
Enterprise Modelling and Information Systems Architectures
Vol. 18, No. 3 (2023). DOI:10.18417/emisa.18.3
Editorial 1

Conceptual Modeling and Large Language Models:
Impressions From First Experiments With ChatGPT

Hans-Georg Fill*,a, Peter Fettkeb, Julius Köpkec

a University of Fribourg, Switzerland
b Saarland University and German Research Center for Artificial Intelligence (DFKI), Germany
c University of Klagenfurt, Austria

1 Motivation
Since OpenAI publicly released ChatGPT in
November 20221 , many ideas have emerged as to
which applications this type of technology could
support. At its core, ChatGPT is a conversa-
tional artificial intelligence, meaning that it can
engage in a dialogue to respond to user input given
in natural language (Campbell 2020). Although
such types of systems have been well-known since
Weizenbaum’s Eliza program (Weizenbaum 1966)
and are today widely deployed in practice under
the popular term chatbots, ChatGPT has a partic-
ular set of properties that contributed to its wide
reception and the recent hype surrounding it.

In contrast to previous chatbots, ChatGPT does
not retrieve responses from a knowledge base,
which has been pre-defined by some human user.
Rather, it is based on a pre-trained generative lan-
guage model, which creates responses based on
patterns that the user supplies as input. Thereby,
a language model basically assigns probabilities
to every word in a vocabulary that can follow a
given input sequence. Such word embeddings are
trained using artificial neural networks to learn
a probability distribution from given texts in an
unsupervised fashion, i. e. such that no additional
human input or labeling is required. The gener-
ation of the output sequence thereby considers
the tokens of the input sequence and their posi-
tion as well as the previously generated output,

* Corresponding author.
E-mail. hans-georg.fill@unifr.ch
1 https://openai.com/blog/chatgpt

which is thus denoted as an autoregressive genera-
tion (Jurafsky and Martin 2023). For the training
of these probability distributions for the positional
word embeddings, large sets of training data are
required. In the case of the GPT-3 model, which
underlies ChatGPT, this amounted to 175 billion
parameters (Brown et al. 2020). For efficiently
handling such large parameter sets, several inno-
vations such as the architecture of transformer
models (Vaswani et al. 2017) were necessary.

What seems to make ChatGPT however outper-
form large language model (LLM) based programs
that had been released to the public previously, is
its ability to reduce toxic outputs, i. e. harmful or
biased results. This has been achieved through
the approach of InstructGPT (Ouyang et al. 2022),
which uses reinforcement learning from human
feedback to train a reward model. This reward
model is then in turn used to fine-tune the output
generated by the GPT-3 and GPT-4 language mod-
els. Thus, the training of the reward model only
requires rather limited resources compared to the
size of the language model.

From the multitude of areas in which the ap-
plication of ChatGPT is currently discussed, the
following shall serve as non-exhaustive examples,
which have already appeared in academic outlets:
In the medical domain, ChatGPT has been consid-
ered for writing patient clinic letters by giving it
instructions for following specific directions, using
national guidelines and data from these guidelines
in order to derive clinical advice (Ali et al. 2023);
in the legal domain, ChatGPT has been asked to

http://dx.doi.org/10.18417/emisa.18.3
hans-georg.fill@unifr.ch


International Journal of Conceptual Modeling
Vol. 18, No. 3 (2023). DOI:10.18417/emisa.18.3

2 Hans-Georg Fill, Peter Fettke, Julius Köpke

produce answers to final exams for law school
courses (Choi et al. 2023) and in information man-
agement, a large number of scholars has compiled
thoughts on different aspects of the impact and
societal effects of ChatGPT (Dwivedi et al. 2023).
ChatGPT has been proposed for improving code
quality, refactoring, requirements elicitation, and
software design in (White et al. 2023). In software
development, approaches based on earlier variants
of generative AI models are already available as
commercial products, such as GitHub’s copilot,
(GitHub 2021) and gained interest in the research
community (Nguyen and Nadi 2022; Pearce et al.
2022).

In the field of conceptual modeling, we have
not yet come across any sources of using Chat-
GPT. Previous approaches only studied traditional
knowledge-based chatbots, e. g. (Ren et al. 2020).
The only related approach known so far is the one
of GraphGPT, where simple types of graphs are
derived via the ChatGPT API and visualized2 .

For the interaction with ChatGPT, there is cur-
rently no kind of instruction set or user manual
available. Rather, the knowledge how to interact
with it and which practices work best for achieving
particular results are under exploration.

Thus, we will describe in the following several
experiments we have conducted using ChatGPT
based on the most recent GPT-4 models to explore
which potential applications can be imagined in the
future for generating and interpreting conceptual
models. Thereby, we explore how to generate and
interpret ER, Business Process, and UML class
diagrams as well as Heraklit models. Our goal
is to highlight how modeling applications based
on large language models such as ChatGPT could
be realized. We do not claim a full coverage of
all functionalities, but rather aim to inspire the
community to build on our examples and propose
their own approaches.

2 https://github.com/varunshenoy/GraphGPT last accessed
2023-03-16

2 Results from First Experiments

In the following sections, we report on the results
of a series of experiments that we conducted to in-
vestigate how concrete prompts may be engineered
for generating and interpreting conceptual models.
The prompts are based on templates inspired by
GraphGPT that first set the context and then in-
clude a variable for a concrete task definition. We
will only show the task definition together with
the results. The architecture, detailed structure
of the prompts and the code can be found in the
Appendix.

2.1 Experiment 1: Entity-Relationship
Diagrams

The first modeling language we considered were
Entity Relationship diagrams. These are not only
one of the most well-known types of conceptual
models but are comparatively simple in terms of
the number of contained elements and relations, as
well as their syntax. Thus, we started by designing
an according prompt template.

The details of this template are included in
Prompt 3 in the Appendix on Page 12. The prompt
starts with a brief explanation of ER diagrams.
Throughout the experiments, we noted that it is
beneficial to explicitly specify the range of possi-
ble cardinalities. Subsequently, an example for an
ER diagram based on this definition is presented
in JSON syntax. Finally, a concrete output instruc-
tion is added to the prompt template, whereby
the formatting is specified so that ChatGPT only
generates the plain JSON output, which can be
used for further processing. The last part in the
prompt template is a variable denoted by $code.
There, the actual task definition is inserted. An
example for such a definition is shown in Task
Definition 1.

Task Definition 1
Hotels have at least one or several rooms
and each room is in turn part of exactly one
hotel. Each room has a room number. Guests
may stay in a hotel and book one or several
rooms. A room may in turn be booked by none
or more guests.

http://dx.doi.org/10.18417/emisa.18.3
https://github.com/varunshenoy/GraphGPT


Enterprise Modelling and Information Systems Architectures
Vol. 18, No. 3 (2023). DOI:10.18417/emisa.18.3
Editorial 3

Figure 1: Graphical Representation of the ER Diagram
Result Generated by ChatGPT Using GPT-4

The diagram in Fig. 1 is a graphical represen-
tation of the result generated by ChatGPT in a
simplified JSON format, as shown in Prompt Re-
sult 2 in the Appendix on page 12. The solution
generated by ChatGPT corresponds to the format
proposed in the prompt template, which would
make it suitable for further automated processing.
The content of the result corresponds largely to
a correct solution, i. e. the derived entity types
are correct, the attribute and the attribute assign-
ment. A slight error has been introduced for the
relationship types where it created two separate
relationship types has and part_of, which should
be combined to one single type. The cardinalities
are however correct.

In the next step, we moved on to the interpre-
tation of existing diagrams. For this purpose, we
reused the main part of the prompt template from
before and modified the instruction part at the end,
thereby asking ChatGPT to interpret a provided
ER diagram in the explained notation in a textual
format. The details are included in the template
in Prompt 4 on page 12 in the Appendix.

We then added a problem definition in the form
of a simplified diagram description in our custom
notation, as shown here:

This led to the output shown in the following
Prompt Result 1. The interesting aspect thereby
is that ChatGPT detected an inconsistency in our
problem definition. This was not done on purpose,
but was actually an error we had coincidentally
introduced in the translation to JSON format. We
decided to keep it for illustration as it nicely shows
the capabilities of ChatGPT, i. e. to note that an

Figure 2: ER Diagram Input for Model Interpretation

attribute has been defined for an entity type that
has not been specified previously.

Prompt Result 1
This ER diagram describes a university system
with three main entity types: University,
Teacher, and Course. The relationship
types in this system are "teaches" and
"belongs_to". A teacher can belong to one or
many universities, while a university can have
zero or many teachers. A teacher can teach
zero or many courses, while a course must be
taught by at least one teacher.

Attributes are also defined for each entity
type: Name for University and Teacher, and
Name for Course (although it is not clear
if “Student” is also an entity type, as it
is not included in the “EntityTypes” list,
but it has an attribute named "Name" in the
"has_attribute" section).

In summary, this ER diagram represents a
university system where universities have
teachers who teach courses, and each of these
entities has a name attribute.

The textual description further correctly de-
scribes the entity types, the cardinalities and the
relationship types. It also adds a description of
the overall scenario at the end of the output. In our
view, the interpretation of the diagram seems to
be better than the generation, as no obvious errors
have been introduced. On the other hand, the exact
definition of the semantics of ER diagrams would
certainly require additional information to the one
we integrated in the prompt. For example, it has
not been explained so far how the derivation of
relationship types actually works. Still, the results
can serve as a good basis for subsequent refine-
ment steps. Such refinements could be done, for
example, to instruct ChatGPT to add relationship
types, remove connections or add attributes. In
our experiments we have not studied refinements
of models so far but foresee this for the next steps.

http://dx.doi.org/10.18417/emisa.18.3


International Journal of Conceptual Modeling
Vol. 18, No. 3 (2023). DOI:10.18417/emisa.18.3

4 Hans-Georg Fill, Peter Fettke, Julius Köpke

2.2 Experiment 2: Business Process
Diagrams

In a second experiment, we considered the mod-
eling of Business Processes. For our initial ex-
periments, we used a simplified subset of block-
structured BPMN diagrams supporting start- and
end nodes, XOR- and PAR- gateways, and control-
flow edges between these elements.

In our prompt template, we described the meta-
model in natural language by first defining the
supported node types and then explaining the al-
lowed control-flow edges between nodes. e. g., a
task has exactly one successor and one predeces-
sor; nodes of type XOR-Split have one predecessor
node and two successor nodes (successor_true,
successor_false) and a Boolean condition . . . .

After the metamodel was defined, we provided
a textual process description containing sequences
of activities, a condition, and the parallel execution
of tasks. Therefore, the process model for the
textual description requires all elements of the
metamodel. In order to train ChatGPT to generate
a custom simplified JSON serialization format
for process models, we provided a correct model
for the given textual description in JSON format.
This completes the introduction of ChatGPT for
the process modeling task template. The whole
definition is contained in Prompt 5 in the Appendix
on page 13.

We then asked ChatGPT (GPT-4) to create
a JSON output for a new modeling scenario as
shown in Task Definition 2.

Task Definition 2
First, a claim is filed, then the claim
is checked. If the claim is valid, a
reimbursement is issued. Otherwise, the claim
is rejected.

The JSON output created by ChatGPT by using
the GPT-4 model is shown in the Prompt Result 3
in the Appendix on page 14. Fig. 3 shows a
graphical representation of the JSON output.

The output correctly models the given process
description, and it did not include non-necessary
elements like parallel gateways. The generated

process model is syntactically correct, and it is a
valid instance of the provided metamodel.

2.3 Experiment 3: UML Class Diagrams
For experiments on UML class diagrams, we de-
cided to put a focus on a Zero-Shot approach, i. e.
by re-using an existing syntax that is known to
ChatGPT. This is available for example via the
PlantUML approach3 , where UML diagrams and
some other diagram types can be generated pro-
grammatically using a domain-specific language.
In previous attempts, we had found that Chat-
GPT is capable of generating according models.
Thus, we designed the prompt template shown in
Prompt 1.

Prompt 1
Consider the following scenario and represent
it as a UML class diagram in PlantUML
code and do not add any information that
is not described here and do not add any
explanations, only show the plain JSON output
using triple backticks before and after the
code: $code

We then added a problem description as shown
in Task Definition 3. It is a translation of a UML
exercise taken from an introductory UML book
by Seidl et al. (2012).

Task Definition 3
A university consists of multiple faculties,
which are composed themselves of multiple
institutes. Every faculty and each institute
have a description. Each institute has an
address. Every faculty is led by a dean,
who is an employee of the faculty. The total
number of employees is known. Each employee
has a social security number, a name and an
email address. It is distinguished between
scientific and administrative employees.
Scientific employees are assigned to at least
one institute. For each scientific employee,
his research area is known. In addition,
scientific employees can participate in
projects for a particular number of hours.
For the projects, the name and the start
and end date are known. Some scientific
employees give courses. Then they are denoted
as lecturers. Courses have a unique number, a
name, and a number of hours.

3 See https://plantuml.com/en/

http://dx.doi.org/10.18417/emisa.18.3
https://plantuml.com/en/


Enterprise Modelling and Information Systems Architectures
Vol. 18, No. 3 (2023). DOI:10.18417/emisa.18.3
Editorial 5

Figure 3: Generated Output for the Process Modeling task as a BPMN diagram.

The result created by ChatGPT for this prompt is
shown in Fig. 4 – we do not list here the returned
PlantUML code, but rather only the graphical
representation that can be directly generated from
it either.

Figure 4: Result of the Prompt for Generating UML
Class Diagrams in PlantUML Notation for the Sample
from (Seidl et al. 2012)

In the diagram, most information is correctly
represented, and we found the result quite im-
pressive. What could be remarked is that only

the association between Scientific Employee and
Project is labeled, whereas this has not been done
for the other associations, but we consider this a
rather minor issue. We suspected that the training
of GPT may have included several types of class
diagrams in PlantUML notation, which may be
the reason for the good performance here. An
obvious argument would thus be that this concrete
example may have been learned by GPT before.
Thus, we decided to conduct another experiment
with a more abstract problem definition.

This additional exercise is shown in Task Defi-
nition 4. We made it up ourselves and consider it
thus highly unlikely that it had been presented to
GPT in the course of its training before. The result
generated by ChatGPT in PlantUML notation is
shown in Fig. 5. Also, this example is fully correct
and corresponds perfectly to the text input.

Task Definition 4
A class A has three subclasses B, C and
D. B and D both have a name and a date as
attributes. B is also a subclass of G, which
is related to at least one or more classes of
type H. G has an attribute named X and H has
an attribute named Omega.

2.4 Experiment 4: Heraklit Models
For the generation of Heraklit models we used
Prompt 6 as described in the Appendix on page 15.
The example, which is inserted into the prompt
template, is based on a simple scenario containing
a fan and a lighting in a bathroom described in
Task Definition 5 in more details (Source: Fettke
and Reisig 2023).

http://dx.doi.org/10.18417/emisa.18.3


International Journal of Conceptual Modeling
Vol. 18, No. 3 (2023). DOI:10.18417/emisa.18.3

6 Hans-Georg Fill, Peter Fettke, Julius Köpke

Figure 5: Result of the Prompt for Generating UML
Class Diagrams in PlantUML Notation for the Abstract
Problem Definition

Task Definition 5
Lighting and ventilation of a bathroom: If
the light is switched on when the fan is
stationary, the fan also starts after a while.
Then, when the light is turned off, the fan
continues to run for some time. If the light
is turned on first and then turned off quickly
when the fan is stationary, the fan will not
start at all. If the light is first switched
off and then quickly switched on again when
the fan is running, the fan continues to run
without interruption.

fan starts 
after a while

fan not started

fan continues 
for some time fan continues 

without 
interruption

light 
switched on

fan 
stationary

light 
switched on

fan running

light 
switched off

light 
switched on

light quickly 
switched off

fan 
stationary

light 
switched off

fan 
stationary

light quickly 
switched on

light 
switched off

fan running

light 
switched on

fan running

Figure 6: Result of the Prompt for Generating Her-
aklit Models based on the Task Definition 5

Fig. 6 shows the GPT-generated run. A run in
Heraklit describes the causal order of events

of a system (Fettke and Reisig 2021, 2022). A
deeper analysis shows clearly:

• The defined JSON-format can correctly be gen-
erated by GPT.

• The four generated event atoms correctly corre-
spond to the intended scenario description.

• Generated labels for states seem in many cases
reasonable, for instance, light switched on,
fan running, light switched off, fan stationary.
Other modeling choices may be debatable, for
instance, light quickly switched off. Since a
light switch might be turned on or off, but it is
unfamiliar to identify the state of a switch with
the duration of its switching.

• Generated labels for event atoms seem unusual,
too. The event fan starts after a while seems
reasonable. The event fan not started seems to
denote a state. The two other events are similar,
unusual.

• The causal order of states and events are rea-
sonable from a first view. However, a deeper
analysis shows clear limitations. Neither the
light cannot be switched on and off, nor the
fan starts and stops according to the generated
model.

An overall evaluation of the scenario can be
evaluated with the mark "sufficient": Some basic
structure is acceptable, but a deeper understanding
of the bathroom scenario based on this model is
clearly lacking.

3 Discussion and Evaluation of the Results

Based on the experiments we conducted, large
language models such as ChatGPT may act in our
view as a new type of interface for humans to inter-
act with any kind of software or hardware system.
In contrast to previous interaction approaches, nat-
ural language is put at the core of such approaches
and may either be entered through text or via audio
and even visual means4 . As has been recently
announced by Microsoft, it is soon to be expected

4 See the latest reports on the multimodal interaction in future
GPT versions: https://openai.com/research/gpt-4.

http://dx.doi.org/10.18417/emisa.18.3
https://openai.com/research/gpt-4


Enterprise Modelling and Information Systems Architectures
Vol. 18, No. 3 (2023). DOI:10.18417/emisa.18.3
Editorial 7

that these functionalities will be available in its
Microsoft 365 product range5 . Thus, it seems
worthwhile to further explore how such an inte-
gration can be achieved for tools in conceptual
modeling and in particular for enterprise modeling
tasks in the future.

The evaluation of the generated results for ER,
BPMN, UML, and Heraklit models shows that
very large parts of models can be correctly gener-
ated by ChatGPT. However, despite some impres-
sive results that are fully correct, it still requires
experience in modeling to validate the results. As
has been found already for other use cases of
ChatGPT and similar language models, the main
advantage of them can be seen in their ability to
quickly generate a first draft result, which can
then be refined in a stepwise fashion. In contrast
to initial assumptions that ChatGPT possesses
intelligence or understanding which had been fre-
quently uttered in the media, we rather see it as
a tool for supporting experts to arrive at results
more quickly and easily than through pure manual
interaction. This can be well illustrated with the
results derived in our experiments.

Initially, we had conducted the experiments
using the GPT-3 model in ChatGPT. As soon
as GPT-4 became available, we switched to this
model and noticed a considerable improvement
of the generated results. Thus, we recommend for
any further experiments or developments to use
the most recent version of the language model.

4 Conclusion and Future Research

The experiments conducted so far showed the
enormous potential of large language models such
as ChatGPT for supporting modeling tasks, if
a textual problem description of the domain to
be modeled exists. We were truly impressed
how well both the zero-shot as well as the few-
shot approaches worked. In particular, the strict
adherence to the custom formats provided in the
prompts was impressive and initially unexpected.

5 https://www.microsoft.com/en-us/
microsoft-365/blog/2023/03/16/
introducing-microsoft-365-copilot-a-whole-new-way-to-work/

Through the experiments, we could identify a
number of open research questions and potential
directions for future research. We group them by
methodological considerations for further exper-
iments, aspects of prompt engineering for con-
ceptual modeling, and language-model related
issues.

In terms of methodological considerations for
future experiments, more objective evaluation
strategies of the generated solutions need to be
foreseen. This could be done by reverting to es-
tablished methods in teaching and examination of
conceptual modeling, which is common at many
institutions. Collected prior examination results
from students could serve as a baseline for evaluat-
ing the output generated by large language models.
In this context, it will need to be investigated
whether the two use cases proposed by us – i. e.
generating and interpreting models – are sufficient
or whether more use cases can be imagined.

For the engineering of prompts in conceptual
modeling, further research is necessary to find out
which modeling languages and notations work
best for large language models. A potential direc-
tion, which is currently being explored by some
of our students, includes the use of specifically
developed domain-specific languages for few-shot
prompts, which include more complex descrip-
tions of the formal frameworks underlying the
models. Besides PlantUML also EMF has been
found to be known to ChatGPT and could be
used for further experiments. These approaches
could lead to even better results for generating
models and giving feedback to existing model so-
lutions. For the task definition part of the prompts
it will need to be assessed whether for example
colloquial descriptions, workshop minutes, semi-
formal structures or stepwise refinements work
best.

Finally, in terms of the underlying large lan-
guage models, it will have to be explored if the
recently proposed open-source solutions can com-
pete with the ChatGPT and OpenAI APIs6 . These

6 See for example GPT4all https://github.com/nomic-ai/
gpt4all, Alpaca https://crfm.stanford.edu/2023/03/13/alpaca.
html.

http://dx.doi.org/10.18417/emisa.18.3
https://www.microsoft.com/en-us/microsoft-365/blog/2023/03/16/introducing-microsoft-365-copilot-a-whole-new-way-to-work/
https://www.microsoft.com/en-us/microsoft-365/blog/2023/03/16/introducing-microsoft-365-copilot-a-whole-new-way-to-work/
https://www.microsoft.com/en-us/microsoft-365/blog/2023/03/16/introducing-microsoft-365-copilot-a-whole-new-way-to-work/
https://github.com/nomic-ai/gpt4all
https://github.com/nomic-ai/gpt4all
https://crfm.stanford.edu/2023/03/13/alpaca.html
https://crfm.stanford.edu/2023/03/13/alpaca.html


International Journal of Conceptual Modeling
Vol. 18, No. 3 (2023). DOI:10.18417/emisa.18.3

8 Hans-Georg Fill, Peter Fettke, Julius Köpke

have the benefit of permitting detailed insights into
the technical architecture and are not constrained
by commercial barriers, which allows for an unlim-
ited number of experiments and easier integration
into existing tools. It may even be feasible to add
specific modeling-oriented training data to such
models for improving the performance in terms
of model generation and interpretation.

References
Ali S. R., Dobbs T. D., Hutchings H. A., Whitaker
I. S. (2023) Using ChatGPT to write patient clinic
letters. In: The Lancet Digital Health, E179–E181

Brown T. B., Mann B., Ryder N., Subbiah M.,
Kaplan J., Dhariwal P., Neelakantan A., Shyam P.,
Sastry G., Askell A., Agarwal S., Herbert-Voss
A., Krueger G., Henighan T., Child R., Ramesh
A., Ziegler D. M., Wu J., Winter C., Hesse C.,
Chen M., Sigler E., Litwin M., Gray S., Chess B.,
Clark J., Berner C., McCandlish S., Radford A.,
Sutskever I., Amodei D. (2020) Language Models
are Few-Shot Learners. In: (arXiv:2005.14165)

Campbell M. (2020) Beyond Conversational Arti-
ficial Intelligence. In: Computer 53(12), pp. 121–
125

Choi J. H., Hickman K. E., Monahan A., Schwarcz
D. B. (2023) ChatGPT Goes to Law School. In:
SSRN Minnesota Legal Studies Research Paper
(No. 23-03)

Dwivedi Y. K., Kshetri N., Hughes L., Slade
E. L., Jeyaraj A., Kar A. K., Baabdullah A. M.,
Koohang A., Raghavan V., Ahuja M., Albanna H.,
Albashrawi M. A., Al-Busaidi A. S., Balakrish-
nan J., Barlette Y., Basu S., Bose I., Brooks L.,
Buhalis D., Carter L., Chowdhury S., Crick T.,
Cunningham S. W., Davies G. H., Davison R. M.,
Dé R., Dennehy D., Duan Y., Dubey R., Dwivedi
R., Edwards J. S., Flavián C., Gauld R., Grover
V., Hu M.-C., Janssen M., Jones P., Junglas I.,
Khorana S., Kraus S., Larsen K. R., Latreille P.,
Laumer S., Malik F. T., Mardani A., Mariani M.,
Mithas S., Mogaji E., Nord J. H., O’Connor S.,
Okumus F., Pagani M., Pandey N., Papagiannidis
S., Pappas I. O., Pathak N., Pries-Heje J., Raman

R., Rana N. P., Rehm S.-V., Ribeiro-Navarrete
S., Richter A., Rowe F., Sarker S., Stahl B. C.,
Tiwari M. K., van der Aalst W., Venkatesh V.,
Viglia G., Wade M., Walton P., Wirtz J., Wright R.
(2023) “So what if ChatGPT wrote it?” Multidisci-
plinary perspectives on opportunities, challenges
and implications of generative conversational AI
for research, practice and policy. In: International
Journal of Information Management 71, p. 102642

Fettke P., Reisig W. (2021) Handbook of Herak-
lit, Heraklit working paper, v1.1, September
20, 2021, http://www.heraklit.org

Fettke P., Reisig W. (2022) Breathing Life into
Models: The Next Generation of Enterprise Mod-
eling. In: Hans-Georg Fill Marten van Sinderen
L. M. (ed.) Proceedings of the 17th International
Conference on Software Technologies (ICSOFT
2022). SCITEPRESS, pp. 7–14

Fettke P., Reisig W. (2023) Understanding
Computer-Integrated Systems – How to model
the digital world with Heraklit. in preparation

GitHub (2021) GitHub Copilot Your AI pair pro-
grammer. https://copilot.github.com/

Jurafsky D., Martin J. H. (2023) Speech and Lan-
guage Processing An Introduction to Natural Lan-
guage Processing, Computational Linguistics, and
Speech Recognition, Third Edition Draft. Draft

Nguyen N., Nadi S. (2022) An Empirical Evalu-
ation of GitHub Copilot’s Code Suggestions. In:
Proceedings of the 19th International Conference
on Mining Software Repositories. MSR ’22. ACM,
Pittsburgh, Pennsylvania, pp. 1–5

Ouyang L., Wu J., Jiang X., Almeida D., Wain-
wright C. L., Mishkin P., Zhang C., Agarwal S.,
Slama K., Ray A., Schulman J., Hilton J., Kelton
F., Miller L., Simens M., Askell A., Welinder P.,
Christiano P., Leike J., Lowe R. (2022) Train-
ing language models to follow instructions with
human feedback. In: (arXiv:2203.02155)

http://dx.doi.org/10.18417/emisa.18.3
http://www.heraklit.org
https://copilot.github.com/


Enterprise Modelling and Information Systems Architectures
Vol. 18, No. 3 (2023). DOI:10.18417/emisa.18.3
Editorial 9

Pearce H., Ahmad B., Tan B., Dolan-Gavitt B.,
Karri R. (2022) Asleep at the Keyboard? Assessing
the Security of GitHub Copilot’s Code Contribu-
tions. In: 2022 IEEE Symposium on Security and
Privacy (SP), pp. 754–768

Ren R., Castro J. W., Santos A., Pérez-Soler S.,
Acuña S. T., de Lara J. (2020) Collaborative Mod-
elling: Chatbots or On-Line Tools? An Experi-
mental Study. In: Li J., Jaccheri L., Dingsøyr T.,
Chitchyan R. (eds.) EASE ’20: Evaluation and
Assessment in Software Engineering, Trondheim,
Norway, April 15-17, 2020. ACM, pp. 260–269

Seidl M., Brandsteidl M., Huemer C., Kappel G.
(2012) UML @ Classroom - Eine Einführung in
die objektorientierte Modellierung. dpunkt.verlag

Vaswani A., Shazeer N., Parmar N., Uszkoreit J.,
Jones L., Gomez A. N., Kaiser L., Polosukhin I.
(2017) Attention is All you Need. In: Guyon I.,
Luxburg U. v., Bengio S., Wallach H. M., Fergus
R., Vishwanathan S. V. N., Garnett R. (eds.) Ad-
vances in Neural Information Processing Systems
30: Annual Conference on Neural Information
Processing Systems 2017, December 4-9, 2017,
Long Beach, CA, USA, pp. 5998–6008

Weizenbaum J. (1966) ELIZA - a computer pro-
gram for the study of natural language communi-
cation between man and machine. In: Communi-
cations of the ACM 9(1), pp. 36–45

Weng L. (2023) Prompt Engineering https : / /
lilianweng.github.io/posts/2023-03-15-prompt-
engineering/

White J., Hays S., Fu Q., Spencer-Smith J.,
Schmidt D. C. (2023) ChatGPT Prompt Patterns
for Improving Code Quality, Refactoring, Require-
ments Elicitation, and Software Design

Zhao T. Z., Wallace E., Feng S., Klein D., Singh S.
(2021) Calibrate Before Use: Improving Few-Shot
Performance of Language Models

Appendix: Experimental methodology

This appendix documents the used experimental
methodology.

A Overall Architecture
Our approach builds on the idea of GraphGPT. The
approach permits to alter the thus generated graphs,
e. g. by instructing ChatGPT to color certain nodes.
The approach builds upon a simple web application
with an interface to the ChatGPT API. Thereby, a
prompt is pre-defined that describes the context
for ChatGPT to make it understand in which way
such graphs are to be derived from a given text
– see Prompt 2. Any text inserted by the user
is then embedded in this prompt, together with
the previously generated graph. Due to the input
limitation of ChatGPT, the approach does however
not seem to be indefinitely scalable as the input is
currently limited to 4096 tokens7 . We can identify
in the prompt definition of GraphGPT that at first
some context needs to be handed over to the GPT
API for explaining the concept of graphs and how
they are to be represented in a simplified JSON
code. This also includes the definition of an initial
state of the graph and an explicit example on how
the graph is to be modified upon some prompt
given by the user. In the simplified representations
of graphs, only arrays for nodes and edges are
given, including identifiers, labels and colors.

Prompt 2
Given the current state of a graph and a
prompt, extrapolate as many relationships as
possible from the prompt and update the state.
Every node has an id, label, and color (in
hex). Every edge has a to and from with node
ids, and a label. Edges are directed, so the
order of the from and to is important.

Examples:
current state:
{ "nodes": [ { "id": 1, "label": "Bob",

"color": "#ffffff" } ], "edges": [] }

prompt: Alice is Bob's roommate. Make her node
green.

new state:
{ "nodes": [ { "id": 1, "label": "Bob",

"color": "#ffffff" }, { "id": 2,

7 Tokens used by GTP-3 and GPT-4 are encoded and
decoded using Byte-Pair-Encoding (BPE) – see https:
//huggingface.co/course/chapter6/5?fw=pt. A tool for cal-
culating the number of tokens in a text is provided here:
https://platform.openai.com/tokenizer

http://dx.doi.org/10.18417/emisa.18.3
https://lilianweng.github.io/posts/2023-03-15-prompt-engineering/
https://lilianweng.github.io/posts/2023-03-15-prompt-engineering/
https://lilianweng.github.io/posts/2023-03-15-prompt-engineering/
https://huggingface.co/course/chapter6/5?fw=pt
https://huggingface.co/course/chapter6/5?fw=pt
https://platform.openai.com/tokenizer


International Journal of Conceptual Modeling
Vol. 18, No. 3 (2023). DOI:10.18417/emisa.18.3

10 Hans-Georg Fill, Peter Fettke, Julius Köpke

"label": "Alice", "color": "#ff7675" } ],
"edges": [ { "from": 1, "to": 2,
"label": "roommate" } ] }

current state:
$state

prompt: $prompt

new state:

In terms of the underlying technical architecture,
the approach as shown by GraphGPT gives hints
on the necessary components. As shown in Fig. 7
for the case of natural language input, the input
given by a user is inserted by an application into
a pre-defined prompt structure. This pre-defined
prompt thereby acts as a kind of template. The
result of this insertion is then sent as the actual
prompt, i. e. the input for a large language model,
to the GPT API. The result of the GPT API is
retrieved by the software application and further
processed. This processing may include any kind
of algorithmic procedure, e. g. for transforming
the result into different representations. As shown
by the approach of GraphGPT, the result or parts
thereof may be inserted back into subsequent
prompt definitions, thus acting as variable input
or state transfer.

What has to be noted in this kind of architecture
is that there are no specific components neces-
sary for pre-processing the natural language input
by the user, nor for any kind of context services
apart from the context description embedded in
the prompt. Any kind of format specification
thus has to be embedded in the prompt and needs
to be explained to the language model so that
it can embed it in the generation of the result.
This format specification can be given in the form
of examples or may refer to some format that is
known to ChatGPT, e. g. as we will show later for
generating PlantUML code. The result is thereby
not deterministic, and we discovered throughout
our experiments that sometimes unexpected vari-
ations occur in the output. Such variations may
be corrected by subsequent prompts, by asking
the language model to perform some modifica-
tion, but it is currently unclear to us how such

variations can be effectively controlled, especially
when there is some kind of software interface that
expects a particular output. Further experiments
would have to inspect this behavior in more detail.

B Prompt Engineering for Conceptual
Modeling

For our experiments we considered two possible
directions: a. the generation of conceptual models
via ChatGPT and b. the interpretation of models.
Building upon the ideas of GraphGPT, we used
the following prompt structure, as shown in Fig. 8.

At the beginning, typically some context expla-
nation needs to be specified. This corresponds
to the approach of few-shot learning, which has
been described for letting large language models
learn specific tasks from a few examples (Zhao
et al. 2021). Another strategy would be to use
zero-shot learning, where no examples are pre-
sented, and the model is asked to generate the
output directly. In the case of conceptual models,
this context presentation may include a simplified
characterization of the metamodel of the modeling
language, potentially enriched with an example.
Due to the limitations in the number of input
tokens, it is currently not possible to hand over
complete metamodel specifications at this stage. A
future approach could include to train a language
model explicitly on metamodels, so that it already
incorporates these concepts. For some existing
modeling languages such metamodels are already
included in GPT, e. g. for the case of PlantUML-
encoded models, which is an executable textual
notation for generating graphical representations
of models in different modeling languages. After
the context explanation, a state description can be
foreseen, e. g. for re-inserting an already existing
model output. Subsequently, output instructions
are handed over to instruct the language model
about the styling of the output and force it for
example to omit any explanations of the output,
which it may otherwise generate. This step of in-
struction prompting is essential to permit a direct
processing of the retrieved results by a software

http://dx.doi.org/10.18417/emisa.18.3


Enterprise Modelling and Information Systems Architectures
Vol. 18, No. 3 (2023). DOI:10.18417/emisa.18.3
Editorial 11

Application

GPT API

Pre-Defined Prompt

User Input in 
Natural 

Language

User Input in 
Natural 

Language

Variable
Input

GPT Result

Processing

Result
Presentation

Prompt

ResultState 
Feedback

Figure 7: General Architecture for Natural Language Input as Derived from GraphGPT

Prompt

Context Explanation

Output Instructions

Task Definition

Initial Result

Refinement / Result 
Sequence

State Description

Figure 8: Prompt Structure Used for the Experiments

application that expects a particular format8 . Fi-
nally, the actual task definition is appended, which
may be dynamically inserted based on user input.
The step’s context explanation, state description,
and output instructions would correspond to the
pre-defined prompt as described above and the
problem definition to the user input in natural
language.

8 For further hints and experiences on prompt engineering
see (Weng 2023).

After this input has been sent to the language
model, some initial result is retrieved. Subsequent
interactions with the language model can then
build upon this result, either by accessing the
same session state of the last output – as in the
case of the web-based ChatGPT application, or
by re-inserting the state into the state description.
Thereby, a sequence of refinements and results
can follow.

C ER Diagram Prompts and Results
For the generation of ER diagrams we used the
following prompt template:

Prompt 3
Assume the following for the definition of
ER diagrams: An ER diagram consists of the
following nodes: Entity Types, Relationship
Types, and Attributes. Each node has a name.
A Relationship Type is always connected to two
Entity Types using the "assign" edge. Each
of these "assign" edges has a cardinality to
express how many entity types participate in
a relationship type. The cardinality must
have one of the following values indicating
the minimum and the maximum (0,1), (1,1),
(0,N), (1,N) whereby the N stands for an
unlimited number of entities. An "assign"
edge is formally specified as "EntityType,
Relationship Type, Cardinality". Ensure
that every Relationship Type has at least two
"assign" edges relating to it. Attributes can
be attached to Entity Types and Relationship
Types via an Edge named "has_attribute".

http://dx.doi.org/10.18417/emisa.18.3


International Journal of Conceptual Modeling
Vol. 18, No. 3 (2023). DOI:10.18417/emisa.18.3

12 Hans-Georg Fill, Peter Fettke, Julius Köpke

Here is an example for an ER diagram in JSON
syntax, which expresses that Persons own no
or several cars and that cars may be parked in
one garage. Further that cars always have to
be owned by at least one person:

{"ERdiagram":[
"EntityTypes":[

"Person", "Car", "Garage"
],
"RelationshipTypes":[

"owns", "parked_in"
],
"Attributes":[

"Name", "Numberplate", "GarageNo"
],
"assign":[

"Person, owns, (0,N)",
"Car, owns, (1,N)",
"Car, parked_in, (0,1)",
"Garage, parked_in, (0,N)"

],
"has_attribute":[

"Person, Name",
"Car, Numberplate",
"Garage, GarageNo"

]
]}

Create a new ER diagram using this syntax
for the following scenario and do not add any
information that is not described here and do
not add any explanations, only show the plain
JSON output using triple backticks before and
after the code: $code

The resulting output that is generated by Chat-
GPT and GPT-4 is then as follows:

Prompt Result 2
{
"ERdiagram": {
"EntityTypes": [
"Hotel",
"Room",
"Guest"

],
"RelationshipTypes": [
"has",
"part_of",
"books"

],
"Attributes": [
"RoomNumber"

],
"assign": [
"Hotel, has, (1,N)",
"Room, part_of, (1,1)",
"Guest, books, (0,N)",
"Room, books, (0,N)"

],
"has_attribute": [
"Room, RoomNumber"

]
}

}

For the interpretation of ER diagrams, we used
the following prompt template:

Prompt 4
Assume the following for the definition of
ER diagrams: An ER diagram consists of the
following nodes: Entity Types, Relationship
Types, and Attributes. Each node has a name.
A Relationship Type is always connected to two
Entity Types using the "assign" edge. Each
of these "assign" edges has a cardinality to
express how many entity types participate in
a relationship type. The cardinality must
have one of the following values indicating
the minimum and the maximum (0,1), (1,1),
(0,N), (1,N) whereby the N stands for an
unlimited number of entities. An "assign"
edge is formally specified as "EntityType,
Relationship Type, Cardinality". Ensure
that every Relationship Type has at least two
"assign" edges relating to it. Attributes can
be attached to Entity Types and Relationship
Types via an Edge named "has_attribute".
Here is an example for an ER diagram in JSON
syntax, which expresses that Persons own no
or several cars and that cars may be parked in
one garage. Further, that cars always have to
be owned by at least one person:

{"ERdiagram":[
"EntityTypes":[

"Person", "Car", "Garage"
],
"RelationshipTypes":[

"owns", "parked_in"
],
"Attributes":[

"Name", "Numberplate", "GarageNo"
],
"assign":[

"Person, owns, (0,N)",
"Car, owns, (1,N)",
"Car, parked_in, (0,1)",
"Garage, parked_in, (0,N)"

],
"has_attribute":[

"Person, Name",
"Car, Numberplate",
"Garage, GarageNo"

]
]}

Interpret now the following ER diagram given
in the notation from above and describe its
content textually: $code

http://dx.doi.org/10.18417/emisa.18.3


Enterprise Modelling and Information Systems Architectures
Vol. 18, No. 3 (2023). DOI:10.18417/emisa.18.3
Editorial 13

The diagram in Fig. 2 was then handed over to
ChatGPT in the following custom notation:

Task Definition 6
{"ERdiagram":[

"EntityTypes":[
"University", "Teacher", "Course"

],
"RelationshipTypes":[

"teaches", "belongs_to"
],
"Attributes":[

"Name"
],
"assign":[

"University, belongs_to, (0,N)",
"Teacher, belongs_to, (1,N)",
"Teacher, teaches, (0,N)",
"Course, teaches, (1,N)"

],
"has_attribute":[

"University, Name",
"Teacher, Name",
"Student, Name"

]
]}

D Workflow Prompts and Results
The following prompt template was used for the
workflow experiments:

Prompt 5
Assume the following for the definition of
Workflow Models: A Workflow Model consists of
the following node types: Task, XOR-Split,
XOR-Join, PAR-Split, PAR-Join, Start-Node,
End-Node. Each node of type Task has a label.
Nodes of type Start-Node have exactly one
successor node and no predecessor node. Nodes
of type End-Node have exactly one predecessor
node and no successor node. Nodes of type
Task have exactly one successor node and
exactly one predecessor node. Nodes of
type XOR-Split have one predecessor node
and two successor nodes (successor_true,
successor_false) and a boolean condition.
The successor_true is executed if the
condition is true, and the successor_false
is executed if the condition is false. Nodes
of type XOR-Join have two predecessor nodes
(predecessor_true, predecessor_false) and
one successor node. The successor gets
active after one predecessor is executed.
Nodes of type PAR-Split are used to support
the parallel execution of tasks. They have
one predecessor and two successor nodes
(successor_A, successor_B). The successor
nodes are executed in parallel. Nodes of
type PAR-Join have two predecessor nodes

(predecessor_A, predecessor_B) and one
successor node. The successor node is
activated once both predecessors are executed.
All node types except for start-node and
end-node are optional. If a process contains
a xor-split node, it must also contain
a xor-join node. If a process contains
a par-split node, it must also contain
a par-join node. Here is an example of
a workflow model is JSON syntax, which
represents that first, the start node is
activated, then the task "Process Order"
is executed. Then the task "Check Stock"
is executed. Then an XOR-Split Gateway is
executed. Depending on the condition "items
available?" either the PAR-Split node is
activated, and the two tasks, "Ship Items" and
"Confirm Order," are executed in parallel,
or if the items are not in stock, the task
"Reject Order" is executed. Finally, the
end-node is activated:

{"WorkflowModel":{
"start-Node" : {
"id" : "S1",

},
"end-node" : {
"id" : "E1",

},
"tasks":[
{
"id" : "T1",
"label" : "Process Order",
"successor" : "T2",
"predecessor " : "E1"

},
{
"id" : "T2",
"label" : "Check Stock",
"successor" : "XS1",
"predecessor " : "T1"

},
{
"id" : "T3",
"label" : "Ship Items",
"successor" : "PJ1",
"predecessor " : "PS1"

},
{
"id" : "T4",
"label" : "Confirm Order",
"successor" : "PJ1",
"predecessor " : "PS1"

},
{
"id" : "T5",
"label" : "Reject Order",
"successor" : "XJ1",
"predecessor " : "XS1"

}
],
gateways : [
{
"type" : "XOR-Split",

http://dx.doi.org/10.18417/emisa.18.3


International Journal of Conceptual Modeling
Vol. 18, No. 3 (2023). DOI:10.18417/emisa.18.3

14 Hans-Georg Fill, Peter Fettke, Julius Köpke

"id" : "XS1",
"condition" : "items available?",
"successor_true" : "PS1",
"successor_false" : "T5",
"predecessor " : "T2"

},
{
"type" : "XOR-Join",
"id" : "XJ1",
"predecessor_true" : "PS1",
"predecessor_false" : "T5",
"successor " : "E1"

},
{
"type" : "PAR-Split",
"id" : "PS1",
"successor_A" : "PS1",
"successor_B" : "T5",
"predecessor " : "T2",

},
{
"type" : "PAR-Join",
"id" : "PJ1",
"predecessor_A" : "T3",
"predecessor_B" : "T4",
"successor" : "XJ1"

}
]
}

}

Create a new Workflow Model using this syntax
for the following scenario and do not add any
information that is not described here and do
not add any explanations, only show the plain
JSON output using triple backticks before and
after the code: $code

The result for the input of the Task Definition 2
is generated in the custom JSON format as follows:

Prompt Result 3
{
"WorkflowModel": {
"start-Node": {
"id": "S1"

},
"end-node": {
"id": "E1"

},
"tasks": [
{
"id": "T1",
"label": "File Claim",
"successor": "T2",
"predecessor": "S1"

},
{
"id": "T2",
"label": "Check Claim",
"successor": "XS1",

"predecessor": "T1"
},
{
"id": "T3",
"label": "Issue Reimbursement",
"successor": "XJ1",
"predecessor": "XS1"

},
{
"id": "T4",
"label": "Reject Claim",
"successor": "XJ1",
"predecessor": "XS1"

}
],
"gateways": [
{
"type": "XOR-Split",
"id": "XS1",
"condition": "claim valid?",
"successor_true": "T3",
"successor_false": "T4",
"predecessor": "T2"

},
{
"type": "XOR-Join",
"id": "XJ1",
"predecessor_true": "T3",
"predecessor_false": "T4",
"successor": "E1"

}
]

}
}

E Heraklit Prompts and Results
For the experiments for generating Heraklit
models, we used Prompt 6.

Prompt 6
Assume the following for Heraklit models: A
Model consists of "net-atoms". Each net-atom
has a "left interface", a "transition" and a
"right interface". Consider the following
example for a Heraklit model:

{
"run": [

{
"net-atoms": [

{
"left-interface" :

"vendor V2 available",
"transition" :

"shoes to be ordered",
"right-interface" :

"vendor V2 available"
},
{

http://dx.doi.org/10.18417/emisa.18.3


Enterprise Modelling and Information Systems Architectures
Vol. 18, No. 3 (2023). DOI:10.18417/emisa.18.3
Editorial 15

"left-interface" :
"vendor V2 available",
"Claire wants a hat",

"transition" :
"hat not on offer",

"right-interface" :
"vendor V2 available",
"Claire without hat"

}
]

}
]

}

Create a new Heraklit model using this syntax
for the following scenario and do not add any
information that is not described here and do
not add any explanations, only show the plain
JSON output using triple backticks before and
after the code: $code

The result generated by ChatGPT for the
Prompt 6 for Heraklit models together with
Task Definition 5 led to Prompt Result 4.

Prompt Result 4
{
"run": [
{
"net-atoms": [
{
"left-interface": [
"light switched on",
"fan stationary"

],
"transition": "fan starts after
a while",

"right-interface": [
"light switched on",
"fan running"

]
},
{
"left-interface": [
"light switched off",
"fan running"

],
"transition": "fan continues for
some time",

"right-interface": [
"light switched off",
"fan running"

]
},
{
"left-interface": [
"light switched on",
"light quickly switched off",
"fan stationary"

],

"transition": "fan not started",
"right-interface": [
"light switched off",
"fan stationary"

]
},
{
"left-interface": [
"light switched off",
"light quickly switched on",
"fan running"

],
"transition":
"fan continues without

interruption","right-interface": [
"light switched on",
"fan running"

]
}

]
}

]
}

http://dx.doi.org/10.18417/emisa.18.3

