
 Enterprise Modelling and Information Systems Architectures

 Vol. 1, No. 1, October 2005

46 Benjamin A. Schmit, Schahram Dustdar

Benjamin A. Schmit, Schahram Dustdar

Model-driven Development of Web
Service Transactions

Composite Web service design using model-driven approaches has been in use for several years now, but the
modelling of transactional properties is still uncommon and has not yet been subject to much research. For a
distributed system of autonomous components like Web services, especially when they are used for implementing
business processes, transactional guarantees can be of vital importance. In this paper, we propose a model-driven
approach which introduces a separate design layer dedicated to transactions. We show that our systematic
modelling approach is able to introduce transactions in the design without increasing the complexity of the basic
UML diagram. Our approach can also be reused to specify other properties of Web services such as security
requirements or workflows in additional layers.

1 Introduction

Web services have slowly become more and more
commonplace over the last years. Languages like
BPEL [BIM+03] have facilitated the composition of
several simple Web services into larger composite
services. As Web service compositions grow, the
complexity of designing and maintaining business
processes increases with them. Tools for
methodological design like UML [Omg03] have been
available for years, and they have also been applied
to business process design [KHK+03, OrYP03,
BeDS05].

An important property of business processes are
transactions. It must be possible to guarantee that a
business process can have only pre-defined,
consistent outcomes (e.g. success or complete
failure, but never a partial result). Transactions can
be divided into at least two types that are relevant
for business process modelling [Papa03]: ACID
transactions (which have been used in databases for
decades) and long-running transactions which
violate some of the traditional ACID properties.
These two main types can be further augmented
with quality of service attributes.

Several specifications exist which augment the basic
Web service standards with transactions (e.g.
[BeIM04b, Oasi04, AFI+03]). The specifications use
XML to express transactional semantics.
Programmers can combine them with BPEL in order
to implement business processes which depend on
the availability of transactions.

Implementing transactions directly e.g. according to
the WS-BusinessActivity specification is error-prone.
It is also directly opposed to the model-driven
architecture, whose goal is to minimize the amount
of hand-written code by formalizing the design step.
On the other hand, including transactional properties
as annotations to the existing design diagrams might
easily make them unreadable, subverting the gains
of the model-driven approach.

In this paper, we propose the use of two layers of
design diagrams. The structural layer can be created
with existing model-driven methodologies, and the
transactional layer uses a UML class diagram to
model the transactions. These layers are merged by
OCL references from the transactional to the
structural view. This approach allows us to easily
manage the added complexity and also helps the
architects when design changes are necessary.

In Section 2, we present a case study which we will
refer to throughout the paper. Section 3 extracts
transactional requirements from the case study and
identifies general challenges with transactions in
Web services. As a response to these challenges,
Section 4 introduces our modelling methodology.
Structure and transactions of the case study are
modeled in two separate diagrams, and the merge
points are identified. Section 5 discusses related
work. Finally, Section 6 sums up the main points of
the paper and reaches the conclusion. It also gives
an outlook on future work.

Enterprise Modelling and Information Systems Architectures
Vol. 1, No. 1, October 2005

Model-driven Development of Web Service Transactions 47

France
Air

Airways
British

Delta Marriott Hilton

Dial−a−Cab
London

Black Cabs
London
Shuttle

Flight Reservation Taxi Reservation Hotel Reservation

London

Conference Reservation

New York
...

Paris
...

Figure 1: Case Study: Conference Reservation System

2 Case Study

We will motivate the approach presented in our
paper with a case study. Our example is an
extension of similar case studies found in various
papers on Web service composition. The
assumptions in this case study contain a few flaws
which may not yet be apparent, but will be revealed
during the transaction design phase.

Figure 1 shows how the Web services in our example
work together. Web services in bold font are
composite Web services; they require other Web
services in order to operate correctly. The Web
services depicted in normal font are typically
provided as a company’s gateway to the outside
world. Each of them is managed independently. A
UDDI registry may be used to locate services
implementing a given interface, e.g. airlines, but this
feature is not yet included in our case study.

The task of organizing a trip to a conference
consists, among other things, of booking a flight to
the conference location, booking a hotel, and
organizing the trip between the airport and the hotel
by booking a taxi (for the example, we ignore the
possibility of a taxi stand in front of the airport). The
booking services have kindly been provided by
umbrella organizations.

The flight reservation service queries the Web
services of some airlines for the availability of a
flight with a given set of restrictions (airports,
number of stops, price). Some airlines access Web
services of associated airlines for completing the
request (e.g. most Air France flights within the USA
are operated by Delta).

 The (fictive) Global Association of Taxi Drivers
operates a Web service that offers a single access
point for the major cities’ taxi associations. As an
example, the London Taxi Driver’s Association’s Web
service may query several local taxi companies —
other local associations will likely do the same.

Finally, the hotel reservation service provides
uniform access to several hotel chains. Since most
major chains operate globally, a localized service
level (as in the taxi reservation example) is not
implemented here.

3 Requirements and Challenges

In this section, we will identify some transactional
requirements that can be derived from the case
study. We will also identify some general challenges
for Web service transactions. Not all of the problems
indicated here have been addressed in this paper,
some are subject to future work. This list can serve
as a guideline for designers of composite Web
services.

3.1 Transactional Requirements

In order to implement the collaborative Web services
of the case study, the transaction subsystem (in fact
subsystems, since it is unlikely that each company
uses the same transaction software) needs to fulfill a
number of requirements:

Long-running Transactions: It is generally
accepted (see e.g. [Papa03]) that ACID transactions
are unsuitable for most business processes.
Traditional database transactions typically have a
short duration, and therefore database tables

 Enterprise Modelling and Information Systems Architectures

 Vol. 1, No. 1, October 2005

48 Benjamin A. Schmit, Schahram Dustdar

affected by a transaction can be locked while they
are running.

On the other hand, the transactions needed for our
case study involve the cooperation of a large
number of Web services. Those services do not even
belong to the same company and may be distributed
globally. In such a setting, network connections may
fail, subtransactions may need to be compensated,
alternative options may need to be considered, and
even human intervention may be necessary. Locking
a database table for the entire time the long-running
transaction is active is therefore no longer practical.

The solution proposed by current Web service
transaction specifications like [BeIM04b, Oasi04,
AFI+03] consists of weakening the atomicity and
isolation properties so that several concurrent long-
running transactions may access the same
underlying database tables. They are typically called
business transactions, and can consist of a
composition of several ACID transactions.

Alternative Process Paths: In some situations,
alternative paths within a business process may lead
to equally acceptable results. When we want to book
a taxi from Heathrow airport to a downtown London
hotel, the goal to have a taxi ready when we leave
the airport (flight delays are not considered here) is
more important than the price difference of a Pound
between the available taxi companies.

For the flight selection, on the other hand, the
selection of the transaction that will eventually be
committed will usually depend on (preliminary)
results returned by the involved Web services. Air
France, for example, does not offer direct flights
from Vienna to London. Booking a non-stop flight
with British Airways removes the inconvenience of
switching planes in Paris as well as the possibility of
missing the second flight because of a delay in the
first one, and the single flight ticket may be cheaper
than two of them. However, if for some reason we
can’t reserve a British Airways flight, it would still be
good to use Air France’s Web service as a fallback.
All of this is known in advance and can be specified
explicitly in the business process.

For the hotel, we have no opinion in advance. We
will ask all available hotel chains and commit the
transaction with the lowest price at the specified
level of service.

Phased Transactions: As explained in [PaCh03,
LiZh04], business transactions could greatly benefit
from a multi-phase model. In this model, a first pre-
transaction phase should establish tentative holds on
the resources that will be accessed in the
transaction. In our example, the price of a flight can

be queried before the main transaction phase. If the
price should later change or the flight become
unavailable, the airline Web service will notify its
client that the tentative hold has been removed, and
the pre-transaction phase needs to be repeated. This
procedure reduces the number of (main)
transactions needed in a complex business process
and therefore increases the chance of a successful
commit.

After the main-transaction phase (which executes
the agreement protocol), a post-transaction phase
can be used to exchange materials related to the
transaction, e.g. an electronically signed contract or
further details such as when the passengers should
be at the airport and how much baggage they can
take with them. These details can be exchanged
after the transaction has committed because they
are not important to the transaction’s outcome, and
removing them from the transaction’s body further
reduces the size of the transaction, which in turn
reduces the chances for transaction rollbacks.

Quality of Service: Another issue that needs to be
considered is quality of (transaction) service. We
have already discussed the difference between ACID
and long-running transactions, but even these two
models can be further subdivided.

Examples of quality of service aspects are whether
the transactions can be organized hierarchically,
whether a transaction is local to a single Web service
or can be extended for operation in a composite Web
service, whether a transaction is aborted after some
time of inactivity, or whether data regarding the
transaction is transmitted via secure channels only.
These aspects need to be considered when a
composite Web service is designed.

3.2 Challenges

Because the requirements for Web service
transactions differ from those for conventional ACID
transactions, some of the solutions developed for
database transactions cannot be reused and new
concepts have to be introduced. We have identified a
number of challenges that need to be addressed:

Transaction Model: For a single Web service, a
traditional database transaction may in some cases
be sufficient. However, as soon as Web services are
composed to form a larger composite service, non-
ACID transactions are needed so that resources do
not have to be locked for long periods of time
[LiZh04]. A Web service that uses ACID transactions
per default should be able to distinguish between a
simple request to its ports and a composite request
by another Web service.

Enterprise Modelling and Information Systems Architectures
Vol. 1, No. 1, October 2005

Model-driven Development of Web Service Transactions 49

Compensation: With a non-ACID transactional
style, implementing compensation becomes a
necessity. Many Web services do not provide ports
for compensation actions (such as returning the
ticket to the airline with a full refund). If a
participant in a composite Web service transaction
decides that the transaction needs to be rolled back,
it must be possible to undo all preliminary results.

Timeouts: The challenge of compensation directly
leads to the question of timeouts. A company needs
to be able to specify a maximum time that a
transaction can be running. It would be bad for
business if customers could prolong their
transactions and roll back (or compensate) at any
time. Airlines, for example, usually charge different
cancellation fees depending on the time remaining
until the flight.

Transaction Hierarchies: When Web services are
assembled to form a composite service, it may be
helpful to use hierarchical transactions to reflect the
structure of the composite Web service. Within a
workflow, hierarchical transactions are also useful
because subtransactions can then be exchanged if
they fail. In our example, if the subtransaction
involving a given London taxi company fails, we
want to create a second subtransaction with another
taxi company. In this case, it is enough if a single
subtransaction commits.

Enforcing Transaction Semantics: Where
transaction hierarchies are used, it may happen that
lower-level Web services do not support the
transactional properties required by the higher-level
composite services that access them. A transaction
needs to be able to query the properties of
subtransactions and report a failure if its features
are insufficient.

Scope of Transactions: In the case of hierarchical
transactions, we have to decide whether we want to
use a small number of larger transactions or a large
number of relatively small transactions, i.e. whether
the scope of a single transaction should be large or
small. Smaller transactions should reduce the work
needed for a potential compensation in most cases,
but they introduce more overhead in transaction
processing. A problem that has not yet been solved
is whether well-sized transaction scopes can be
generated automatically.

Registration: For some Web services, the question
when all participants have entered a transaction can
be hard to judge. A stock exchange Web service, for
example, may involve an arbitrary number of
interested parties who state their bids in a common
transaction. When the transaction commits, the best
bid is selected. However, it may always be possible
that a better bid will arrive after the agreement
protocol has been executed.

Dynamic invocation: When Web services are to be
composed dynamically, i.e. at run-time instead of at
build time, an additional difficulty is introduced. The
Web service registry needs to be able to understand
differences between transactional models so that it
does not return services that do not fulfill the
desired transactional guarantees.

Deadlocks: The distributed nature of Web services
adds another difficulty to the problem of deadlock
detection. Different programmers may
independently implement a sequence of queries to
the same Web services, which can interlock during
execution. Detection of such distributed deadlocks is
a complicated topic (see e.g. [Elma86]), especially
since short timeouts are not an option for Web
services. Again, a good design methodology can help
to discover this problem.

Workflow Issues: In many cases, several
equivalent transactions have to be started in order
to compare the offers of different companies.
Depending on the preliminary results (compulsive
business offers), a single transaction is committed
while the others are rolled back. Either the
transaction subsystem or a workflow engine in the
background must support this typical behavior and
allow the specification of an objective function.

3.3 Design Issues

When Web services are built in an ad-hoc way, not
all of the above requirements are usually addressed
directly, and not all of the challenges are recognized
by the developers. Even when a design phase
precedes the implementation, Web service-specific
challenges may be overlooked.

Therefore, we propose a uniform modelling
methodology for Web service transactions based on
UML [Omg03]. Our approach aims at enhancing

 Enterprise Modelling and Information Systems Architectures

 Vol. 1, No. 1, October 2005

50 Benjamin A. Schmit, Schahram Dustdar

A D

E

C

B

Structural Model

Workflow Model

Security Model

Start End

BusinessActivity

Properties: ...

AtomicTransaction

WS

Transactional Model

Figure 2: The Basic Idea of Our Modelling Methodology

existing UML diagrams with a transactional view. The
methodology has been developed to support a
design that considers the requirements and
challenges of Web services that have been
mentioned above.

4 Modelling Transactions

The basic idea behind our modelling approach is a
layered design. At the bottom layer we use the
(possibly already existing) UML description of the
Web services. Various UML diagram types can be
used for the representation of this basic
architecture, as well as other languages such as
BPMN [Bpmi04], UMM [Cefa01], or ISDL [QuDS04].

On top of these diagrams, other diagram layers can
be placed. In this paper, we examine the
representation of transactions, but for the future we
plan to enhance our modelling methodology to
include at least additional layers for security and
workflow management. Figure 2 depicts the basic
idea.

As the figure shows, the high-level transactional
model references objects in the low-level structural
model. These references are used for establishing
transaction boundaries without adding additional
complexity to the structural model diagram. The
benefits of this approach will be illustrated towards
the end of this section.

For the diagrams themselves, all modelling
languages able to express the necessary
functionality (composite Web service structure,
transactions, security, or workflow) can be used.
Different metamodels can be used for different
layers as well. The only additional requirement is the

availability of references to elements of the
structural model.

4.1 Extracting Transactions from the
Structural Model

In Figure 3, we have depicted a UML statechart
diagram of our case study from Section 2. This
diagram still contains a mixture of Web service
structure and workflow issues, which will have to be
divided into two separate layers in the future.
Depending on their role in the collaboration,
different participants will be interested in different
subparts of this diagram, which lead to different
transactional requirements as shown below:

The end user of the composite Web service only
knows the states Start, Reservation (“Running”),
Success, and Failure. The whole process should
therefore either succeed or fail, and in case of failure
any preliminary results should be deleted (atomicity
guarantee). Compensation is not required.

The reservation service queries the flight reservation
service, the taxi reservation service, and the hotel
reservation service in sequence (for simplicity, we
have chosen not to use concurrency in this
example). Each of those services either fails or
succeeds. In the case of a failure, results from
earlier services need to be compensated to fulfill
requirement 1. The flight reservation, however,
cannot be compensated — therefore, its transaction
needs to be prolonged until the other transactions
commit successfully.

The flight reservation service internally invokes the
Web service of each airline in turn (again we

Enterprise Modelling and Information Systems Architectures
Vol. 1, No. 1, October 2005

Model-driven Development of Web Service Transactions 51

start

Start

Success

[success]

okfail fail fail fail

Failure

ok

[success]

ok

[success]

Query next airline

Get offer

Evaluate best offer
(user’s criteria)

Choose flight

[airlineId >= airlines]

final

[else] book

next

[else, failure]
Book flight

[failure]

fallback

Flight Reservation

Choose service
Service is chosen
according to city

book

[success] Book taxi
Query next taxi
company

retry
[failure, taxiId < taxis]

Taxi Reservation

Get offer

Choose hotel
According to
best price

Book hotel

final
[hotelId >= hotels] next

[else, failure]

book
[success]

Hotel Reservation

[failure]

fallback

[failure]

[failure] [failure, taxiId >= taxis]

[failure]

Reservation

Figure 3: Structure Statechart Diagram

disregard concurrency issues). Then, it compares the
offers to find the one which best suits the user’s
requirements. Finally, the flight is booked. As we
have stated in requirement 2, the airlines do not
offer compensation. A transaction with an airline
may run as long as 4 hours, then it is terminated by
the airline’s server. Therefore, we wait until the taxi
and the hotel are booked until we confirm the
transaction.

The taxi reservation service itself only invokes
underlying Web services depending on the desired
location, and therefore does not need to fulfill
transactional guarantees. The local taxi reservation
services, however, provide atomic services since the
servers are geographically close together. Therefore,
the local transaction requires the short timeout of 5
minutes. On the other hand, taxi reservations can be
compensated within an hour after booking.

The hotel reservation works similar to the airline
reservation, except that the hotel reservation can be
canceled. However, according to 2, compensation is
not necessary at the higher level. (In a real-world
example, we would, after this realization, rearrange
the design of the subtransactions of the reservation
service so that the flight transaction is invoked last.)

4.2 The Transactional Diagram

The structural model diagram already contains much
information, and adding transactional semantics to
the diagram would not improve readability.
Therefore, we use a separate UML diagram to
capture the transactional requirements identified
above.

For the transactional model, we have used a UML
class diagram. We did not introduce a new diagram
type because the class diagram is expressive enough
for our needs, and existing UML tools already
support this diagram type. Each transaction is
modeled as a class. Subtransactions that are
invoked by higher-level transactions are depicted as
subclasses. Finally, tagged values and stereotypes
add the necessary transactional semantics.

For referencing elements from the structural model,
the Object Constraint Language (OCL, [Omg03]) is
used. It is defined as part of the UML specification
and is therefore supported by many UML tools.
However, UML can also work with other expression
languages if necessary.

Figure 4 shows the transactional model diagram. We
have used the terms “atomic transaction” and
“business activity” from [BeIM04a, BeIM04b] to
indicate ACID and long-running transactions. (The
transaction specification used by a design diagram,

 Enterprise Modelling and Information Systems Architectures

 Vol. 1, No. 1, October 2005

52 Benjamin A. Schmit, Schahram Dustdar

«BusinessActivity»
FlightTransaction

{compensation=false,
timeout=4h}

airFrance: Airline
britishAirways: Airline
delta: Airline

«constructor»

«destructor»
Start.start

BookHotel.ok
ChooseFight.fail

«Invocation»
TaxiTransaction

{compensation=true,

compensationTimeout=1h}
timeout=5m,

london: TaxiAssociation
newYork: TaxiAssociation
paris: TaxiAssociation

«constructor»

«destructor»

doLondon
«invocation»

doNewYork
doParis

BookTaxi.ok
ChooseService.fail

BookFlight.ok

«constructor»

«destructor»
BookHotel.ok
ChooseFlight.fail
ChooseService.fail
BookTaxi.fail
ChooseHotel.fail

Start.start

flight: FlightReservation

hotel: HotelReservation
taxi: TaxiReservation

«BusinessActivity»

{compensation=false,
timeout=5h}

ReservationTransaction

{compensation=true,

«AtomicTransaction»
LondonTaxiTransaction

timeout=5m,
compensationTimeout=1h}

londonBlackCabs: Taxi
dialACab: Taxi
londonShuttle: Taxi

«constructor»

«destructor»
TaxiTransaction.doLondon

BookTaxi<london>.ok
BookTaxi<london>.fail

{compensation=true
timeout=1h,
compensationTimeout=7d}

HotelTransaction
«BusinessActivity»

hilton: Hotel
marriott: Hotel

«constructor»

«destructor»
BookHotel.ok
ChooseHotel.fail

BookTaxi.ok

Figure 4: Transaction Class Diagram

including the agreement protocol executed, needs to
be defined separately to complete the semantics of
the model. In our case, this needs to be done for
AtomicTransaction and BusinessActivity.) They are
added to the transaction class as a stereotype. If no
transaction needs to be used for a Web service, the
stereotype Invocation is used.

The support for compensating a whole transaction is
added to the class as the tagged boolean value
compensation. Similarly, quality of service
properties can be specified. In our diagram, the
timeout for the transaction itself and the timeout for
invoking a possible compensating transaction have
been included.

The Web services that are coordinated by a
transaction are displayed as attributes. The
constructors of the transaction class indicate the
transitions in the structural diagram at which the
transaction must be started. Similarly, destructors
show the termination (commit or rollback) of the
transaction. Finally, methods described by the
invocation stereotype can reference the
constructors of subtransactions which cannot be
mapped to a transition in the structural model.

For clarity, we have left the individual (non-
composite) Web services out of the transactional
model diagram — atomicity is assumed for all non-

composite services that are not included in a
transactional diagram. Excluding those services
improves the readability of the diagram.

4.3 Merging the Diagrams

Figure 5 illustrates how the structural and the
transactional model work together. Each constructor
and destructor in the transactional diagram either
maps to a transition in the structural diagram or to
an invocation in the transactional diagram. An
important point that the figure also demonstrates is
that — as we have stated earlier — a single diagram
for both structural and transactional view is almost
unreadable.

5 Related Work

In this section, we discuss two main types of related
work: Related modelling languages may have been
used instead of UML in our paper. This would not
have changed the underlying concept of separation
of concerns. Related methodologies are alternative
approaches, both based on UML and other modelling
languages.

Enterprise Modelling and Information Systems Architectures
Vol. 1, No. 1, October 2005

Model-driven Development of Web Service Transactions 53

Figure 5: Merging Structural and Transactional Model

5.1 Related Modelling Languages

The Business Process Modelling Notation (BPMN)
[Bpmi04] standard describes a notation for
designing business processes. The claim of the
document is to unify existing notations, and to ease
design of executable business processes in BPEL4WS
[BIM+03]. Similar to UML, the specification allows
several diagram types. Some transactional
properties (boundaries, compensation) are also
supported by the specification. We use the broader
UML specification for our approach because we want
to add additional layers like security to our
methodology in the future.

UN/CEFACT’s Modelling Methodology (UMM)
[Cefa01] is a UML profile for modelling business
processes. Basically, it supports four hierarchically
organized views: Business domains, requirements,
transactions, and services. Using these views, a
business process can be modeled top-down.
However, graphical modelling of transactional
properties is not mentioned.

The Interaction System Design Language (ISDL)
[QuDS04] provides another graphical language for
modelling Web services. We did not use the
language in our paper since UML is more widely
known and additionally supports referencing diagram
elements with OCL.

5.2 Related Methodologies

[KHK+03] describes how models from the UML and
ADF methodologies can be transformed into
platform-specific models. From these models,
descriptions in BPEL4WS [BIM+03] can be derived.
However, transactions are only mentioned as a side
aspect of modelling in the paper. [NoKo04] extends
this approach by defining patterns for the rules.

[OrYP03] discusses Web service composition in
several phases (definition, scheduling, construction,
and execution). During these phases, the model
should gradually become more concrete. The
methodology is based on UML, OCL, and a set of
composition rules. Transactions are not explicitly
mentioned in these rules.

[DiDu04] states that a multi-viewpoint approach is
needed for designing composite services. The paper
identifies the viewpoints of interface behavior,
provider behavior, choreography, and orchestration.
Petri nets are used for the modelling approach. The
paper does not discuss distributed transactions
issues.

[BeDS05] also uses statechart diagrams to model
composite Web services. The paper focuses on
distributed composition. Transactions are shortly
mentioned in future work, where it states that
transactional semantics should be integrated into the
model for a group of states in a statechart. However,
no systematic approach is given yet.

 Enterprise Modelling and Information Systems Architectures

 Vol. 1, No. 1, October 2005

54 Benjamin A. Schmit, Schahram Dustdar

5.3 Other Related Work

[KaBu04] proposes a template technique for Web
services flows in order to ease service composition.
These templates are parts of a business process
description that can be used for composition. This
concept may be useful for transforming our model
diagrams into business process specifications in the
future.

[HeVo03] defines a two-directional mapping
between UML activity diagrams and BPEL process
specifications as well as CSP process descriptions.
These mappings can be used to find syntactic and
semantic discrepancies in the description. The
modelling process itself is not described. The paper
does not explicitly mention transactions.

[Loec04] addresses transactional properties in a
distributed middleware setting. The paper discusses
Enterprise JavaBeans, but some of the work can be
applied to Web services as well.

Comprehensive information about Web service
transaction specifications can be found in [Papa03].
An overview on database transaction issues is given
by [BrGS92, JaKe97].

6 Summary, Conclusion and
Outlook

In this paper, we have demonstrated the need for a
uniform design methodology for Web services. One
layer of this methodology needs to be concerned
with transactions. We have then identified
requirements and challenges for Web service
transactions for our case study and in general.
Starting from these challenges, we have proposed
the use of UML class diagrams as a transactional
layer above a UML statechart diagram describing the
service’s structure.

While modelling the case study, we have identified
some problems with our original assumptions, e.g.
that the flight should be booked before the hotel and
taxi is reserved. In a real-world example,
discovering flawed assumptions would lead to a
(possibly iterative) redesign. A major advantage of
the model-driven approach is that conceptual flaws
can be identified before implementation. The
proposed introduction of new views can improve the
detection of such flaws.

Throughout the paper, we have emphasized the
necessity of separate views (so far, we have
identified structure, transactions, security, and
workflow). Figure 5 shows that it is infeasible to
combine all these views into a single diagram,

therefore references between the diagrams are
necessary. Whether UML or another modelling
language is used is of secondary importance — we
have used UML because it is the de-facto standard
for model-driven architectures.

An interesting result of our work is that most related
papers do not discuss transactional properties of
Web services. We think that these properties are an
important ingredient for model-driven Web service
design that must not be overlooked.

6.1 Future Work

This paper raises a number of questions that have
not yet been answered and therefore it can only be
the first part of a larger endeavor. Design
requirements for the missing layers of security and
workflow will need to be found, and the necessary
semantics will have to be added to a UML diagram.

The transactional layer itself is also not yet
complete. Some requirements have not yet been
included in our model, other challenges still need
more research before they can be supported by a
modelling methodology. In the end, the model will
have to be formalized, i.e. the set of stereotypes and
tagged values that is used will have to be formally
defined.

After this step, it should be possible to automatically
derive transactions and transactional properties from
the design diagrams. This automation can be used
either to implement Web services that fulfill certain
transactional guarantees, or to check whether
existing services provide the transactional features
needed for composition. When the metamodel is
complete, it may well be possible to automate the
transition from the UML diagrams to XML-based
process descriptions.

References

[AFI+03] Arjuna, Fujitsu, IONA, Oracle, and Sun. Web
Services Transaction Management, Version 1.0.
Specification, 2003.

[BeDS05] Boualem Benatallah, Marlon Dumas, and Quan Z.
Sheng. Facilitating the Rapid Development and
Scalable Orchestration of Composite Web Services.
Distributed and Parallel Databases, 17(1):5–37,
January 2005.

[BeIM04a] BEA, IBM, and Microsoft. Web Services Atomic
Transaction. Specification, November 2004.

[BeIM04b] BEA, IBM, and Microsoft. Web Services Business
Activity Framework. Specification, 2004.

Enterprise Modelling and Information Systems Architectures
Vol. 1, No. 1, October 2005

Model-driven Development of Web Service Transactions 55

[BIM+03] BEA, IBM, Microsoft, SAP, and Siebel. Business
Process Execution Language for Web Services, Version
1.1. Specification, May 2003.

[Bpmi04] BPMI. Business Process Modeling Notation
(BPMN), Version 1.0. Specification, May 2004.

[BrGS92] Yuri Breitbart, Hector Garcia-Molina, and Avi
Silberschatz. Overview of Multidatabase Transaction
Management. VLDB Journal, 1(2):181–239, June 1992.

[Cefa01] UN/CEFACT. UN/CEFACT’s Modelling Methodology,
Version 10. Specification, November 2001.

[DiDu04] Remco Dijkman and Marlon Dumas. Service-
oriented Design: A Multi-viewpoint Approach.
International Journal of Cooperative Information
Systems, 13(4):337–368, December 2004.

[Elma86] Ahmed K. Elmagarmid. A Survey of Distributed
Deadlock Detection Algorithms. SIGMOD Record,
15(3):37–45, September 1986.

[HeVo03] Reiko Heckel and Hendrik Voigt. Model-Based
Development of Executable Business Processes for Web
Services. In Lectures on Concurrency and Petri Nets:
Advances in Petri Nets, volume 3098 of Lecture Notes
in Computer Science, pages 559–584. Springer-Verlag,
September 2003.

[JaKe97] Sushil Jajodia and Larry Kerschberg, editors.
Advanced Transaction Models and Architectures.
Kluwer Academic Publishers, June 1997.

[KaBu04] Dimka Karastoyanova and Alejandro Buchmann.
Automating the Development of Web Service
Compositions Using Templates. In Proceedings of the
Workshop “Geschäftsprozessorientierte Architekturen”
at Informatik 2004. Gesellschaft für Informatik,
September 2004.

[KHK+03] Jana Koehler, Rainer Hauser, Shubir Kapoor,
Fred Y. Wu, and Santhosh Kumaran. A Model-Driven
Transformation Method. In Proceedings of the Seventh
International Conference on Enterprise Distributed
Object Computing, pages 186–197. IEEE, September
2003.

[LiZh04] Benchaphon Limthanmaphon and Yanchung Zhang.
Web Service Composition Transaction Management. In
Proceedings of the Fifteenth Australian Database
Conference, volume 27 of Conferences in Research and
Practice in Information Technology, pages 171–179.
Australian Computer Society, January 2004.

[Loec04] Sten Loecher. A Common Conceptual Basis for
Analyzing Transaction Service Configurations. In
Proceedings of the Software Engineering and
Middleware Workshop 2004, volume 3437 of Lecture
Notes in Computer Science. pages 31–46. Springer-
Verlag, September 2004.

[NoKo04] John Novatnack and Jana Koehler. Using Patterns
in the Design of Inter-organizational Systems — An
Experience Report. In Proceedings of the OTM
Workshops 2004, volume 3292 of Lecture Notes in
Computer Science. Springer-Verlag, October 2004.

[Oasi04] OASIS. Business Transaction Protocol, Version
1.0.9.1. Specification, 2004.

[Omg03] OMG. Unified Modeling Language Specification
Version 1.5, March 2003.

[OrYP03] Bart Orriëns, Jian Yang, and Mike P. Papazoglou.
Model Driven Service Composition. In Proceedings of
the First International Conference on Service Oriented
Computing, number 2910 in Lecture Notes in Computer
Science, pages 75–90. Springer-Verlag, December
2003.

[PaCh03] Jonghun Park and Ki-Seok Choi. Design of an
Efficient Tentative Hold Protocol for Automated
Coordination of Multi-Business Transactions. In
Proceedings of the IEEE International Conference on E-
Commerce, pages 215–222, June 2003.

[Papa03] Michael P. Papazoglou. Web Services and Business
Transactions. World Wide Web: Internet and Web
Information Systems, 6(1):49–91, March 2003.

[QuDS04] Dick Quartel, Remco Dijkman, and Marten van
Sinderen. Methodological Support for Service-oriented
Design with ISDL. In Proceedings of the Second
International Conference on Service Oriented
Computing. ACM, November 2004.

Benjamin A. Schmit

PhD student at the
Vienna University of Technology
Information Systems Institute
Distributed Systems Group
Vienna, Austria, Europe
benjamin@infosys.tuwien.ac.at

Schahram Dustdar

Full professor at the
Vienna University of Technology
Information Systems Institute
Distributed Systems Group
Vienna, Austria, Europe
dustdar@infosys.tuwien.ac.at

