
name: String
address: String

«type»
Customer

ICustomer

Figure 8: Interface specification data model for interface ICustomer

Figure 9: Interface specification data model for interface ISalesOrder

«component»
SalesOrderProcessing

*1

id: String
dateOfOrder: String
status: OrderStatus

«type»
SalesOrder

id: String

«type»
Customer

id: String
quantity: Integer
productId: String
bookingId: String

«type»
SalesOrderItem1..*1

IStockBookingISalesOrder

 Enterprise Modelling and Information Systems Architectures

 Vol. 2, No. 1, May 2007
12 Jörg Ackermann

plementation and do not consider explicitly compo-
nent discovery. Their process does not yield a speci-
fication document containing all externally visible
component properties (and only these). Therefore
this specification approach is not sufficient for com-
ponent discovery by third parties and can not be
considered as a black-box component specification
approach.

An approach similar to [ChDa01] is presented in
[DSWi98] which uses so called type models to spec-
ify business data. The difference to our approach is
their focus on specification as prerequisite to imple-
mentation (again no black-box specification ap-
proach) and on the use of object-oriented
implementations across component boundaries. Note
that the latter might not always be the case for
reusable black-box components [SzGM02].

[Meye92] introduced “design by contract” for object-
oriented classes by specifying constraints (invari-
ants, pre- and postconditions) which the attributes
and operations of a class must adhere to. When
specifying behavioral aspects of black-box software
components the ideas of Meyer cannot be directly
employed – doing so would reveal internal details of
the implementation. His ideas were instead trans-
formed and applied to the components interfaces
which are specified by pre- and postconditions. In
this way, however, only half of the concepts from
“design by contract” are used for components: in-
variants as well as constraints regarding the busi-
ness data of a component cannot be expressed (for
details compare Sect. 4.1). The introduction of a
specification data model closes this gap and in this
way completes the transformation of “design by
contract” principles to component specifications.

7 Summary

This paper discussed in detail the use of conceptual
data models in black-box component specification:
We showed why current specification approaches are
inadequate and introduced the concept of compo-
nent specification data models to overcome these
limitations. Note that component specification data
models shall contain contract relevant data only and
do not contain implementation details – this is in
accordance with the black-box component paradigm.
Furthermore we have argued that component speci-
fications need conceptual data models both on com-
ponent and interface level and that those models
should be closely related. To fulfill this requirement
we introduced interface specification data models
that are derived from the component specification
data model.

References

 [Acke01] Ackermann, J.: Fallstudie zur Spezifikation von
Fachkomponenten. In: Turowski, K. (ed.): 2. Workshop
Modellierung und Spezifikation von Fachkomponenten.
Bamberg 2001, pp. 1-66. (In German)

[Acke05] Ackermann, J.: Frequently Occurring Patterns in
Behavioral Specification of Software Components. In:
Turowski, K.; Zaha, J.M. (eds.): Component-Oriented
Enterprise Applications - Proceedings of the Conference
on Component-Oriented Enterprise Applications (COEA
2005). LNI P-70. Erfurt 2005, pp. 41-56.

[AcTu03] Ackermann, J.; Turowski, K.: Specification of
Customizable Business Components. In: Chroust, G.;
Hofer, S. (eds.): Euromicro Conference 2003. Belek-
Antalya 2003, pp. 391-394.

[AcTu06] Ackermann, J., Turowski, K.: A Library of OCL
Specification Patterns for Behavioral Specification of
Software Components. In: Dubois, E.; Pohl, K. (eds.):
CAiSE 2006. LNCS 4001. Springer-Verlag, Berlin Hei-
delberg 2006, pp. 255-269.

[BJPW99] Beugnard, A.; Jézéquel, J.-M.; Plouzeau, N.;
Watkins, D.: Making Components Contract Aware. In:
IEEE Computer 32 (1999) 7, pp. 38-44.

[Bosc97] Bosch, J.: Adapting Object-Oriented Components.
In: Proceedings of the 2nd International Workshop on
Component-Oriented Programming (WCOP '97). Turku
1997, pp. 13-21.

[Brow00] Brown, A.W.: Large-Scale Component-Based
Development. Prentice Hall, Upper Saddle River 2000.

[Brow98] Brown, A.W.: From Component Infrastructure to
Component-Based Development. In: Position Paper of
the 1998 International Workshop on Component-Based
Software Engineering. Tokyo 1998.

[ChDa01] Cheesman, J.; Daniels, J.: UML Components.
Addison-Wesley, Boston 2001.

[CoTu01] Conrad, S.; Turowski, K.: Temporal OCL: Meeting
Specification Demands for Business Components. In:
Siau, K.; Halpin, T. (eds.): Unified Modeling Language:
Systems Analysis, Design and Development Issues.
Idea Group, Hershey 2001, pp. 151-165.

[DSWi98] D'Souza, D.F.; Wills, A.C.: Objects, Components,
and Frameworks with UML: The Catalysis Approach.
Addison-Wesley, Reading 1998.

[GeGh06] Geisterfer, C. J. M.; Ghosh, S.: Software Compo-
nent Specification: A Study in Perspective of Compo-
nent Selection and Reuse. In: Proceedings of the 5th
International Conference on COTS Based Software Sys-
tems (ICCBSS). Orlando (USA) 2006, pp.100-108.

[HaTu02] Hahn, H.; Turowski, K.: General Existence of
Component Markets. In: Trappl, R. (ed.): Sixteenth
European Meeting on Cybernetics and Systems Re-
search (EMCSR). Vol. 1, Vienna 2002, pp. 105-110.

[HeLi01] Hemer, D.; Lindsay, P.: Specification-based re-
trieval strategies for module reuse. In: Grant, D.; Ster-
ling, L. (eds.): Proceedings 2001 Australian Software
Engineering Conference. IEEE Computer Society. Can-
berra 2001, pp. 235-243.

Enterprise Modelling and Information Systems Architectures
Vol. 2, No. 1, May 2007
Using a Specification Data Model for Specification of Black-Box Software Components 13

[McIl68] McIlroy, M. D.: Mass Produced Software Compo-
nents. In: Naur, P.; Randell, B. (eds.): Software Engi-
neering: Report on a Conference by the NATO Science
Committee. Brussels 1968, pp. 138-150.

[Meye92] Meyer, B.: Applying "Design by Contract". In:
IEEE Computer 10 (1992), pp. 40-51.

[OMG02] OMG (ed.): CORBA Components. OMG Specifica-
tion, Version 3.0 02-06-65. Framingham 2002.

[OMG05a] OMG (ed.): Object Constraint Language. Version
2.0, formal/06-05-01.
http://www.omg.org/technology/documents,
(2007-02-02).

[OMG05b] OMG (ed.): Unified Modeling Language: Infra-
structure. Version 2.0, formal/05-07-05.
http://www.omg.org/technology/documents,
(2007-02-02).

[OMG05c] OMG (ed.): Unified Modeling Language: Super-
structure. Version 2.0, formal/05-07-04.
http://www.omg.org/technology/documents,
(2007-02-02).

[Over04] Overhage, S.: UnSCom: A Standardized Frame-
work for the Specification of Software Components. In:
Weske, M.; Liggesmeyer, P. (ed.): Object-Oriented and
Internet-Based Technologies, Proceedings of the 5th
Annual International Conference on Object-Oriented
and Internet-Based Technologies, Concepts, and Appli-
cations for a Networked World (NOD 2004). Springer
LNCS 3263. Erfurt 2004, pp. 169-184.

[Petr62] Petri, C. A.: Fundamentals of a Theory of Asyn-
chronous Information Flow. In: Information Processing
62. IFIP 1962, pp. 386–391.

[SzGM02] Szyperski, C.; Gruntz, D.; Murer, S.: Component
Software: Beyond Object-Oriented Programming.
2. ed. Addison-Wesley, Harlow 2002.

[Turo02] Turowski, K. (ed.): Standardized Specification of
Business Components: Memorandum of the working
group 5.10.3 Component Oriented Business Application
System. Augsburg 2002.
http://www.fachkomponenten.de, (2007-02-02)

[WaKl99] Warmer, J.; Klepper, A.: The Object Constraint
Language: Precise Modeling with UML. Addison-Wesley,
Reading 1999.

[YeSt97] Yellin, D.; Strom, R.: Protocol Specifications and
Component Adaptors. In: ACM Transactions on Pro-
gramming Languages and Systems 19 (1997), pp.
292–333.

Jörg Ackermann

Chair of Business Informatics and Systems Engineering
University of Augsburg
Universitätsstraße 16
86135 Augsburg
Germany
joerg.ackermann@wiwi.uni-augsburg.de

