
Enterprise Modelling and Information Systems Architectures
Vol. 18, No. 9 (2023). DOI:10.18417/emisa.18.9
Language Server Protocol 1

Catchword: Language Server Protocol
An Introduction to the Protocol, its Use, and Adoption for Web
Modeling Tools

Dominik Bork*,a, Philip Langerb

a TU Wien, Business Informatics Group, Vienna, Austria
b EclipseSource, Vienna, Austria

Abstract. With the introduction of the Language Server Protocol (LSP), a fundamental shift has been
observed in the development of language editing support for Integrated Development Environments (IDEs),
such as VS Code, the traditional Eclipse IDE, or Eclipse Theia. LSP establishes a uniform protocol that
standardizes the communication between a language client (e. g., an IDE like Eclipse) and a language
server (e. g., for a programming language like Java). The language client only needs to be able to interpret
and understand the protocol instead of the specific programming language. Likewise, the language server
can focus on language support and does not need to consider the specifics of a respective IDE. This reduces
the complexity of realizing language support on different editors and IDEs and enables smooth transitions
from one IDE to another. LSP is an open and community-driven protocol that has been developed within the
realm of the VS Code community, initiated and driven by Microsoft. The generic concept and architectural
pattern of LSP enables widespread applications that go far beyond the realization of editing support for
programming languages. This paper provides an introduction to LSP, describes its evolution and core
characteristics, and delineates its potential for revolutionizing not only the IDE market but also other
software systems, such as modeling tools.

Keywords. Language Server Protocol • Integrated Development Environment • Graphical Language Server
Protocol • Conceptual Modeling • Modeling tools • Software Engineering

Communicated by Peter Fettke. Received 2023-05-23. Accepted after 1 revision on 2023-08-16.

1 Introduction

Traditionally, language editing support, such as
code completion and diagnostics for a specific
language, had to be implemented for each In-
tegrated Development Environment (IDE) indi-
vidually. This caused an additional burden to
language developers, as they had to get familiar
with the extension API of multiple IDEs and inte-
grate their language again and again for each IDE

* Corresponding author.
E-mail. dominik.bork@tuwien.ac.at
The authors like to thank Erich Gamma and Dirk Bäumer
from Microsoft for providing valuable feedback on earlier
drafts of this manuscript. Their evaluation ensures that LSP
and VS Code’s historical development is correctly described.

they wanted to support. Furthermore, language
developers were required to use the programming
language imposed by the respective IDE instead
of having the freedom to use any programming
language for implementing their language support.
As a result, the quality of the language support
for specific languages varied significantly across
different IDEs and eventually often harmed usabil-
ity for software developers using the respective
language in a specific IDE. Whereas such an IDE-
based specialization enables the optimization of
the language support by facilitating the specific
capabilities offered by a particular IDE, this ap-
proach, however, results in redundant development
efforts and a lack of interoperability across IDEs.

http://dx.doi.org/10.18417/emisa.18.9
dominik.bork@tuwien.ac.at

International Journal of Conceptual Modeling
Vol. 18, No. 9 (2023). DOI:10.18417/emisa.18.9

2 Dominik Bork, Philip Langer

For each programming language 𝐿 and each IDE
𝐼, 𝐿 × 𝐼 language integrations were needed.

With the introduction of the Language Server
Protocol (LSP) this issue is significantly miti-
gated (Gunasinghe and Marcus 2022) by estab-
lishing a uniform protocol that standardizes the
communication between a language client (e. g.,
an IDE like Eclipse) and a language server (e. g.,
for a programming language like Java). The lan-
guage client only needs to be able to interpret
and understand the protocol instead of the specific
programming language. Likewise, the language
server can focus on language support but doesn’t
need to consider the specifics of the respective
IDE. This reduces the complexity of realizing lan-
guage support on different IDEs from the before-
mentioned 𝐿× 𝐼 to 𝐿+ 𝐼 and it furthermore enables
smooth transitions from one IDE to another with-
out a change in the quality of the language support.
LSP is an open and community-driven protocol
that has been developed within the realm of the
VS Code community1 , initiated and driven by
Microsoft (Microsoft 2022a), and has evolved into
a de-facto standard in the IDE market.

LSP also introduces more flexibility for devel-
opers of language servers or language clients by
providing “the freedom to choose the most suit-
able technology to implement the client editor
and the language server independently of each
other” (Rodríguez-Echeverría et al. 2018, p. 371).
Moreover, LSP clearly separates the concerns of
the language server from those of the language
client. While the former is responsible for imple-
menting the language smarts (e. g., creating and
processing an Abstract Syntax Tree for program-
ming language support), the language client is
responsible for editor smarts like rendering (e. g.,
code highlighting), editing, and user interaction.

With the development of LSP, Microsoft has
fundamentally disrupted the IDE market and pro-
vides VS Code one of the most popular code

1 LSP GitHub repository: https://github.com/microsoft/
language-server-protocol, last accessed: 12.08.2023

editors, which is used as an IDE by many develop-
ers worldwide2 . Notably, the generic concept and
architectural pattern of LSP enable widespread
applications that go far beyond the realization of
editing support for programming languages.

This paper provides a coherent introduction
to the Language Server Protocol, describes its
evolution and core characteristics, and delineates
its potential for revolutionizing not only the IDE
market but also other software systems, such as
modeling tools (Glaser et al. 2022; Rodríguez-
Echeverría et al. 2018). In doing so, we 𝑖) review
the historical developments that led to the LSP
(Sect. 2), 𝑖𝑖) describe the specific characteristics
of the LSP (Sect. 3), 𝑖𝑖𝑖) showcase how language
servers can be developed (Sect. 4), 𝑖𝑣) report on
how LSP-based modeling tools can be realized
(Sect. 5), 𝑣) elaborate future research directions
alongside LSP (Sect. 6), and eventually conclude
the paper in Sect. 7.

2 Evolution of the Language Server
Protocol

The evolution of the Language Server Protocol
is heavily linked to the development of VS Code.
LSP is today one of the fundamental drivers behind
the success of VS Code and its adoption by a very
active community of software developers using
it and contributing to its further development by
means of bug reports, feature requests, and pull
requests3 . In the following, we thus investigate
briefly the evolution of LSP in relation to the VS
Code code editor.

The rationale and motivation behind building
VS Code were to marry the benefits of, at that
time, mostly isolated worlds of powerful text edi-
tors, which are lightweight, versatile, and fast with
the rich functionality offered by powerful IDEs,
including sophisticated language support, auto-
completion, code navigation, diagnostics, and de-
bugging capabilities. This endeavor should result

2 https://pypl.github.io/IDE.html last accessed: 12.08.2023
3 The VS Code Github repository currently lists more than
1,800 contributors: https://github.com/microsoft/vscode/ last
accessed: 12.08.2023

http://dx.doi.org/10.18417/emisa.18.9
https://github.com/microsoft/language-server-protocol
https://github.com/microsoft/language-server-protocol
https://pypl.github.io/IDE.html
https://github.com/microsoft/vscode/

Enterprise Modelling and Information Systems Architectures
Vol. 18, No. 9 (2023). DOI:10.18417/emisa.18.9
Language Server Protocol 3

in a multi-language, cross-platform, lightweight
code editor based on a modern web technology
stack, offering rich language support and features
across the entire software development process
with the help of a broad extension ecosystem
provided by the community and software vendors.

Some of the development of VS Code was influ-
enced by the experience of developing the Eclipse
platform (Gamma and Beck 2004). Eclipse had—
and has until today—a clear extension model,
where all extensions run in the same process.
While this architecture gives a lot of power to ex-
tensions, the Eclipse platform became vulnerable
to side effects caused by extensions (e. g., delay in
start-up, breaking core functionality, etc.). Also,
the Eclipse extension model implied that all ex-
tensions had to be written in Java, which hampers
realizing language support for different languages,
as they are often written in the language for which
they provide language support.

This experience led to the design decision of
realizing an extension model that safeguards the
core platform from misbehaving extensions. From
the opposite perspective, this also made sure that
changes to the core platform by platform devel-
opers did not impact extensions. Therefore, the
architecture of VS Code has been designed such
that any extension in VS Code runs in a separate
process and the communication between exten-
sions and the core platform is only possible via
stable and controlled API gateways. This makes
work simpler for both platform and extension de-
velopers because there is a single API to maintain
or use, respectively. Of course, this comes with
a cost: extension developers need to realize their
functionality within the strict limits of the API
imposed by the core platform.

First aims in releasing a Web IDE, under the
name Visual Studio Online Monaco, did not yield
significant numbers of users, but it brought the
browser-based Monaco editor4 to live. To reach
a broader adoption, it was decided to pivot to

4 https://microsoft.github.io/monaco-editor last accessed:
12.08.2023

creating a desktop editor that, however, still lever-
ages modern browser technologies, including the
Monaco editor, Atom Shell, or later Electron. This
shift eventually led to the release of the VS Code
editor in 2015. Only in 2020, the circle back to
the web was concluded with the release of GitHub
Codespaces, a cloud-based development environ-
ment that uses VS Code as a code editor entirely
running in the browser.

The architecture for extending VS Code with
language support for a specific programming lan-
guage was heavily influenced by the motivation to
enable developers to use their language of choice
for developing the language smarts of their lan-
guages. Thus, the component implementing the
language smarts was externalized into a separate
process, and communication between the external
language component (language server) and the
text editor (language client) is only possible via
a well-defined protocol – the Language Server
Protocol (LSP). LSP was first released in 2015
and already supported, among others the hover,
completion, and signature help language smarts,
and a capability model. It soon became clear that
making LSP an open protocol that is even indepen-
dent of VS Code would yield benefits for language
providers and editor providers alike. An open LSP
would ease the way to use one language server
in arbitrary editors and language providers would
avoid depending on a proprietary protocol with
their language server and, due to the availability
of multiple editor clients, obtain a larger user base.
Consequently, the work on developing a generic
and open protocol standardizing the communica-
tion between a language client and a language
server started. In 2016, Microsoft started to col-
laborate with RedHat and CodeEnvy to create an
open protocol for language services. The outcome
of that effort was announced at the DevNation con-
ference. The stable maintained version (v3.0.0) of
the protocol was released in February 2017. Since
then, the protocol is under continuous revision and

http://dx.doi.org/10.18417/emisa.18.9
https://microsoft.github.io/monaco-editor

International Journal of Conceptual Modeling
Vol. 18, No. 9 (2023). DOI:10.18417/emisa.18.9

4 Dominik Bork, Philip Langer

Available Language Servers Available Language Clients

2014 2015 2016 2017 2018 2019 2020 2021 2022

250

200

150

100

50

0

Figure 1: Longitudinal analysis of the available language servers and
clients

2015 (Q4) 2016 2017 2018 2019 2020 2021 2022

75.000.000

50.000.000

25.000.000

0

Figure 2: Annual downloads of the vscode-
languageserver package in npm5

extension by the community5 . In May 2022, the
latest major release, v3.17.0, has been announced.

The continuous growth of available language
servers and language clients (see Figure 1 left)
shows the disruptive impact of LSP on the soft-
ware development community.Figure 2 further
shows the annual downloads of the VS Code
LSP package via npm6 . Including e.g., CI/CD
pipelines, the package has been downloaded via
npm 141,253,128 times between October 2015
and December 2022. The figure shows the in-
creasing interest in LSP by the continuous growth
of recorded annual downloads. Alone in 2022, it
was downloaded more than 68 million times.

3 Language Server Protocol
Characteristics

The underlying idea of LSP is to encapsulate the
language smarts of a specific programming lan-
guage, which involves parsing code, analyzing
its abstract syntax tree, resolving references, di-
agnosing errors, etc., into a separate component
called a language server. With this encapsulation
into a separate component, the heavy lifting of

5 https://github.com/microsoft/language-server-protocol last
accessed: 12.08.2023
6 https://npm-stat.com/charts.html?package=
vscode-languageserver&from=2015-10-01&to=
2022-12-31

providing deep language support for a program-
ming language (language server) is decoupled
from the lightweight rendering and direct user
interaction in a specific code editor (language
client). A language-agnostic client communi-
cates with a language server through JSON-RPC
using the language server protocol to integrate
language-specific editing support for which a deep
understanding of the respective programming lan-
guage is needed. This separation enables the
language client to remain utterly agnostic of the
programming language. Moreover, the processes
in which the language client and the language
server are executed can be separated.

3.1 Separation of Concerns
The language server protocol applies an abstrac-
tion level centered around a code editor’s user
interface and defines protocol messages about text
documents, character positions, diagnostics, etc.
The protocol does not expose information about
the intrinsic concepts of a programming language
such as the abstract syntax tree or whether a sym-
bol is a class or a method call. Instead, it provides
information empowering a client to perform stan-
dard features of a code editor for which deep
language smarts and analysis are required such as
auto-completion, showing syntax errors, or navi-
gating to the definition of a symbol at a specific
location. Similarly, the language server protocol

http://dx.doi.org/10.18417/emisa.18.9
https://github.com/microsoft/language-server-protocol
https://npm-stat.com/charts.html?package=vscode-languageserver&from=2015-10-01&to=2022-12-31
https://npm-stat.com/charts.html?package=vscode-languageserver&from=2015-10-01&to=2022-12-31
https://npm-stat.com/charts.html?package=vscode-languageserver&from=2015-10-01&to=2022-12-31

Enterprise Modelling and Information Systems Architectures
Vol. 18, No. 9 (2023). DOI:10.18417/emisa.18.9
Language Server Protocol 5

Language Analysis on
Abstract Syntax Tree (AST)

Language Server

Language Client

{
 "isIncomplete": false,
 "items": [
 {
 "label": "doExecute() : void",
 "kind": 2, // 2 = Method
 "detail": "WorkflowTask",
 "sortText": "999999035",
 "insertText": "doExecute",
 "data": { ... }
 }, ...
]
}

{
 "id": 42,
 "jsonrpc": "2.0",
 "method": "textDocument/completion",
 "params": {
 "context": { "triggerKind": 1},
 // Invoked = 1
 "position": {
 "character": 14,
 "line": 29
 },
 "textDocument": { "uri":
"file:///[redacted]" }
 }
}

1.

2.

Invoke
parsing and
query AST
callable for
methods

Translate callable methods into
completion items for language client

Source Files

3.

4.

5.

Figure 3: Example interactions between language client and language server for auto-completion

does not include static code editor features, such as
syntax highlighting, as this can be achieved on the
client based on a static grammar definition. Only
more sophisticated highlighting, which requires
knowledge about the language – often referred
to as semantic highlighting – is handled on the
server and thus part of the protocol. This choice of
abstraction level makes the protocol versatile and
applicable to vastly different types of languages,
whether declarative or imperative, object-oriented
or functional.

To gain a better overview of the underlying
concept, let’s consider an example of the interac-

tion of a language client and a language server in
Fig. 3. The language client is a language-agnostic
component providing generic editing capabilities,
such as presenting files, navigating across lines,
adding and deleting characters, etc., but has no
understanding of the underlying programming lan-
guage concepts, such as methods of a Java class.
If a user, however, triggers an editor feature that
requires an understanding of the underlying pro-
gramming language, such as the auto-completion
of a method call for a specific Java object, the
language client sends a request to the language
server with the required context information, such

http://dx.doi.org/10.18417/emisa.18.9

International Journal of Conceptual Modeling
Vol. 18, No. 9 (2023). DOI:10.18417/emisa.18.9

6 Dominik Bork, Philip Langer

as the character position in the text document.
The language server, focusing on programming
language analysis, such as parsing and querying
abstract syntax trees, computes the list of possible
completion items based on its internal represen-
tation of the text documents’ source code. The
completion items sent by the server only contain
information relevant to the user interface, such
as a label and an indicator for the icon and the
text operation to be applied, if the user selects the
completion item. Based on this information, the
editor can then present the completion items and,
if invoked, apply the respective text operation of
the completion item.

3.2 Protocol Specification
The basic LSP protocol consists of request, re-
sponse, and notification messages exchanged via
the JSON Remote Procedure Call protocol (JSON-
RPC7). Request messages and notification mes-
sages include a method identifier to indicate the
type of request or notification, as well as additional
parameters, which depend on their type. Response
messages, in turn, include an identifier pointing
to the original request message and a result pa-
rameter to carry the payload of the response. In
addition, specific messages are available to cancel
requests and report progress.

The message types of the actual protocol are
grouped into categories, such as messages to con-
trol the lifecycle of a server, to specify and update
the workspace configuration, to synchronize text
documents between the client and the server, to
publish diagnostics identified by the server, and to
fulfill certain language features, such as comple-
tion, signature help, formatting, etc. Alongside
well-defined parameter types, most of these mes-
sages have a direction specifying whether they are
intended to be sent from the client to the server or
vice versa.

As an example, Fig. 4 depicts the exchanged
messages of communication between a code edi-
tor (language client) and a language server. The
client manages the life cycle of a server. Therefore,

7 https://www.jsonrpc.org/, last accessed: 13.08.2023

the client sends an initialize request to the server
providing it with initialization parameters such as
the workspace folder(s), the LSP capabilities, the
version number, and other initialization options
if needed. The server processes this request and
responds with an initialization result that com-
poses, among others, the server LSP capabilities
and the server version. Once the client is ready
to accept further messages, it sends an initialized
notification back to the server. Based on this mes-
sage exchange, the client and the server agreed on
the mutually available LSP capabilities that form
the basis of the subsequent communication. Both
the client and the server have read access to the
workspace location, but only the client usually re-
quires write access. This enables, for instance, the
server to start indexing the workspace directories
or recovering a cache for the relevant source files.

Once the client opens a document, it notifies the
server with a didOpen notification, which passes
the document identifier and the initial contents
of the document to the server. This message is
the starting point of synchronizing the document’s
in-memory state between the client and the server.
Whenever the user performs changes in the opened
document, the language client sends didChange
notifications to ensure that the client and server
are operating on the same in-memory state of
the document. This synchronization is required,
as the client and server are running in separate
processes – or even containers – and thus don’t
share memory. Nevertheless, the server shall be
able to, e. g., publish diagnostics at any time, even
if document changes haven’t persisted on disk yet.
The client then renders these diagnostics with the
provided severity and message at the respective
text range in the document.

Whenever the user performs typical code editor
functions, e. g., requesting auto-completion on a
specific position in the document or invoking the
navigation to the definition of a symbol, the client
sends a corresponding request with the current
document position to the server to obtain the
relevant information for performing this action. In
the case of requesting the definition of a symbol,
the server response contains the document location

http://dx.doi.org/10.18417/emisa.18.9
https://www.jsonrpc.org/

Enterprise Modelling and Information Systems Architectures
Vol. 18, No. 9 (2023). DOI:10.18417/emisa.18.9
Language Server Protocol 7

Language Client

User opens document

Language Server

Notification: textDocument/didOpen; Params: document

Notification: textDocument/publishDiagnostics; Params: Diagnostics[]

Notification: textDocument/didChange; Params: { documentURI, changes}

Response: textDocument/definition; Result: Location

Request: textDocument/definition; Params: {documentURI, position}

Notification: textDocument/didClose; Params: documentURI

Langauge Server Procotol
(JSON-RPC)

Response: initialize; Result: InitializeResult

Request: initialize; Params: InitializeParams

User edits document

User executes
"Goto definition"

User closes document

Server publishes
error and warnings

Notification: initialized; Params: InitializedParams

Figure 4: LSP-based communication during a routine editing session – adapted from (Microsoft 2022a)

within the same or another document. Other
code editor functions will return different results,
ranging from completion suggestions for auto-
completion (see Fig. 3) to text edits for rename
operations. Once the user closes the document,
the client sends a didClose notification allowing
the server to dispose of the in-memory state of the
document and use the persisted state on disk from
now on.

Over time, the range of language features sup-
ported by LSP kept growing and likely continues
to grow in the future. To avoid forcing language
server and client implementations to catch up im-
mediately with supporting all of these features
to be compatible, LSP introduces the notion of
capabilities, which allows clients and servers to
announce which of those features they support.
Therefore the client attaches a ClientCapabilities
configuration object to the initialize request and
the server adds a ServerCapabilities configuration
object to the initialized response. These capa-
bilities indicate whether, for instance, the client
supports auto-completion or markdown in hover
information or whether the server includes a signa-
ture help provider or can resolve type definitions.
The notion of capabilities is critical to enable
incremental but still compatible development of

language clients and servers. Moreover, it makes
the protocol even more versatile as not all protocol
capabilities may make sense for all languages.

4 Developing Language Servers

With the rising adoption of the language server
protocol and the increasing number of language
servers being developed, also the availability of
generic frameworks and Software Development
Kits (SDKs) supporting the implementation of
language servers increased over the last few years.
As of today, the open-source software ecosystem
provides more than 200 language server SDKs for
a variety of programming languages, including
C++, Java, Python, Rust, and JavaScript (cf. Fig. 1).
The available SDKs vary in their programming
language and their focus. While some of them
mainly provide interfaces for the protocol mes-
sages and data types, most SDKs also provide
a framework, including server infrastructure and
JSON-RPC support. These SDKs enable devel-
opers to focus on developing the language editing
support by implementing the required behavior to
server life-cycle events, such as startup, shutdown,
and connection, and implementing the respective
providers for code completion, hover information,

http://dx.doi.org/10.18417/emisa.18.9

International Journal of Conceptual Modeling
Vol. 18, No. 9 (2023). DOI:10.18417/emisa.18.9

8 Dominik Bork, Philip Langer

diagnostics, etc. For a complete overview of
available SDKs and frameworks, please refer to
the SDKs listed on the language server protocol
website (Microsoft 2022b).

The most popular choice for Node.js is vscode-
languageserver-node (VSCode Language Server -
Node 2022), which is driven by the maintainers
of the language server protocol specification itself
and, thus, may be considered as the reference im-
plementation of the protocol. However, it contains
not only the language server protocol definition
and data types in TypeScript but also an infrastruc-
ture for the underlying JSON-RPC client-server
connection and a dedicated framework that can be
extended for implementing the language support
of a specific language. To create a language server
with vscode-languageserver-node, developers reg-
ister callback functions for certain LSP events and
requests, such as on initialization, on the open-
ing of documents, or on completion requests (cf.
Fig. 3 for an example). These callback functions
are then responsible for parsing the file when it
is opened and computing completion results for a
particular text position.

Similar SDKs are also available for other lan-
guages, e.g., LSP4J (LSP4J 2021) for Java, tower-
lsp (tower-lsp 2021) for Rust, and pygls (pygls
2021) for Python. They all provide native imple-
mentations of the protocol definition and types
and a JSON-RPC infrastructure and framework
for developing language servers.

Alongside those dedicated LSP SDKs, a few
language toolkits for developing domain-specific
languages have integrated LSP support. With
that, users can not only produce a parser and
an abstract syntax tree for a particular domain-
specific language but also produce a language
server to add language support to VSCode and
other LSP-enabled editors. A popular language
toolkit with LSP support is Xtext (Xtext 2021),
which is based on Java and the Eclipse Model-
ing Framework (Steinberg et al. 2008). Xtext
provides a grammar language, similar to the Ex-
tended Backus-Naur Form, with dedicated con-
structs for defining cross-references, attributes,
types, etc. Xtext derives the abstract syntax tree

from such a grammar definition and generates a
parser, a linker, and an extensible language sup-
port infrastructure, including a language server,
alongside an Eclipse editor integration (cf. (Bün-
der 2019) for a recent analysis). More recently, a
Node.js-based language toolkit named Langium8

(Langium 2021) gains traction, which follows
the underlying idea of Xtext but puts a focus on
creating language servers based on grammar defi-
nitions, see (Giner-Miguelez et al. 2022) for a re-
cent application case report. Anycode9 is another
framework for efficiently developing LSP-based
language smarts. Anycode is particularly designed
to provide language support for environments that
don’t allow for running actual language services,
like https://github.dev or https://vscode.dev.

Since version 3.17 of the language server proto-
col, the specification entails a meta-model, which
eases generating the LSP types and the SDK from
that meta-model for specific languages10 . There
are already server implementors that are using the
meta-model, e. g., Rust and Python11 .

4.1 Siblings of the Language Server
Protocol

The success of LSP and the benefits of its archi-
tecture did not end at “just” becoming a de facto
standard for providing language support to code
editors. Its underlying idea and architecture have
been adopted and adjusted to enable other standard
functionalities of development environments and
engineering tools. The Debug Adapter Protocol
is one such sibling.

When it comes to providing debugging capabil-
ities to development tools, similar challenges arise
as for providing language editing support. The nec-
essary means for enabling developers to observe
and even interact with the runtime state signif-
icantly depends on the respective programming

8 https://langium.org/ last accessed 12.08.2023
9 Anycode Github repository: https://github.com/microsoft/
vscode-anycode, last accessed: 13.08.2023
10 LSP meta model: https://microsoft.github.io/
language-server-protocol/specifications/lsp/3.17/
specification/#metaModel, last accessed: 12.08.2023
11 https://github.com/microsoft/lsprotocol, last accessed:
13.08.2023

http://dx.doi.org/10.18417/emisa.18.9
https://github.dev
https://vscode.dev
https://langium.org/
https://github.com/microsoft/vscode-anycode
https://github.com/microsoft/vscode-anycode
https://microsoft.github.io/language-server-protocol/specifications/lsp/3.17/specification/#metaModel
https://microsoft.github.io/language-server-protocol/specifications/lsp/3.17/specification/#metaModel
https://microsoft.github.io/language-server-protocol/specifications/lsp/3.17/specification/#metaModel
https://github.com/microsoft/lsprotocol

Enterprise Modelling and Information Systems Architectures
Vol. 18, No. 9 (2023). DOI:10.18417/emisa.18.9
Language Server Protocol 9

IDE

Editor

Other
Tool

Generic
Debugger

Generic
Debugger

Generic
Debugger

DAP

Node.js
Debug

Adapter

Python
Debug

Adapter

C#
Debug

Adapter

Node.js

Python

C#

Development Tools Debuggers

Figure 5: Debug Adapter Protocol Architecture (Mi-
crosoft 2022c)

language and runtime system. Thus, the effort to
integrate a language-specific debugger has to be
repeated for each development tool. To address
this issue, the underlying idea of LSP has been
co-developed with and applied to debugging by
abstracting the interaction between a development
tool and a debugger or runtime system into the so-
called Debug Adapter Protocol (Microsoft 2022c).
This protocol enables a generic user interface for
debugging that interacts with a debug adapter that
maps the protocol to language- or runtime-specific
debugging commands (see Fig. 5). Consequently,
the generic debugging interface can be used with
any runtime system for which a debug adapter is
available. The debug adapter protocol supports
transferring specific runtime information from the
observed runtime to the client, including the run-
time state of a process, its suspended stack frames,
variable values in the scope of a stack frame, etc.
Moreover, the client can instruct the debugger to
add or remove breakpoints and perform actions to
control the execution, such as stepping over, into,
or out of a stack frame.

As of August 2023, nine SDKs for developing
debug adaptors, 11 tools supporting the DAP, and
68 debug adapters are registered on the official
page of the DAP12 .

Besides the Debug Adapter Protocol and the
Graphical Language Server Protocol (see Sect. 5),
many other adoptions of the LSP architectural pat-
tern exist, such as the Trace-Server Protocol (TSP

12 DAP web page: https://microsoft.github.io/
debug-adapter-protocol/, last accessed: 16.08.2023

2022) and the Specification Language Server Pro-
tocol Rask et al. (2021). They all encapsulate
domain-specific smarts in a server component
and introduce a dedicated protocol to transfer this
knowledge to a rather domain-independent client
on a user interface level.

5 LSP- and Web-based Modeling Tools

Graphical languages, such as UML (France et
al. 1998) or BPMN (Chinosi and Trombetta
2012), often impose complex language editing
rules, references across single diagram views,
and model-wide analysis and validation logic.
These complex and expensive language imple-
mentations are hardly transferable into a browser-
based application due to computational complex-
ity, workspace indexing requirements, and po-
tential re-development costs of existing imple-
mentations, similar to the language support for
programming languages. These striking parallels
between the requirements for programming lan-
guages and graphical languages led to the adoption
of the architectural pattern of language servers for
diagram editors to unlock the benefits of LSP (cf.
Sect. 3) for graphical languages (i. e., diagrams).

The open-source project Eclipse Graphical Lan-
guage Server Protocol (Eclipse 2022) (GLSP13)
provides a protocol specification and generic com-
ponents for developing browser-based diagram
clients and diagram servers in Java or based on
Node.js. With the help of re-usable platform inte-
grations, diagram editors made with GLSP can be
embedded into multiple tool platforms, such as VS
Code (Glaser and Bork 2021; Glaser et al. 2022),
Eclipse Theia, and even the traditional Eclipse
desktop rich-client platform.

5.1 From LSP to GLSP
While there are several similarities between LSP
and GLSP, such as the overall architecture and
the JSON-RPC-based client-server communica-
tion that follows a protocol abstracting common

13 https://www.eclipse.org/glsp, last accessed: 12.08.2023

http://dx.doi.org/10.18417/emisa.18.9
https://microsoft.github.io/debug-adapter-protocol/
https://microsoft.github.io/debug-adapter-protocol/
https://www.eclipse.org/glsp

International Journal of Conceptual Modeling
Vol. 18, No. 9 (2023). DOI:10.18417/emisa.18.9

10 Dominik Bork, Philip Langer

Figure 6: Architecture of GLSP-based modeling tools – adapted from (Eclipse 2022)

language features, there are also specific differ-
ences resulting from the different natures of tex-
tual languages and graphical languages. The
most obvious difference is the common model
based on which the client and server communi-
cate. For textual languages, this common model
uses files, lines, and characters to communicate
text document positions, synchronizing states, etc.
For diagrams, however, this common model talks
about hierarchically structured nodes and edges
and a two-dimensional coordinate system. There-
fore, GLSP introduces a common graphical model
that is shared between client and server and that
allows describing the structure and state of a dia-
gram based on an attributed, typed graph instead
of plain text files (see Fig. 6). This graphical
model is merely a structural description of the
diagram, which the server creates from arbitrary
source models, such as XMI files, EMF models,
databases, etc. Thus, only the server needs to
handle reading and writing the underlying model
format and define how to translate it into one or
more graphical models. The client eventually re-
ceives the graphical model and renders that into
an SVG-based image using configurable views.
Therefore, the specific diagram client is equipped
by the diagram developer with specific SVG views
that define how a particular node or edge type is
translated into SVG. This enables complete flex-
ibility for rendering, which is crucially required,
as different diagram languages demand different

shapes and styles—a challenge that isn’t prevalent
for textual languages.

Another notable difference between LSP and
GLSP concerns editing. While editing textual
languages always works precisely the same by
adding or removing characters, independently of
the textual language, graphical languages often
impose strict editing constraints, such as the avail-
able types of nodes that can be created, allowing to
connect only certain types of nodes with specific
types of edges, etc. Therefore GLSP introduces
dedicated protocol messages that allow clients
to request editing operations for a particular dia-
gram in a specific context and delegate performing
the operations on the model to the server instead
of applying changes directly to the client. This
way, the server can constrain the available edit
operations and control how the underlying source
model, be it an XMI file, EMF model, or database,
is eventually being modified for an edit operation
that the client requested. Once the modification is
performed, the server updates the graphical model
on the client to reflect the changes graphically in
the diagram on the client.

5.2 Developing GLSP-based Modeling
Tools

GLSP has been under active development by the
community since 2017, with the next major release
v2.0.0 (expected September 2023). In its current
version, GLSP provides four types of components

http://dx.doi.org/10.18417/emisa.18.9

Enterprise Modelling and Information Systems Architectures
Vol. 18, No. 9 (2023). DOI:10.18417/emisa.18.9
Language Server Protocol 11

for realizing modern web-based modeling tools
(see Fig. 6):

• Server framework: GLSP provides a server
framework one can use to build particular dia-
gram servers for e. g., UML or a domain-specific
graphical modeling language on top. Initially,
GLSP was focused on supporting the Eclipse
Modeling Framework (EMF), based on which
many modeling languages and their language-
specific logic are already implemented and
GLSP servers have been mainly written in
Java. In the meantime, this support opened
up to arbitrary model management frameworks,
whether it is EMF, a JSON file, a database, or
a remote REST service. More recently, GLSP
also added a framework that enables developing
GLSP servers with TypeScript14 .

• Client framework: GLSP also provides a client
framework. Similarly to the server framework,
one can build a particular graphical modeling
language client including the definition of the
rendering with SVG, styling, and user interac-
tion on top of the provided GLSP client frame-
work. As the rendering and user interaction may
heavily differ between one graphical modeling
language and another, the client framework al-
lows users to take full control over the SVG
view implementations for rendering and enable
their customization, as well as adding additional
editing tools to control user interactions.

• Protocol: The messages that can be exchanged
between the GLSP clients and servers are spec-
ified in a flexible and extensible GLSP proto-
col which standardizes, on a language-agnostic
abstraction level, the communication between
arbitrary clients and servers.

• Platform integration: GLSP provides plat-
form integrations—reusable components that
take an implemented GLSP diagram client and
integrate it seamlessly into platforms such as
Eclipse RCP, Eclipse Theia, or VS Code. These
components provide the clue code necessary

14 https://github.com/eclipse-glsp/glsp-server-node, last ac-
cessed: 12.08.2023

to register an editor to a certain file type or
some other commands specific to the integrated
platform. With that, GLSP aims to enable
the integration of GLSP editors into multiple
tool platforms and applications with maximum
reuse.

5.3 Comparison to the Use of Traditional
Metamodeling Platforms

Although a comprehensive and systematic compar-
ison between GLSP-based tool development and
established traditional metamodeling platforms
is not within the scope of this paper, we want
to briefly discuss our experiences with working
with GLSP and contrast this to our experience of
developing tools in the past with traditional meta-
modeling platforms. Our comparison is primarily
focusing on two essential aspects: the tool archi-
tecture (Sect. 5.3.1), and the tool development
process (Sect. 5.3.2).

5.3.1 Tool Architecture
Traditionally, modeling tool development with
metamodeling platforms like ADOxx, EMF,
MetaEdit+, and Microsoft Modeling SDK follows
more or less the architectural pattern depicted in
Fig. 7. The developers of the metamodeling plat-
forms define a platform-specific meta-metamodel
and a generic platform-specific metamodel. On
this level of genericity, the developers realize
manifold functionality like user-, model-, access-,
and data management, the visualization and (de-
)serialization of models, and also some model
processing functionality like queries, simulations,
or code generators. Modeling tool developers can
then inherit from the generic platform-specific
metamodel and functionality, thereby introduc-
ing their domain-specific concrete metamodel
and the corresponding domain- and language-
specific functionality. Through this inheritance,
the domain-specific tools automatically inherit the
rich, extensible platform features developed on
the generic level—the major driver of efficiency
of these traditional tool development platforms.

In contrast, GLSP follows the architecture de-
picted in Fig. 6 and is not tightly embedded within

http://dx.doi.org/10.18417/emisa.18.9
https://github.com/eclipse-glsp/glsp-server-node

International Journal of Conceptual Modeling
Vol. 18, No. 9 (2023). DOI:10.18417/emisa.18.9

12 Dominik Bork, Philip Langer

Figure 7: Architecture of traditional metamodeling
platforms

a specific modeling framework. Instead, its core
generic functionality revolves around diagram ed-
itor capabilities, such as rendering a diagram,
providing editing tools for a diagram, perform-
ing operations on a diagram, and showing, for
instance, validation errors on top of it. At its core,
GLSP is agnostic to the actual model management
including the underlying modeling framework,
and externalizes the mapping of an underlying
model to a diagram to the developer adopting
GLSP. Thus, the core API of GLSP expects an
implementation to load, save, and manipulate the
underlying model, as well as to provide a map-
ping of an underlying model to GLSP’s graphical
metamodel used to represent diagrams, which is
basically a Labelled Property Graph composed of
nodes and edges. This entails many advantages,
as GLSP can be used with arbitrary meta mod-
eling frameworks or data sources and decouples
many diagram-editor-related functionalities, such
as diagram rendering and editing tools, from other
parts, such as model manipulation and model
management.

At the same time, however, this entails more
effort with respect to the integration of a specific
metamodel (i. e., the abstract syntax)—the ’heart’
of any modeling tool, as this integration has to be
provided by the developers in terms of a transfor-
mation of an underlying model into the graphical
model, as well as hooking up certain other func-
tionalities that a metamodeling framework may
provide, such as validation. To mitigate—but
certainly not remove—this additional effort, the
community around GLSP has provided generic in-
tegrations for certain modeling frameworks, such
as EMF. Those integrations provide generic im-
plementations mapping from the GLSP API to the
respective functionalities of the modeling frame-
work. This, as an example, allows for the reduction
of custom code for loading and saving models and
allows the use of the native API of the modeling
framework to implement model manipulations
(e. g. EMF commands) instead of implementing
them based on the GLSP API.

A huge benefit, we see from GLSP-based model-
ing tools is their support for blended modeling (Ci-
ccozzi et al. 2019; David et al. 2023; Glaser and
Bork 2021) i. e., the simultaneous use of multiple
concrete syntaxes based on one abstract syntax.
Due to the loose coupling of the individual GLSP
frameworks (see Fig. 6), one GLSP server can
easily be used by several GLSP clients, each of
which representing (a different subset of) the en-
tire model with a separate concrete syntax (e. g.,
one graphical, one textual, one forms-based). The
GLSP architecture thereby naturally supports de-
composing one overarching abstract syntax into
different viewpoints, each of which is provided by
projectional views on the core metamodel (Voelter
and Lisson 2014). The same is also true the other
way around: as GLSP is not tied to a specific
modeling framework, a single GLSP editor can
represent multiple underlying models, which may
even be managed in different modeling frame-
works or data sources on the GLSP server.

A key motivation for this approach in GLSP—
similar to LSP—is to prioritize decoupled, flexible
diagram editing capabilities that can be reused and
shared across multiple tool platforms, modeling

http://dx.doi.org/10.18417/emisa.18.9

Enterprise Modelling and Information Systems Architectures
Vol. 18, No. 9 (2023). DOI:10.18417/emisa.18.9
Language Server Protocol 13

Defining
Tool Scope

Defining
Technology Stack Planning

Ex
te

nd
in

g
So

ur
ce

 M
od

el

Implementation

R
ev

ie
w

Integration

Preliminary
Phase

Development
Phase

Integration
Phase

Deployment
Phase

Deployment

Tool Server Source

Figure 8: Development and operation process for GLSP-based web modeling tools (Metin and Bork 2023)

languages, and even modeling frameworks, rather
than focusing on the integration of a single tool
platform or modeling framework. Such integra-
tions may, if needed, be put on top of the GLSP
API, as has been done with tool platforms, such as
VS Code and Eclipse Theia, or modeling frame-
works, such as EMF. Another problem we faced in
the past with traditional metamodeling platforms
is their limited support to natively support the
reuse of existing metamodels or parts thereof—a
requirement stressed a long time in research which
remains recent (Emerson and Sztipanovits 2006;
Lédeczi et al. 2001; Mora Segura et al. 2023;
Pfeiffer et al. 2023). The separation of concerns
and the loose coupling of the individual GLSP
frameworks greatly fosters the reuse of (parts of)
developed modeling tools.

5.3.2 Tool Development Process
Aside from the previously discussed differences re-
garding the tool architecture, one can also identify
significant differences with respect to the process
and the tasks involved when developing model-
ing tools with GLSP in comparison to traditional
metamodeling platforms.

Tool development with traditional metamodel-
ing platforms often follows an iterative approach
that centers the metamodel. Tool developers first
introduce their domain-specific metamodel by in-
heriting from the generic platform-specific meta-
model. Afterward, the concrete syntax, i. e., the
visual representation of the metamodel concepts
needs to be specified and the functionality enabled

by the modeling tool needs to be developed. Fi-
nally, and optionally, integrations to other tools
and applications can be realized.

When developing GLSP-based modeling tools
(see Fig. 8), a developer needs to first think about
the intended integration and deployment scenar-
ios of the tool as these decisions influence the
technology choices adhering to the selection of
the appropriate GLSP server frameworks (e. g.
Java-based vs. node-based server), which may
certainly entail additional complexity to an inex-
perienced adopter of GLSP. For most traditional
metamodeling platforms these considerations are
inapplicable, anyway, as they enforce a specific
technology stack and mostly often constrain the
tool deployment to desktop client applications.

6 LSP Research Opportunities

LSP opens various directions for research by of-
fering opportunities for the information systems
engineering and conceptual modeling research
communities that heavily develop and use model-
ing tools (Frank et al. 2014; Sandkuhl et al. 2018).
Using the LSP and the GLSP yields opportunities
for building highly flexible and interoperable mod-
eling editors that can be accessed via the browser
or through open platforms, such as VS Code or
Eclipse Theia (Bork et al. 2023). An Entity Re-
lationship modeling tool that has been released
as an extension through the VS Code ecosystems
shows the feasibility of facilitating LSP to elevate
modeling tools to the web and to efficiently reach
a broad audience (Glaser and Bork 2021; Glaser

http://dx.doi.org/10.18417/emisa.18.9

International Journal of Conceptual Modeling
Vol. 18, No. 9 (2023). DOI:10.18417/emisa.18.9

14 Dominik Bork, Philip Langer

et al. 2022). Other GLSP-based modeling tools for
UML15 and BPMN16 have been released recently.

From a software engineering point of view, LSP
brings the opportunity to develop other language
servers for upcoming programming languages. In-
stead of developing specialized support for the
diverse IDEs, engineers can develop one language
server that can be used directly by all supporting
LSP clients (cf. Fig. 1). Moreover, research may
focus on applying the generic characteristics of
LSP to support further purposes similar to the De-
bug Adapter Protocol and the Graphical Language
Server Platform.

Another research opportunity emerges from
the disruptive changes LSP causes in the tool
development and IDE markets. Whole ecosys-
tems like the one surrounding VS Code emerge
rapidly. LSP’s effects on software engineers and
other ecosystems should be investigated. LSP
changes the way software engineers develop soft-
ware systems. Empirical software engineering
research should thus investigate the effects stan-
dardized protocols like LSP have on, e. g., devel-
oper productivity and loyalty. Initial empirical
insights into how software engineers realize lan-
guage servers, based on the analysis of 30 publicly
available language servers, are reported in (Barros
et al. 2022). LSP and its adaptations for mod-
eling like GLSP may also ease the development
of much-needed support for e. g., collaborative
modeling (Zweihoff and Steffen 2021), model ex-
ecution (Khorram et al. 2022; Leroy et al. 2020),
model simulation (Liboni and Deantoni 2020),
or device-specific advanced model representation
and interaction (Bork and Carlo 2023; Carlo et al.
2022) including AR/VR (Muff and Fill 2021; Yig-
itbas et al. 2022) for domain-specific modeling
languages.

15 bigUML modeling tool: https://marketplace.visualstudio.
com/items?itemName=BIGModelingTools.umldiagram, last
accessed: 16.08.2023
16 Open-BPMN modeling toolhttps://marketplace.
visualstudio.com/items?itemName=open-bpmn.
open-bpmn-vscode-extension, alast accessed: 16.08.2023

7 Conclusion

In this paper, we introduced the history, the core
characteristics, and the concepts composing the
Language Server Protocol (LSP). We showed, how
new language servers can be developed and fur-
ther, how different siblings and spin-offs from
LSP extend its generic characteristics to cover
additional purposes like the support of debugging.
An emphasis was then put on the Eclipse Graphi-
cal Language Server Platform (GLSP) that adopts
and extends the LSP protocol for graphical lan-
guages (i. e., models or diagrams) and enables the
development of highly flexible and interoperable
web-based modeling tools. The paper closed with
critical reflections on LSP and opportunities for
future research.

References

Barros D., Peldszus S., Assunção W. K. G., Berger
T. (2022) Editing support for software languages:
implementation practices in language server pro-
tocols. In: Proceedings of the 25th International
Conference on Model Driven Engineering Lan-
guages and Systems, MODELS 2022, Montreal,
Quebec, Canada, October 23-28, 2022. ACM,
pp. 232–243

Bork D., Carlo G. D. (2023) An extended taxon-
omy of advanced information visualization and
interaction in conceptual modeling. In: Data &
Knowledge Engineering

Bork D., Langer P., Ortmayr T. (2023) A Vision
for Flexibile GLSP-based Web Modeling Tools.
In: 16th IFIP WG 8.1 Working Conference on the
Practice of Enterprise Modeling (PoEM 2023). in
press

Bünder H. (2019) Decoupling Language and Edi-
tor - The Impact of the Language Server Protocol
on Textual Domain-Specific Languages. In: Pro-
ceedings of the 7th International Conference on
Model-Driven Engineering and Software Develop-
ment, MODELSWARD 2019, Prague, Czech Re-
public, February 20-22, 2019. SciTePress, pp. 129–
140

http://dx.doi.org/10.18417/emisa.18.9
https://marketplace.visualstudio.com/items?itemName=BIGModelingTools.umldiagram
https://marketplace.visualstudio.com/items?itemName=BIGModelingTools.umldiagram
https://marketplace.visualstudio.com/items?itemName=open-bpmn.open-bpmn-vscode-extension
https://marketplace.visualstudio.com/items?itemName=open-bpmn.open-bpmn-vscode-extension
https://marketplace.visualstudio.com/items?itemName=open-bpmn.open-bpmn-vscode-extension

Enterprise Modelling and Information Systems Architectures
Vol. 18, No. 9 (2023). DOI:10.18417/emisa.18.9
Language Server Protocol 15

Carlo G. D., Langer P., Bork D. (2022) Rethinking
Model Representation - A Taxonomy of Advanced
Information Visualization in Conceptual Model-
ing. In: Conceptual Modeling - 41st International
Conference Vol. 13607. Springer, pp. 35–51

Chinosi M., Trombetta A. (2012) BPMN: An
introduction to the standard. In: Comput. Stand.
Interfaces 34(1), pp. 124–134

Ciccozzi F., Tichy M., Vangheluwe H., Weyns D.
(2019) Blended Modelling - What, Why and How.
In: 22nd ACM/IEEE International Conference
on Model Driven Engineering Languages and
Systems Companion, MODELS Companion 2019,
Munich, Germany, September 15-20, 2019. IEEE,
pp. 425–430

David I., Latifaj M., Pietron J., Zhang W., Ciccozzi
F., Malavolta I., Raschke A., Steghöfer J., Hebig
R. (2023) Blended modeling in commercial and
open-source model-driven software engineering
tools: A systematic study. In: Softw. Syst. Model.
22(1), pp. 415–447

Eclipse. https://www.eclipse.org/glsp/. Last Ac-
cess: last accessed: 22.05.2023

Emerson M., Sztipanovits J. (2006) Techniques
for metamodel composition. In: OOPSLA–6th
Workshop on Domain Specific Modeling, pp. 123–
139

France R. B., Evans A., Lano K., Rumpe B. (1998)
The UML as a formal modeling notation. In: Com-
put. Stand. Interfaces 19(7), pp. 325–334

Frank U., Strecker S., Fettke P., vom Brocke J.,
Becker J., Sinz E. J. (2014) The Research Field
"Modeling Business Information Systems" - Cur-
rent Challenges and Elements of a Future Research
Agenda. In: Bus. Inf. Syst. Eng. 6(1), pp. 39–43

Gamma E., Beck K. L. (2004) Contributing to
Eclipse - principles, patterns, and plug-ins. The
Eclipse series. Addison-Wesley

Giner-Miguelez J., Gómez A., Cabot J. (2022) De-
scribeML: A Tool for Describing Machine Learn-
ing Datasets. In: ACM/IEEE 25th International
Conference on Model Driven Engineering Lan-
guages and Systems (MODELS ’22 Companion).
ACM

Glaser P.-L., Bork D. (2021) The bigER Tool –
Hybrid Textual and Graphical Modeling of Entity
Relationships in VS Code. In: 25th IEEE Interna-
tional Enterprise Distributed Object Computing
Workshop, EDOC Workshops 2021, pp. 337–340

Glaser P.-L., Hammerschmied G., Hnatiuk V.,
Bork D. (2022) The bigER Modeling Tool. In:
Proceedings of the ER Forum and PhD Sym-
posium 2022 co-located with 41st International
Conference on Conceptual Modeling (ER 2022)
Vol. 3211. CEUR-WS.org

Gunasinghe N., Marcus N. (2022) Language
Server Protocol and Implementation. Springer

Khorram F., Bousse E., Mottu J., Sunyé G.,
Gómez-Abajo P., Cañizares P. C., Guerra E., de
Lara J. (2022) Automatic test amplification for
executable models. In: Proceedings of the 25th
International Conference on Model Driven Engi-
neering Languages and Systems, MODELS 2022,
Montreal, Quebec, Canada, October 23-28, 2022.
ACM, pp. 109–120

Langium. https://github.com/langium/langium.
Last Access: last accessed: 22.05.2023

Lédeczi Á., Nordstrom G., Karsai G., Volgyesi P.,
Maroti M. (2001) On metamodel composition. In:
Proceedings of the 2001 IEEE International Con-
ference on Control Applications (CCA’01)(Cat.
No. 01CH37204). IEEE, pp. 756–760

Leroy D., Bousse E., Wimmer M., Mayerhofer T.,
Combemale B., Schwinger W. (2020) Behavioral
interfaces for executable DSLs. In: Softw. Syst.
Model. 19(4), pp. 1015–1043

Liboni G., Deantoni J. (2020) A Semantic-Aware,
Accurate and Efficient API for (Co-)Simulation of
CPS. In: Software Engineering and Formal Meth-
ods. SEFM 2020 Collocated Workshops. Springer,
pp. 280–294

http://dx.doi.org/10.18417/emisa.18.9
https://www.eclipse.org/glsp/
https://github.com/langium/langium

International Journal of Conceptual Modeling
Vol. 18, No. 9 (2023). DOI:10.18417/emisa.18.9

16 Dominik Bork, Philip Langer

LSP4J. https://github.com/eclipse/ lsp4j. Last
Access: last accessed: 22.05.2023

Metin H., Bork D. (2023) On Developing and Oper-
ating GLSP-based Web Modeling Tools: Lessons
Learned from bigUML. In: Proceedings of the
26th International Conference on Model Driven
Engineering Languages and Systems, MODELS
2023. IEEE

Microsoft. https://microsoft.github.io/language-
server-protocol/overviews/ lsp/overview. Last
Access: last accessed: 22.05.2023

Microsoft. https://microsoft.github.io/language-
server-protocol/implementors/sdks. Last Access:
last accessed: 22.05.2023

Microsoft. https://microsoft.github.io/debug-
adapter-protocol/overview. Last Access: last ac-
cessed: 22.05.2023

Mora Segura A., de Lara J., Wimmer M. (2023)
Modelling assistants based on information reuse:
a user evaluation for language engineering. In:
Software and Systems Modeling

Muff F., Fill H.-G. (2021) Initial Concepts for
Augmented and Virtual Reality-based Enterprise
Modeling.. In: ER Demos/Posters, pp. 49–54

Pfeiffer J., Rumpe B., Schmalzing D., Wortmann
A. (2023) Composition operators for modeling
languages: A literature review. In: Journal of Com-
puter Languages

pygls. https://github.com/openlawlibrary/pygls.
Last Access: last accessed: 22.05.2023

Rask J. K., Madsen F. P., Battle N., Macedo H. D.,
Larsen P. G. (2021) The Specification Language
Server Protocol: A Proposal for Standardised LSP
Extensions. In: F-IDE2021, in press

Rodríguez-Echeverría R., Izquierdo J. L. C., Wim-
mer M., Cabot J. (2018) Towards a language server
protocol infrastructure for graphical modeling. In:
Proceedings of the 21th ACM/IEEE International
Conference on Model Driven Engineering Lan-
guages and Systems, pp. 370–380

Sandkuhl K., Fill H., Hoppenbrouwers S., Krogstie
J., Matthes F., Opdahl A. L., Schwabe G., Uludag
Ö., Winter R. (2018) From Expert Discipline to
Common Practice: A Vision and Research Agenda
for Extending the Reach of Enterprise Modeling.
In: Bus. Inf. Syst. Eng. 60(1), pp. 69–80

Steinberg D., Budinsky F., Merks E., Paternostro
M. (2008) EMF: eclipse modeling framework.
Pearson Education

tower-lsp. https://github.com/ebkalderon/tower-
lsp. Last Access: last accessed: 22.05.2023

TSP. https://github.com/theia-ide/trace-server-
protocol. Last Access: last accessed: 22.05.2023

Voelter M., Lisson S. (2014) Supporting Di-
verse Notations in MPS’ Projectional Editor. In:
Proceedings of the 2nd International Workshop
on The Globalization of Modeling Languages,
GEMOC@Models 2014. CEUR Workshop Pro-
ceedings Vol. 1236. CEUR-WS.org, pp. 7–16

VSCode Language Server - Node. https://github.
com/Microsoft/vscode- languageserver-node.
Last Access: last accessed: 22.05.2023

Xtext. https://github.com/eclipse/xtext-core. Last
Access: last accessed: 22.05.2023

Yigitbas E., Gorissen S., Weidmann N., Engels G.
(2022) Design and evaluation of a collaborative
UML modeling environment in virtual reality. In:
Software and Systems Modeling, pp. 1–29

Zweihoff P., Steffen B. (2021) A Generative Ap-
proach for User-Centered, Collaborative, Domain-
Specific Modeling Environments. In: CoRR
abs/2104.09948

http://dx.doi.org/10.18417/emisa.18.9
https://github.com/eclipse/lsp4j
https://microsoft.github.io/language-server-protocol/overviews/lsp/overview
https://microsoft.github.io/language-server-protocol/overviews/lsp/overview
https://microsoft.github.io/language-server-protocol/implementors/sdks
https://microsoft.github.io/language-server-protocol/implementors/sdks
https://microsoft.github.io/debug-adapter-protocol/overview
https://microsoft.github.io/debug-adapter-protocol/overview
https://github.com/openlawlibrary/pygls
https://github.com/ebkalderon/tower-lsp
https://github.com/ebkalderon/tower-lsp
https://github.com/theia-ide/trace-server-protocol
https://github.com/theia-ide/trace-server-protocol
https://github.com/Microsoft/vscode-languageserver-node
https://github.com/Microsoft/vscode-languageserver-node
https://github.com/eclipse/xtext-core

