
Enterprise Modelling and Information Systems Architectures
Vol. 17, No. 9 (2022). DOI:10.18417/emisa.17.9
Multi-Level Modeling with Openflexo/FML 1
Special Issue on Multi-Level Modeling Process Challenge

Multi-Level Modeling with Openflexo/FML
A Contribution to the Multi-Level Process Challenge

Sylvain Guérina, Joel Champeaua, Jean-Christophe Bach*,b, Antoine Beugnardb,
Fabien Dagnatb, Salvador Martínezb
a ENSTA Bretagne, Lab-STICC, UMR 6285, Brest, France
b IMT Atlantique, Lab-STICC, UMR 6285, Brest, France

Abstract. Model federation is a multi-model management approach based on the use of virtual models and
loosely coupled links. The models in a federation remain autonomous and represented in their original
technological spaces whereas virtual models and links (which are not level bounded) serve as control
components used to present different views to the users and maintain synchronization. In this paper we
tackle the EMISAJ multi-level process modeling challenge, which consists in providing a solution to the
problem of specifying and enacting processes. Solutions must fulfill a number of requirements for a process
representation defined at an abstract process-definition level and at various more concrete domain-specific
levels, resulting in a multi-level hierarchy of related models. We present a solution based on model federation
and discuss the advantages and limitations of using this approach for multi-level modeling. Concretely, we
use virtual models and more precisely the Federation Modeling Language (FML) that serves to describe
them as the main building block in order to solve the process modeling challenge whereas the federation
feature is used as a means to provide editing tools for the resulting process language. Our solution fulfills
all the challenge requirements and is fully implemented with the Openflexo framework.

Keywords. Model federation •Multi-Level Modeling • System modeling languages • Abstraction, modeling
and modularity • Reusability

Communicated by João Paulo A. Almeida, Thomas Kühne and Marco Montali.

1 Introduction

Model-driven engineering (MDE) has tradition-
ally adopted a strict hierarchical two-level ap-
proach, wheremetamodels reside in a certainmeta-
level, and models are created one meta-level be-
low by using types from the metamodel. Notable
examples of this approach are the widespread
Eclipse Modeling Framework (EMF) (Steinberg
et al. 2008) and the Object Management Group
Meta-Object Facility (MOF) (OMG 2013).
This strict approach shows its limitations when

modeling complex domains requiring more than

* Corresponding author.
E-mail. jc.bach@imt-atlantique.fr

one level of specialization, e. g., to adapt themodel
to application subdomains. Indeed, the two-level
approach fails to acknowledge and support: 1)
the existence of different forms of classification
and/or instantiation (e. g., ontological vs linguis-
tics); and 2) the duality type-object for model
elements. Therefore, while it may still be used for
the aforementioned complex modeling tasks, the
strict approach entails the introduction of acciden-
tal complexity in both the modeling process and
the resulting modeling artifacts.
In order to tackle this problem, the multi-level

modeling paradigm has been introduced. Con-
trary to the strict approach, multi-level modeling
advocates the use of a flexible number of levels as

http://dx.doi.org/10.18417/emisa.17.9
jc.bach@imt-atlantique.fr

International Journal of Conceptual Modeling
Vol. 17, No. 9 (2022). DOI:10.18417/emisa.17.9

2 S.Guérin, J. Champeau, J.-C. Bach, A. Beugnard, F. Dagnat, S. Martínez
Special Issue on Multi-Level Modeling Process Challenge

well as more flexible relations between them. This
paradigm is gaining traction within the modeling
community as evidenced by the contribution of
many new multi-level modeling approaches and
tools such asMelanee (Atkinson andGerbig 2016),
LIMM (Golra and Dagnat 2011), MetaDepth (De
Lara and Guerra 2010), MultEcore (Macías et al.
2016), DeepTelos (Jeusfeld and Neumayr 2016)
or DMLA (Urbán et al. 2017). Taking advantage
of this vibrant state of affairs, and in order to foster
discussion and enable comparison between com-
peting approaches, a multi-level modeling chal-
lenge has been created for the MULTI workshop.
This paper is a response to the latest multi-level
modeling challenge (Almeida et al. 2021) which
consists in providing a solution to the problem
of specifying and enacting processes. Solutions
to theMulti-level Process Challenge must fulfill
a number of requirements for a process repre-
sentation defined at an abstract process-definition
level and at variousmore concrete domain-specific
levels, resulting in a multi-level hierarchy of re-
lated models. In this article, we respond to this
challenge using a solution based on model federa-
tion (Golra et al. 2016a).
Model federation is a multi-model management

approach based on the use of virtual models and
loosely coupled links. The models in a federation
remain autonomous and are represented in their
original technological spaces whereas virtual mod-
els (also called conceptual models) and links serve
as control components used to present different
views to the users and maintain synchronization.
Our solution is based on the model federation
infrastructure. Concretely, we use Openflexo and
its internal FederationModeling Language (FML),
a language to create, link and manage virtual mod-
els, in order to solve the process challenge while
the federation feature is used solely so as to provide
tools for the resulting process language. Our solu-
tion, which is fully implemented and executable,
meets all the requirements.
Our modeling approach is based on a language

(FML) which provides the (linguistics) concepts
that are used to define the multi-level models
and meta-models that are needed. FML allows

defining models as first class entities (which we
call virtual models) and linking them together (by
extension). In the Multi-Level Process Challenge
case study, we exploit this possibility to:

• Define, extend and adapt models, keeping the
history, to meet the modeling requirements of
the case study,

• Align this hierarchy of models with require-
ments evolution (P1–P19 then S1–S13).

This methodological choice allows us to adapt the
models and keep track of their evolution each time
the requirements evolve.
Contrary to a classical multi-level approach,

in which the notion of multi-level is integrated
in the language and must therefore be respected,
our approach allows building multiple levels on
demand, and with the appropriate form. Without
multilevel-specific operators/concepts, the “cus-
tom” construction must be done explicitly during
the model development and evolution process.
Our solution to the challenge is therefore not

a response using a classical multi-level approach
that would allow an efficiency comparison with
another classical multi-level solutions, but an ap-
proach that proposes another organization ofmulti-
level hierarchy through the translation of needs
into levels over time and the possibility to build
an evolving hierarchy of adapted models. This is
made possible by (1) the reification of the notion
of a model and (2) the possibility to interconnect
models (specialization).
The rest of the paper is organized as follows.

Sect. 2 presents our approach and the technology
it relies on. Sect. 3 is the analysis of the problem.
We detail our model in Sect. 4 and show how it
satisfies the challenge requirements in Sect. 5. We
assess the modeling solution in Sect. 6. Sect. 7
presents the related work before the conclusions.

2 Technology

To meet the Multi-Level Process Challenge, we
have decided to use the language infrastructure of
model federation approach (Golra et al. 2016a).
Model federation is a way to assemble models

http://dx.doi.org/10.18417/emisa.17.9

Enterprise Modelling and Information Systems Architectures
Vol. 17, No. 9 (2022). DOI:10.18417/emisa.17.9
Multi-Level Modeling with Openflexo/FML 3
Special Issue on Multi-Level Modeling Process Challenge

conceptual
models

technological
spaces

model
slots

federated
models

Figure 1: The model federation approach

using some kind of low-coupling links. It was ini-
tially formulated to respond to the omg’s RFP Se-
mantic Modeling for Information Federation (Ob-
ject Management Group 2016). In contrast to
approaches that compose metamodels into a sin-
gle large metamodel grouping all needed entities,
model federation build links between models and
metamodels (even through levels) to make “things”
work together. As an illustration of this feature,
we developed a free-modeling editor presented
in (Golra et al. 2016b) that frees the designer from
the bonds of model/metamodel conformity. An-
other notable feature of this approach is the strong
decoupling among tools that remain usable after
federations are made. So to provide an adaptable
framework, we have developed a flexible modeling
language offering modeling features without strict
modeling levels. In a federation, the targeted mod-
eling approaches can be unknown at the beginning
and also can integrate several modeling levels.
We decided to use this approach since it offers

the possibility to link and to navigate among levels.
Before we describe the architecture in next section,
here are some key concepts implemented in the
Openflexo (Openflexo 2019) framework.
This framework relies on the architecture of

Fig. 1. A federation gathers a set of conceptual

models, named virtual models and a set of feder-
ated models. Each federated model pertains to a
technological space and uses the language of its
specific paradigm while a virtual model is built
using the Federation Modeling Language (FML).
Each federated model is an autonomous element
that may evolve with its own tools. The virtual
models serve as control elements binding the fed-
erated models together. In this paper, we mainly
use conceptual models, and more precisely, FML,
its domain specific modeling language. The only
use of the federation feature is on the toolset for
the process language.
A uml-like representation of a simplified meta-

model of FML is provided in Fig. 2. FML is a
language designed to define virtual models. A
virtual model is composed of a set of concepts
(named FlexoConcept in Fig. 2), while itself being
a concept. Hence, virtual models are structuring
units forming architectures, while concepts are
the core entities. A concept has a set of properties
(FlexoProperty) and behaviors (FlexoBehaviour).
Properties can be either simple variables, roles
(pointers to a modeling element in a virtual model
or an external technology-specific model), or prop-
erties bound to complex control graphs. FML is
designed to define not only the structure of vir-
tual models but also the collection of actions that
can be performed on them. These actions are
called behaviors and rely on behavioral primitives
called EditionAction. These behaviors can either
be called or triggered by events. The reactive
behaviors are useful when a federated model evo-
lution needs to trigger a computation. Note that
we do not exploit this possibility in the challenge.
A parallel to the object-oriented approach is use-

ful to understand FML1 . A concept corresponds
to a class, its properties to the attributes of the
class and its behaviors to the methods of the class.
These properties have types defining the kind of
value the role will point to at runtime. Whenever
an element external to the federation space is used,
one needs to use a model slot. A model slot is

1 Some features of FML do not exist in the object-oriented
approach.

http://dx.doi.org/10.18417/emisa.17.9

International Journal of Conceptual Modeling
Vol. 17, No. 9 (2022). DOI:10.18417/emisa.17.9

4 S.Guérin, J. Champeau, J.-C. Bach, A. Beugnard, F. Dagnat, S. Martínez
Special Issue on Multi-Level Modeling Process Challenge

FMLObject

FlexoConcept

name: String

FlexoProperty

name: String

*

1properties

Type
type

FMLVariable FlexoRole GetProperty

GetSetProperty

VirtualModel

1

*

ModelSlot

FlexoBehaviour

name: String

*

1 behaviours

FMLControlGraph

1

1

*

EditionAction CompositeGraph

1

*

IterationConditionalSequence

getControlGraph

setControlGraph

controlGraph

concepts

Figure 2: Representation of the main concepts of FML language

a mediation entity in charge of giving access to
external elements using a technology adapter2 .
When the FML execution engine runs a federa-

tion, it creates virtual model instances containing
concept instances. Some concept instances are
connected to external elements through model slot
instances. To illustrate this, Fig. 3 shows how to
realize a small subset of bpmn with Openflex-
o/FML. Concretely, we have designed a virtual
model (SimplifiedBPMN) with 3 concepts rep-
resenting a process and its contained tasks. An
instance of this virtual model is presented in the
bottom of the figure, showing instances with their
instanceOf relationships with their model. The
following listing shows the FML code of this vir-
tual model. Note that the composition relation of
Fig. 3 between BPMNProcess and BPMNTask is
realized in the FML code by concept containment.
Whenever an instance of BPMNTask is created, it
must be in a container (instance of BPMNProcess)
and the two instances get linked together.

2 It is a reusable library that defines connections between the
FML execution engine and a particular technological space.

// A simplified BPMN metamodel exposing the
// concepts BPMNProcess and BPMNTask
model SimplifiedBPMN {
// Abstract concept BPMNElement defining a name
abstract concept BPMNElement {
String name;
// A basic constructor
create(String name) { this.name = name; }

}
concept BPMNProcess extends BPMNElement {
// A basic constructor
create(String name) { super(name); }
// Other properties and behaviours of the
// BPMNProcess concept
...
concept BPMNTask extends BPMNElement {
// A basic constructor
create(String name) { super(name); }
// Encodes execution of task
execute() {
...

}
// Other properties and behaviours of the
// BPMNTask concept

}
// Other concepts

}
}

An open source tool, Openflexo,3 supports

3 https://github.com/openflexo-team

http://dx.doi.org/10.18417/emisa.17.9
https://github.com/openflexo-team

Enterprise Modelling and Information Systems Architectures
Vol. 17, No. 9 (2022). DOI:10.18417/emisa.17.9
Multi-Level Modeling with Openflexo/FML 5
Special Issue on Multi-Level Modeling Process Challenge

SimplifiedBPMN

BPMNElement

name: String

BPMNProcess BPMNTasktasksprocess

1 *

MyCodingProcess Design Code Test

instanceOf instanceOf instanceOf

MySimplifiedBPMNProcess

Figure 3: An example of bpmn subset showing both
the model and an instance of that model

model federation. This tool offers an FML exe-
cution engine with an interactive virtual model
design environment.
Finally, tools have their own model. We have

taken advantage of Openflexo features to build, in
addition to the models required by the challenge,
a drawing tool that makes our solution (partially)
executable.

3 Analysis

During the requirement analysis of the challenge,
the foundation of our reflections and modeling in-
tentions is guided by the general model federation
approach.
In a first step, the federation approach is mainly

based on modeling relationships between several
models, independent of their abstraction levels
and the modeling architecture.
During the next step of our approach, we try to

take into account the reusability of the relation-
ships by identifying their semantics. The goal is
the identification of concepts with their behavior.
The last step is to organize or structure these

concepts to improve reusability and extensibility,
to create virtual models in FML terminology.

Base metamodel

Acme metamodel
instanceOf

instanceOf

extends

XSure model Acme model

Figure 4: Multilevel architecture of our solution

Like in a lot of modeling approaches, these
steps could also be achieved in any order and itera-
tively. But our goal during the challenge’s analysis
remains to produce an FML virtual model archi-
tecture. As shown in Fig. 4, we defined two virtual
models (Base and Acme processes abstractions)
instantiated by two virtual model instances (XSure
and Acme processes). As the figure shows, the
virtual models play the role of metamodels, in the
sense of concept definition with a level-agnostic
approach. The virtual model instances play the
role of models conforming to the metamodel defi-
nitions. In the rest of the paper, we use the term
metamodel and model to simplify the presenta-
tion. The resulting architecture follows the way
the challenge is presented and this organization
allows for the possibility of flexible extensions.
Our analysis of the use case leads to identify

two main modeling axes (as presented in Fig. 5):

• The horizontal axis is characterized as the on-
tological instantiation axis, in the sense that
the domain type definition (i. e. ProcessType)
is referenced by an instance definition (i. e.
Process). In our base metamodel, each do-
main type definition is referenced by its instance
definition, as developed in Sect. 4.1.2

• The vertical axis is viewed as the linguistic
instantiation. The Metamodel (a virtual model)
can be instantiated as a model thanks to the
instantiation mechanism of FML. This mecha-
nism is similar to the classical object/instance
mechanism of the object languages but without

http://dx.doi.org/10.18417/emisa.17.9

International Journal of Conceptual Modeling
Vol. 17, No. 9 (2022). DOI:10.18417/emisa.17.9

6 S.Guérin, J. Champeau, J.-C. Bach, A. Beugnard, F. Dagnat, S. Martínez
Special Issue on Multi-Level Modeling Process Challenge

any constraint on the referenced virtual model,
i. e. metamodel. The set of resulting instances
comes from several virtual models of any ab-
straction level as detailed in Sect. 4.2.

Metamodel

Type Object
type

instanceOf instanceOf

Ontologic instantiation

Linguistic
instantiationinstanceOf

TypeInstance ObjectInstance

Model

Figure 5: Problem domain linguistic and ontologic
instantiation

Based on this approach, we organize our set
of models following the architecture of the afore-
mentioned Fig. 4. The resulting multi-level archi-
tecture is organized in two virtual models, one
defining the core concepts metamodel including
the definition of Processes and Tasks, and one, the
Acme metamodel, extending the previous model
to specialize the Acme definitions. The FML
language defines multiple inheritance concept be-
tween virtual models as illustrated in Sect. 4.2.
Finally, as explained previously, the defined

level for the Acme and the XSure models is the
result of the instantiation of virtual models. In our
approach, this virtual model instance level cannot
be specialized or extended, but all the other virtual
models could be extended by any concepts, as a
new federated model. Furthermore, the instance
level can be instantiated from any virtual model,
which represents any metamodel level.
The choices we made are complicated to justify

out of context. That is why our choices are pre-
sented within the next section model presentation.

4 Model presentation

The presentation of our solution to theMulti-Level
Process Challenge follows a systematic methodol-
ogy where modeling choices are introduced step
by step, as the requirements are stated. The sat-
isfaction of requirements is explained throughout
this presentation.
The designed multilevel architecture shown in

Fig. 4 captures the two use cases described in
the Process Challenge. Note that in all following
figures, blue is used to represent FML virtual
models and concepts (VirtualModel and FlexoCon-
cept in Fig. 2), see Figs. 3–7 and Fig. 9, while
brown is used for instances of FlexoConcept, see
Figs. 3, 4, 5, 7 and 9.

4.1 Base metamodel for the Process
Challenge

In this section, we present the base metamodel pre-
sented in Fig. 6 with the XSure insurance domain
use case, whose partial description was provided
in the challenge description. The requirements P1
to P19 of the XSure insurance domain are straight-
forwardly implemented by instantiating the XSure
model, as an instance of base metamodel (the left
side of Fig. 4).
Fig. 6 represents this base metamodel with a

uml-like formalism, well adapted to represent
FML concepts and their instances. A Concept of
FML is represented by a uml class where roles of
basic types are attributes. The roles whose types
are concepts are represented by an arrow from
their concept to their type, with their name on the
arrow. The cardinality follows the uml practice.
For example, the role parentActorTypes of the
concept ActorType has the type ActorType and
the * cardinality.
Our proposition relies on ontological instan-

tiation as presented in Fig. 5, with a common
root concept ModelingElement. Two types of
ontological instantiations are needed to meet the
requirements of the challenge. The first one is
characterized by the fact that instances conform to
only one type (Process and Task do respectively
conform to ProcessType and TaskType). While

http://dx.doi.org/10.18417/emisa.17.9

Enterprise Modelling and Information Systems Architectures
Vol. 17, No. 9 (2022). DOI:10.18417/emisa.17.9
Multi-Level Modeling with Openflexo/FML 7
Special Issue on Multi-Level Modeling Process Challenge

Metamodel

* *

1 **

*

*

*

ModelingElement

name: String
lastUpdated: Date

Type Instance

MultiInstance

type

types

ProcessType

TaskType

isCritical : boolean
expectedDuration : int

Gateway
ActorType

ArtifactType

*

gateways

taskTypes

Process/type

Task

beginDate : Date
endDate : Date

tasks

/type

Actor

isSenior : boolean

/types

Artifact
/types

Sequencing

in : TaskType
out : TaskType

AndSplit

in : TaskType
out : TaskType*

OrSplit

in : TaskType
out : TaskType*

AndJoin

in : TaskType*
out : TaskType

OrJoin

in : TaskType*
out : TaskType

*

*

*

*

** * *

1

initialTask

initialTaskType

finalTaskType

creator

allowedActors

allowedActorTypes

usedArtifactTypes

producedArtifactTypes

parentActorTypes

usedArtifacts

producedArtifacts

performingActors

validatedWith

Figure 6: Process management base metamodel (Gateway’s associations with TaskType are represented with
attributes)

http://dx.doi.org/10.18417/emisa.17.9

International Journal of Conceptual Modeling
Vol. 17, No. 9 (2022). DOI:10.18417/emisa.17.9

8 S.Guérin, J. Champeau, J.-C. Bach, A. Beugnard, F. Dagnat, S. Martínez
Special Issue on Multi-Level Modeling Process Challenge

the second type of ontological instantiations allows
some entities to define their conformity to several
types (Actor and Artifact do respectively con-
form to several ActorType and ArtifactType).
These instantiations are respectively expressed us-
ing the relations type and types between Type,
Instance and MultiInstance concepts. In the
diagram, the realization of these relations are indi-
cated by a derived relation, /type or /types, as
for example between Process and ProcessType
or between Actor and ActorType.

4.1.1 Process type definition
In this subsection, we present the process defini-
tion part of the base metamodel, located on the
left of Fig. 6.
ProcessType is a specialization of the Type

concept, and references a collection of TaskType
through the composition relation taskTypeswith
(0..*) cardinality (P1). A TaskType is embedded
in a ProcessType and inherits from its context.
To illustrate this in theXSure insurance domain use
case, the XSure model defines the ’Claim Handling’,
instance of ProcessType, and the ’Receive Claim’,
’Assess Claim’ and ’Pay Premium’ instances of
TaskType.
ProcessType also references a collection of

gateways, reified with the Gateway concept hi-
erarchy. Gateway is a specialization of Type
and is specialized by Sequencing, AndSplit,
AndJoin, OrSplit and OrJoin concepts (P2).
Depending on its type and following its under-
lying operational semantics, a gateway defines
one or more inputs and one or more outputs. A
ProcessType additionally exposes a unique ini-
tial TaskType and a collection of final TaskType
with both roles initialTaskType (single car-
dinality) and finalTaskType (cardinality 0..*)
(P3). TaskType exposes a creator role as a ref-
erence to an Actor concept (P4), which is at the
same conceptual level.
The following listing shows an excerpt of the

FML code modeling some core concepts of the
process modeling base metamodel.

model MetaModel {
concept ModelingElement { ... }

concept Type extends ModelingElement { ... }
concept ProcessType extends Type {
TaskType[0..*] taskTypes;
TaskType initialTaskType;
TaskType[0..*] finalTaskTypes;
Gateway[0..*] gateways;
concept TaskType extends Type {
Actor creator;
Actor[0..*] allowedActors;
ActorType[0..*] allowedActorTypes;
...

}
abstract concept Gateway extends Type {
abstract void execute(Process process);
...

}
concept Sequencing extends Gateway {
TaskType in;
TaskType out;

}
// Other core concepts

}
}

The ActorType concept inherits from the Type
concept and the allowedActorTypes relation to
ActorType defined in TaskType (with 0..* cardi-
nality) captures P5 requirement. Requirement P6
is symmetrically satisfied with allowedActors
relation to Actor also defined in TaskType (with
0..* cardinality). The same modeling pattern ap-
plies to ArtefactType also extending the concept
Type, and both relations usedArtifactTypes
and producedArtifactTypes defined in
TaskType (P7). TaskType additionally ex-
poses an expectedDuration role (expressed in
number of days), satisfying P8.
The Actor concept defines a boolean attribute

called isSenior, while TaskType defines an ad-
ditional isCritical boolean attribute, indicating
that some instances are flagged as critical andmust
be performed by senior actors. To fulfill P9 re-
quirement, a supplementary constraint is required
for TaskType and is captured through the follow-
ing invariant expressed in the FML language:

forEach (actor : allowedActors) {
assert !isCritical | actor.isSenior

}

This invariant should be extended with addi-
tional constraints defined in the Task concept,
which apply to actors assigned to enact tasks.

http://dx.doi.org/10.18417/emisa.17.9

Enterprise Modelling and Information Systems Architectures
Vol. 17, No. 9 (2022). DOI:10.18417/emisa.17.9
Multi-Level Modeling with Openflexo/FML 9
Special Issue on Multi-Level Modeling Process Challenge

4.1.2 Process enactment
In this subsection, we present the process enact-
ment part of base metamodel, located right of
Fig. 6. All concepts defined in this subsection are
either specializations of the Instance concept (if
they have exactly one type) or the MultiInstance
concept (when they have several types).
Process represents an enacted ProcessType,

as defined in previous subsection (P10).
FML defines behavioral features called be-
haviors. ProcessType defines the behavior
newProcess(String), taking the name of the
process to enact as argument:

public Process newProcess(String name) {
Process newProcess = new Process(name,this);
for (taskType : taskTypes) {
Task newTask = taskType.newTask(newProcess.name

+"-"+taskType.name),newProcess);
}
return newProcess;

}

This scheme relies on FML dynamic binding
mechanism to delegate to task types the respon-
sibility of instances creation. An instance of
Process references its unique type ProcessType
by the specialized /type role. Each instance of
TaskType is ontologically instantiated with a
Task (P11), using the same factory pattern where
TaskType has the responsibility to manage the
ontological instantiation. A Task references its
unique TaskType, and defines a beginDate and
an endDate basic roles (P12).
A Task defines the roles usedArtifacts,

producedArtifacts and performingActors
(P13). An instance of Artifact special-
izes MultiInstance and references a set of
ArtifactType through the specialized /types
role (P14 and P16). Likewise, Actor special-
izes MultiInstance and references a set of
ActorType through the specialized /types rela-
tion (P15).
The semantics is relatively unclear as to the in-

stantiation policy for artifacts. In the requirements,
nothing is explicitly stated about the link between
the artifact type of a task type and the types of the
artifacts of a corresponding task. Here, we assume

that task execution implies that for each used and
produced artifact type defined in a related task
type, it exists at least one artifact of the right type.
The following excerpt of FML code shows a par-
tial implementation of this. We proceed likewise
for produced artifacts.

concept Task extends Instance {
...
boolean declaresRequiredUsedArtifacts() {
for (artifactType : type.usedArtifactType) {
boolean found = false;
for (artifact : usedArtifacts) {
if (artifact.isOfType(artifactType))
found = true;

}
if (!found) return false;

}
return true;

}
...

}

Authorization for an actor to per-
form a task (P17) is captured either by
the role allowedActors or the role
allowedActorTypes defined in TaskType.
This mechanism is completed by the behav-
iors isAuthorizedActor, isValidActor and
isValidActorType defined in TaskType:

concept TaskType extends Type {
...
// Check that an Actor is authorized to perform a

task, using allowed Actor and ActorTypes
boolean isAuthorizedActor(Actor actor) {
for (actType : allowedActorTypes) {
if (actor.hasActorType(actType))
return this.isValidActorType(actType);

}
for (act : allowedActors) {
if (actor == act)
return this.isValidActor(actor);

}
return false;

}
// Check that an Actor may perform this TaskType

(override when required)
boolean isValidActor(Actor actor) {
return true;

}
// Check that an ActorType may perform this

TaskType (override when required)
boolean isValidActorType(ActorType actorType) {
return true;

}
...

}

http://dx.doi.org/10.18417/emisa.17.9

International Journal of Conceptual Modeling
Vol. 17, No. 9 (2022). DOI:10.18417/emisa.17.9

10 S.Guérin, J. Champeau, J.-C. Bach, A. Beugnard, F. Dagnat, S. Martínez
Special Issue on Multi-Level Modeling Process Challenge

The Task concept delegates this authorization
to its task type, as shown below.

concept Task extends Instance {
...
boolean isAuthorizedActor(Actor actor) {
return type.isAuthorizedActor(actor);

}
...

}

Enforcing those constraints is finally performed
by the following invariant of the Task concept:

forEach (actor : performingActors) {
assert isAuthorizedActor(actor);

}

The default behavior states that all actors and
actor types are valid for all task types. This
modeling scheme offers many extension points, by
the redefinition of some behaviors in the inherited
concepts (although none were required in the
context of XSure use case).
Actor types specialization is captured by

the parentActorTypes relation defined in
ActorType (P18). This is completed by both the
definition of the hasActorType(ActorType)
behavior in Actor and the recursive behavior
isOrSpecializes(ActorType) in ActorType:

concept ActorType extends Type {
ActorType[0..*] parentActorTypes;
...
boolean isOrSpecializes(ActorType actorType) {
if (actorType == this)
return true;

for (p : parentActorTypes) {
if (p.isOrSpecializes(actorType)
return true;

}
return false;

}
...

}
concept Actor extends MultiInstance {
...
boolean hasActorType(ActorType actType) {
for (type : types) {
if (type.isOrSpecializes(actType))
return true;

}
return false;

}
...

}

Each concept inherits from ModelingElement,
which defines a lastUpdated attribute with Date
type, and thus satisfies P19 requirement.

4.2 The Acme software development
process

The challenge describes in a second part a Soft-
ware engineering process for a fictional Acme
company. The Base metamodel described previ-
ously is too generic to capture all domain-specific
aspects of this use case. We chose to complete
the architectural hierarchy with a specific virtual
model, specific to the Acme software develop-
ment process metamodel, shown in Fig. 7. The
Acme metamodel specializes the Base metamodel,
and the Acme model is an instance of the Acme
metamodel. The metamodel inheritance is im-
plemented by virtual model’s inheritance. Any
instance of the Acme model is either an instance
of a concept defined in the Base metamodel, or
a concept defined in the specialized Acme meta-
model.
Fig. 7 highlights all conceptual levels of the

architecture. This figure is only partial at in-
stance level and not all instances are represented.
It also contains an instance of an enacted Soft-
ware Engineering Process at the bottom. The
Acme metamodel specializes some concepts of
the Base metamodel, for example, SETaskType
extends TaskType and SEArtifactType ex-
tends ArtifactType. These concepts are
further specialized: CodingTaskType extends
SETaskType and CodeArtifactType extends
SEArtifactType. The Acme metamodel also
defines a specialized task type Coding extend-
ing Task, and provides the Developer concept
extending ActorType. This metamodel is com-
pleted with the ProgrammingLanguage concept,
defined as an enumeration (Java, C, COBOL). All
the instances required to capture the challenge
use case are defined in the final Acme model
(lower part of Fig. 7). Instances are represented
with rounded boxes and linguistic instantiation is
represented using dashed connectors.
The Software Development Process for Acme

company is presented in Fig. 8. It is a screen

http://dx.doi.org/10.18417/emisa.17.9

Enterprise Modelling and Information Systems Architectures
Vol. 17, No. 9 (2022). DOI:10.18417/emisa.17.9
Multi-Level Modeling with Openflexo/FML 11
Special Issue on Multi-Level Modeling Process Challenge

* *

*

*

Metamodel
ModelingElement

Type Instance MultiInstance

ProcessType TaskTypeActorType ArtifactType Process Task Actor Artifact

Acme
Metamodel

Developer SEArtifactType

CodeArtifactType

SETaskType

CodingTaskType

CodingTask SEArtifact

CodeArtifact

ProgrammingLanguage

Software Engineering Process

Requirement analysis

Testing

Coding

Requirement specifications

Test cases
Code

Test reportAnalyst

Tester

Developer
Bob Brown

Ann SmithDesign

An enacted process

Requirement analysis task

Testing task

Coding task

Design task

Requirement specifications
artifact

Test cases
artifact

Code
artifact

Test report
artifact

Acme model

/type

/types

1..*

1..*

1..*
languages

languages

languages

Gateway

AndSplitSequencing AndJoin

Figure 7: Acme software development process architecture (not all instances are shown for the sake of readability)

capture of the tool developed for the challenge and
described in the next section.

’Requirements analysis’ is an instance of
SETaskType, ’Analyst’ is an instance of
ActorType and ’Requirement specifications’ is an
instance of SEArtifactType. The value of the
property producedArtifactTypes of ’Require-
ments analysis’ is {’Requirement specifications’}
and is {’Analyst’} for allowedActorTypes (S1).
Similarly, ’Test case design’ is an instance of
SETaskType, with a value of true for its prop-
erty isCritical, and bound to ’Analyst’ by the
allowedActorTypes relation. ’Test case design’
produces ’Test cases’ instance of SETaskType
(S2). The latter is used in ’Test design review’
(producedArtifactTypes relation) (S1 and
S13, satisfied with P9).
Requirement S3 is satisfied by defining ’Coding’

as an instance of concept CodingTaskType
and defining a relation languages to
ProgrammingLanguage with 1..* cardinal-
ity. The newTask(String) behavior overrides
the generic implementation by instantiating a

CodingTask concept, specializing Task, as
shown in the following excerpt of FML code:

concept CodingTaskType extends SETaskType {
ProgrammingLanguage[1..*] languages;
...
public CodingTask newTask(String name) {
return new CodingTask(name,this);

}
}

The CodeArtifact concept extends
SEArtifact, and defines a relation languages
to ProgrammingLanguage with 1..* cardinality
(S4).
S5 is more ambiguous as a task type

CodingTask defines one or more program-
ming languages but produces code which is
expressed in one language only. This requirement
is captured through the redefinition of the behav-
ior declaresRequiredProducedArtifacts

where programming language should also match.
S6 is guaranteed though the languages relation
defined in CodeArtifact and the following
invariant declared in CodeArtifact:

http://dx.doi.org/10.18417/emisa.17.9

International Journal of Conceptual Modeling
Vol. 17, No. 9 (2022). DOI:10.18417/emisa.17.9

12 S.Guérin, J. Champeau, J.-C. Bach, A. Beugnard, F. Dagnat, S. Martínez
Special Issue on Multi-Level Modeling Process Challenge

Analyst

Test Designer

Tester

Developer

Bob Brown

Ann Smith

Design

Coding

Testing

Test Case
design

Test Design
review

Requirement
analysis

SoftwareEngineeringProcess

Requirements
 Specifications

Test Cases

Code

Test Report

uses

produces

produces

produces

produces

Figure 8: Acme software development process

forEach (artifactType : types) {
assert !(artifactType instanceof CodeArtifactType

) | artifactType.doesImplement(languages)
}

’Ann Smith’ is the only one allowed to perform
coding in COBOL (S7). This is implemented
through the redefinition of newTask(String) in
CodingTaskType:

concept CodingTaskType extends SETaskType {
...
public CodingTask newTask(String name) {
CodingTask result = new CodingTask(name,this);
if (languages.contains(ProgrammingLanguage.

COBOL))
result.addToPerformingActors(getActor("Ann␣

Smith"));
return result;

}
}

The requirement S8 is simply expressed by the
definition of the ’Testing’ instance of SETaskType,
’Tester’ instance of ActorType, and ’Test report’
instance of ArtifactType, as shown in Fig. 8.
A critical task must additionally produce ar-

tifacts that must be associated with a validation
task. This is modeled with a supplementary rela-
tion validatedWith defined in Artifact and
referencing the Artifact validating it (S9).

All software engineering artifacts defined in
the context of Acme Software Engineering Pro-
cess are instances of SEArtifact. This concept
defines two attributes: responsible (an Actor
instance), and versionNumber (an integer). It
thus fulfills S10. ’Bob Brown’ is declared as an
instance of Actor, and references ’Analyst’ and
’Tester’ (ActorType instances). He is also ref-
erenced by all instances of SETaskType as the
creator for related task types (S11). This is done
manually by the process designer.
For S12, we assume that all tasks may define

an expected duration, which might be checked
during process execution. This is modeled by
the expectedDuration attribute in TaskType.
Alternatively, this could be modeled through the
definition of a SETesting concept, as a special-
ization of SETaskType, and the instantiation of
’Testing’ as an instance of SETesting. The busi-
ness logic expressed by S12 requirement should
then be redefined in SETesting.
S13 requirement has been previously partially

fulfilled. This must be completed with an associ-
ation between an artifact produced and the task
that validates it. This is modeled by the reference
to ’Test Cases’ as a produced artifact type in ’Test
Case design’ and the reference to ’Test Cases’ as
a used artifact in ’Test Design review’, as shown
in Fig. 8.

4.3 Openflexo toolset
Our solution is fully implemented within the Open-
flexo tool. Both use cases have been modeled in
the interactive design environment and can be
executed by the FML execution engine.
We took advantage of model federation and the

availability of diagramming features through the
Diagramming Technology Adapter to implement
two interactive graphical tools built on top of the
conceptual levels detailed in previous sections.
Fig. 9 shows the overview of the tool architec-
ture and is detailed in the next section. A first
tool offers a graphical edition of a Process type.
The second one offers an enactment feature (the
instantiation of a process from its process type),
the ability within an enacted process to assign

http://dx.doi.org/10.18417/emisa.17.9

Enterprise Modelling and Information Systems Architectures
Vol. 17, No. 9 (2022). DOI:10.18417/emisa.17.9
Multi-Level Modeling with Openflexo/FML 13
Special Issue on Multi-Level Modeling Process Challenge

Enacted Process view
Software Engineering

ProcessType view

Base metamodel

ProcessEditorAcme metamodel

extends

ProcessTypeEditor

ProcessType
Diagram Specification

instanceOf

Diagram

conformsTo

Process Diagram
Specification

Diagram

conformsToinstanceOf instanceOf

- processType : ProcessType - process : Process

ProcessType graphical editor Enacted process graphical editor

Acme model

Figure 9: Tool architecture

Figure 10: Screenshot of the FML metamodel editor

http://dx.doi.org/10.18417/emisa.17.9

International Journal of Conceptual Modeling
Vol. 17, No. 9 (2022). DOI:10.18417/emisa.17.9

14 S.Guérin, J. Champeau, J.-C. Bach, A. Beugnard, F. Dagnat, S. Martínez
Special Issue on Multi-Level Modeling Process Challenge

Figure 11: Screenshot of the enacted process graphical editor

tasks to actors, and a graphical visualization of
this process execution.
The Base metamodel is completed with some

behaviors implementing an execution semantics
for the executed processes. All tasks manage a
status and are instantiated from TaskType for a
given enacted process. This status is either Not
startable (when not assigned to a performing
actor or when required input artifacts are not
available), Startable, Started, Completable
(when all output artifacts are ready) or Completed.
A Task also manages a set of performing actors,
a begin and end date, some used and produced ar-
tifacts. The Gateway business logic has also been
implemented through the implementation of an
abstract execute(Process) behavior. The man-
agement of artifacts whose semantics follows rules
defined in Sect. 4.1.2 (P13) is also implemented.
Fig. 9 details the architecture of these two tools.

The left-hand side of the figure presents the Pro-
cessType graphical editor. ProcessTypeEditor
is modeled as a virtual model declaring two model
slots (represented with bold circles). The first

model slot references the Acme metamodel and
the second model slot references the ProcessType
Diagram Specification.4 When executed, this
tool manages a graphical view for an instance
of the Acme metamodel (the Acme model), a
specific ProcessType instance and a diagram
conforming to the ProcessType Diagram Specifi-
cation. This tool allows representing and editing
a ProcessType. The highly reflective nature of
FML and its tools should be noted. When the
drag and drop interactor is applied for a new item,
the tool allows choosing the concept type to be
instantiated. For example, when a TaskType is
created, the user must choose a concept inheriting
from TaskType (in the Acme use case it can be
SETaskTask or CodingTaskType or the default
value TaskType).
The other tool, called Enacted process graphi-

cal editor and shown on Fig. 11, provides process
edition and tasks assignations through a graph-
ical visualization displaying the process being

4 a diagram “metamodel” which defines and specify structure
and graphical representations for edited items.

http://dx.doi.org/10.18417/emisa.17.9

Enterprise Modelling and Information Systems Architectures
Vol. 17, No. 9 (2022). DOI:10.18417/emisa.17.9
Multi-Level Modeling with Openflexo/FML 15
Special Issue on Multi-Level Modeling Process Challenge

executed. This tool is represented on the right
side of Fig. 9. It follows the same architecture
pattern of the ProcessType graphical editor, with
two model slots referencing both the model and
a diagram. Process enactment is operated from
a ProcessType, and must be defined using a
name identifying the newly instantiated process.
All tasks are created from their TaskType def-
inition, and required assignments apply (if for
example ’Coding’ TaskType defines COBOL as
output programming language, the related task is
automatically assigned to ’Ann Smith’). Each task
has a status as well as a set of performing actors,
a begin and end dates, and used and produced
artifacts.
A demonstrative video for the developed tool

is available on our website,5 as well as download
and installation instructions.

5 Satisfaction of requirements

In the previous Sect. 4, we demonstrated that our
solution satisfies all the challenge requirements. In
this section, we summarize the different techniques
used to satisfy them, without repeating all the
justifications. We classify these techniques into
three categories:

• syntactic conformance: the requirements are
structurally satisfied when the model conforms
to its metamodel;

• constraints checking: the requirements are ful-
filled when all instances satisfy both syntactic
conformance and the evaluation of invariants
expressed for related concepts;

• process tools: the requirements are enforced
by the implementation of the process tools il-
lustrated by Fig. 9. It can be done by using
behaviors defined in the models or by using the
process tools manually.

Table 1 summarizes the requirement coverage
for the base metamodel illustrated by the XSure

5 https://research.openflexo.org/MLMChallenge.html

insurance use case, while Table 2 shows require-
ments satisfaction for the Acme software engi-
neering process. Syntactic conformance is more
precisely classified into six subcategories:

• Conceptualization (Conc.): a concept is created
to fulfill or meet the requirement (for example
for P1: process type is conceptualized in a
concept ProcessType).

• Specialization (Spec.): a concept is special-
ized in the sense of object-oriented modeling
(for example for P2: Gateway defines an ab-
stract behavior execute() and Sequencing,
AndSplit, AndJoin, OrSplit and OrJoin
are defined as inherited concepts implementing
specific business logic).

• Composition (Comp.): a new relation between
existing concepts or specific attributes in exist-
ing concepts are added (for example for P3: a
process type has one initial task type).

• Linguistic instantiation (L.Inst.): a require-
ment is satisfied by the instantiation of one
or more concepts (for example, for S1: ’Re-
quirement analysis’ is defined as an instance of
SETaskType).

• Ontological instantiation (O.Inst.): fulfillment
of a requirement is obtained by the relation
between an instance and its type definition in-
stance (for example, the notion of developer
of S3 is implemented by both a concept in the
Acme metamodel and an instance in the Acme
model, see bottom left of Fig. 7).

• Behavioral modeling (B.Mod.): a requirement
is satisfied by the definition of one or more
behaviors, which may be combined with con-
straints checking and associated tools (for ex-
ample P17).

6 Assessment of the modeling solution

In this section, we discuss our multi-level model
solution with regard to the required aspects men-
tioned in the challenge.

http://dx.doi.org/10.18417/emisa.17.9
https://research.openflexo.org/MLMChallenge.html

International Journal of Conceptual Modeling
Vol. 17, No. 9 (2022). DOI:10.18417/emisa.17.9

16 S.Guérin, J. Champeau, J.-C. Bach, A. Beugnard, F. Dagnat, S. Martínez
Special Issue on Multi-Level Modeling Process Challenge

Syntactic conformance Constraints
Process tools

Conc. Spec. Comp. L.Inst. O.Inst. B.Mod. checking
P1 ✓ ✓

P2 ✓ ✓ ✓

P3 ✓

P4 ✓ ✓

P5 ✓ ✓

P6 ✓ ✓

P7 ✓ ✓

P8 ✓

P9 ✓ ✓

P10 ✓ ✓

P11 ✓ ✓ ✓

P12 ✓

P13 ✓ ✓ ✓

P14 ✓ ✓

P15 ✓ ✓

P16 ✓ ✓

P17 ✓ ✓ ✓ ✓

P18 ✓ ✓

P19 ✓ ✓ ✓

Table 1: Requirements satisfaction for the base metamodel

Syntactic conformance Constraints
Process tools

Conc. Spec. Comp. L.Inst O.Inst B.Mod checking
S1 ✓

S2 ✓

S3 ✓ ✓ ✓ ✓ ✓

S4 ✓ ✓ ✓ ✓

S5 ✓ ✓ ✓

S6 ✓ ✓ ✓ ✓

S7 ✓ ✓

S8 ✓

S9 ✓ ✓

S10 ✓ ✓ ✓

S11 ✓ ✓

S12 ✓ ✓

S13 ✓

Table 2: Requirements satisfaction for the Acme software engineering process

http://dx.doi.org/10.18417/emisa.17.9

Enterprise Modelling and Information Systems Architectures
Vol. 17, No. 9 (2022). DOI:10.18417/emisa.17.9
Multi-Level Modeling with Openflexo/FML 17
Special Issue on Multi-Level Modeling Process Challenge

6.1 Basic modeling constructs
Our solution uses the basic modeling constructs
depicted by the FML core metamodel (Fig. 2) and
described in Sect. 2. Models are virtual models.
They are composed of concepts, being themselves
concepts. Concepts may have roles and behaviors
(actions one can perform).
In order to provide the graphical tools, our

solution also uses model slots to connect some
concept instances to external elements (in our
case: instances of diagram from our diagramming
Technology Adapter). The use of slots has been
described in Sect. 4 and is illustrated by bold
circles in Fig. 9.

6.2 Levels
The Openflexo approach is level agnostic: “levels”
have no specific nature and there are no numbered
levels. In our solution, concepts of a given level
are grouped into a virtual model. Inheritance
and instantiation allow the establishment of rela-
tionships between concepts from different levels.
Fig. 4 shows the multi-level architecture of our
solution.

6.3 Number of levels
Due to the fact that our approach is level-agnostic,
our solution could have more or fewer levels de-
pending on the variations of the use case. However,
the number of levels is related to the problem. For
example, our solution uses 3 levels for this multi-
level process challenge.

6.4 Cross-level relationships
Thanks to the level-agnosticismnature of theOpen-
flexo approach, cross-level relationships are not
an issue. Model elements of different levels can
be linked to each other in a transparent way, using
inheritance or instantiation. For instance, in Fig. 7,
the Developer concept from Acme metamodel
specializes the ActorType of the base metamodel.
The Software Engineering Process of the
Acmemodel is an instance of ProcessType in the
metamodel.

6.5 Cross-level constraints
As for cross-level relationships, cross-level con-
straints do not have a specific nature. They are
like any constraint that a user can define by adding
a behavior to a model element. Therefore, if a
constraint is mandatory when establishing a rela-
tionship between elements from different levels,
the user has to create it manually. This can be a
limit of our approach: the cost of the flexibility
of our toolset is a limited number of automated
behaviors.

6.6 Integrity mechanism
Behaviors are continuously checked, ensuring the
integrity of the models when changes occur. How-
ever, most of these behaviors have to be written
by the users. Thus, the integrity of the contents
relies on the users when they build the meta-
models and the models. Sect. 4 describes how
the requirements are captured and how behav-
iors are implemented with FML. For instance,
isAuthorizedActor behavior is needed to en-
force P17 requirement, leading to writing FML
code in TaskType and Task. Note that in our
approach, metamodels are built in an ad hoc way
along with the models (co-construction), therefore
the user also validates the integrity continuously.

6.7 Deep characterization
Due to the nature of our approach and its level-
agnosticism, deep characterization does not apply
to our solution. Such a mechanism could probably
be encoded by specific concepts and constraints
(behaviors). However, it would not be a generic
mechanism, making it difficult to reuse for another
problem.

6.8 Generality
Due to the nature of model federation, the models
are highly reusable. Although we build ad hoc
metamodels in our approach, our solution sepa-
rates the domain-specific elements from general
purpose ones, making possible to reuse the general
concepts to other domains.

http://dx.doi.org/10.18417/emisa.17.9

International Journal of Conceptual Modeling
Vol. 17, No. 9 (2022). DOI:10.18417/emisa.17.9

18 S.Guérin, J. Champeau, J.-C. Bach, A. Beugnard, F. Dagnat, S. Martínez
Special Issue on Multi-Level Modeling Process Challenge

6.9 Extensibility
A strength of the model federation approach we
have adopted resides in its flexibility. As we build
metamodels and models together instead of fitting
into a metamodel, our solution is more flexible.
Therefore one can extend a solution easily. The
challenge itself can be seen as a validation of the
extensibility of our solution: it was decomposed
into two steps (the Xsure process, then the ACME
process) which can be seen as a simulation of the
evolution of the specification. We observed that
our approach has been resilient to change.
Due to the level-agnostic aspect of our approach,

we could insert a new level, for example. It
would consist in creating new concepts we would
link to the other ones. Then, we would add any
necessary constraints on those concepts and on
the relationships linking them to the other existing
concepts. This type of change can be done without
much effort. On the other hand, making changes
to the existing models could be difficult. For
example, given a requirement, an instance cannot
be changed into a concept easily. This case could
occur if the challenge had refined the specification
by requiring specific design tasks. In this context,
we would have to transform the ’Design Task’
instance into a concept whose instances could
have been “using agile methodology”.

6.10 Tools
We use the Openflexo infrastructure to build mod-
els and metamodels together, and to provide ded-
icated tools to edit a Process type, to enact a
process and to execute it. Being able to provide a
solution and its associated tools quickly and easily
is a noticeable feature. We could also have taken
advantage of the model federation to connect our
solution to other tools dedicated to process edition
and to process execution (e. g. a bpmn engine).
However, we already had all the necessary com-
ponents to provide the aforementioned graphical
tools.

6.11 Model verification
Our toolset includes mechanisms to verify the
models. First, syntactical consistency is realized

by cardinality checks and by typing. Second,
the constraints the users have written are contin-
uously checked during model edition and enact-
ment. Thus, a part of the verification relies on
the fact that users add behaviors when they build
the metamodels and the models. For instance,
S6 requirement is constrained by an invariant
implemented in CodeArtifact. It ensures that
artifactType has the right type and that it im-
plements the languages relation.

7 Related work

Aplethora ofmulti-level modeling approaches and
tools6 with different foundations have appeared
in recent years (Somogyi et al. 2021). Comparing
them lies out of the scope of this paper. In this
sense, we limit the following discussion to the
presentation and comparison of previous solutions
to the MULTI Process Challenge (Almeida et al.
2019).
A first description of process modeling as

a multi-level modeling problem was proposed
by Lara and Guerra (2018) in the context of a
catalogue of refactoring for multi-level models (in
a simpler form with fewer constraints and require-
ments w.r.t. the challenge version). A solution is
provided with MetaDepth (De Lara and Guerra
2010), which supports modeling with any num-
ber of levels, dual ontological/linguistic typing
and deep characterization through potency (Atkin-
son and Kühne 2001). For their solution to the
multi-level process problem they use three lev-
els. The first level describes generic processes,
the second level software engineering processes,
and the third level, software engineering enacted
processes. Additionally, the authors use linguistic
extensions (De Lara and Guerra 2010), a mecha-
nism to linguistically extend ontological instance
models at any level, in order to introduce arti-
fact types and tasks duration in the second level.
Our solution is similar to theirs w.r.t. the group-
ing and organization of concepts (e. g., a model
for general process, concepts, an extension for

6 https://homepages.ecs.vuw.ac.nz/Groups/
MultiLevelModeling/MultiTools

http://dx.doi.org/10.18417/emisa.17.9
https://homepages.ecs.vuw.ac.nz/Groups/MultiLevelModeling/MultiTools
https://homepages.ecs.vuw.ac.nz/Groups/MultiLevelModeling/MultiTools

Enterprise Modelling and Information Systems Architectures
Vol. 17, No. 9 (2022). DOI:10.18417/emisa.17.9
Multi-Level Modeling with Openflexo/FML 19
Special Issue on Multi-Level Modeling Process Challenge

software engineering process) but it replaces the
use of clabjects and potency with the use of the
type-object pattern (Johnson and Woolf 1997).
The so-called linguistic extensions are natively
supported in Openflexo/FML.
Rodríguez and Macías (2019) use MultEcore

(Macías et al. 2016) to provide a solution to the
challenge. MultEcore uses (un)pluggable linguis-
tic levels (e. g., there is not a fixed core metamodel
defining the concept of clabject), an extension
of the two-level cascading technique (Atkinson
and Kühne 2005) (this is achieved with model
transformations to transform instance models into
instantiable models) and potency. Regarding the
challenge, their solution uses 4 levels. The first
level represents generic processes and constitutes
the root level for two ontological hierarchies, one
for the software engineering domain and the other
for the insurance domain. Each hierarchy contains
three other ontological levels. The second level
refines generic process to software engineering
and insurance processes. The third level refines
the aforementioned models to adapt them to the
ACME and Xsure processes. Finally, process in-
stances lie in level 4. Additionally, the authors use
an orthogonal linguistic hierarchy to support alter-
native names for every model element. With re-
spect to our solution, the authors use more models,
as we require less refinement steps. However, acci-
dental complexity is introduced by our approach as
we need additional constructs and constraints for
the typing relations which are otherwise built-in
in MultEcore.
More similar to us, Jeusfeld (2019) usesDeepTe-

los (Jeusfeld and Neumayr 2016), an extension of
the Telos language (Mylopoulos et al. 1990) in
order to solve the process challenge. AswithOpen-
flexo/FML, they do not use explicit (numbered)
levels nor potency. However, unlike Openflexo,
DeepTelos integrates a multi-level modeling spe-
cific construct similar to the PowerType (Atkinson
and Kühne 2001) pattern they callmost general in-
stances which the authors use to simulate potency.
Models in DeepTelos are organized in (tree-like)
module hierarchies, where submodules can see all

the concepts defined in parent modules. The au-
thors use this module system in order to organize
their solution for theMulti-level process challenge.
Concretely they created a hierarchy of modules
such as the top module contains base concepts and
formulas required for multi-level modeling (e. g.,
the support for most general instances), and a
sub-module contains process definitions fulfilling
requirements P1 to P19. This sub-module contains
in turn a sub-module representing the coding pro-
cess type whereas concrete coding processes are
represented in subsequent sub-modules. There are
two main differences between the DeepTelos and
Openflexo/FML: 1) we use the type-object pattern
instead of the powertype pattern; 2) DeepTelos
reifies their support for multi-level modeling while
our remains ad hoc.
Finally, Somogyi et al. (2019) use the Dynamic

Multi-Layer Algebra (DMLA) (Urbán et al. 2017)
in order to solve the process challenge. DMLA is
a level-blind modeling framework which is fully
customizable (e. g. different types of instantiation
may be implemented) and includes support for
deep characterization (instantiation may refer to
any other element disregarding hierarchy levels
and a sort of potency in the form of fluid metamod-
eling at the entity level exists). Their proposed
solution separates the process challenge in two
separate domains, namely, the task definition do-
main and the process definition domain. Wrappers
are used in order to reuse tasks in processes. Their
solution does not use inheritance, as it is not sup-
ported by the framework. It does not use explicitly
separated models either.

8 Conclusions

We fulfill all the challenge requirements and we
propose a tool that demonstrates the usability
of our solution. We developed an ad hoc solu-
tion, including models and metamodels, thanks
to the flexibility provided by the metametamod-
eling infrastructure offered by Openflexo. This
infrastructure helped us to overcome the limita-
tions of the strict modeling paradigm mentioned

http://dx.doi.org/10.18417/emisa.17.9

International Journal of Conceptual Modeling
Vol. 17, No. 9 (2022). DOI:10.18417/emisa.17.9

20 S.Guérin, J. Champeau, J.-C. Bach, A. Beugnard, F. Dagnat, S. Martínez
Special Issue on Multi-Level Modeling Process Challenge

in Sect. 1, this is, the lack of support for differ-
ent forms of classifications and for the duality
type-object. In that sense, our solution seamlessly
integrates the type-object pattern which allows
us to dynamically create different instances of
model elements (e. g., TaskType, among others)
and use them for typing other model elements.
This, together with the FML core support for
(level agnostic) classical linguistic instantiation,
permitted us to merge linguistic and ontological
instantiation in order to provide a satisfactory
solution to the Multi-Level Process challenge.
The features of FML enable a great modeling

flexibility which, coupled with an appropriate
methodology, allow us to achieve the multi-level
capabilities without dedicated tool, in order to
solve problems which require it. We use virtual
models to “implement” levels on demand.
As a future work, we envision to explore a

number of alternative solutions. Firstly, instead of
two levels defined by Type and Instance concepts,
we could have a single concept mixing a type
part and an instance part. It would be equivalent
to implement a form of Clabject, a more flexi-
ble approach concerning level separation. This
would probably ease adaptation if the problem
specifications evolve. Secondly, another possi-
ble approach is the use of the free modeling tool
proposed by Openflexo. The solution would be
developed from examples (the Acme and XSure
processes, for instance) from which models would
be identified.
Finally, the realization of this challenge high-

lighted the interest of integrating specific behav-
iors for the management of multi-level concepts
in the Openflexo infrastructure.

References

Almeida J. P. A., Kühne T., Rutle A., Wim-
mer M. (2021) The MULTI Process Challenge–
EMISAJ Special Issue Version. http://purl.org/
emisajchallenge

Almeida J. P. A., Rutle A., Wimmer M., Kühne T.
(2019) The MULTI Process Challenge. In: 2019
ACM/IEEE 22nd International Conference on
Model Driven Engineering Languages and Sys-
tems Companion (MODELS-C). IEEE, pp. 164–
167

Atkinson C., Gerbig R. (2016) Flexible deep mod-
elingwithmelanee. In:Modellierung 2016 –Work-
shopband, pp. 117–121

Atkinson C., Kühne T. (2001) The essence of mul-
tilevel metamodeling. In: «UML»2001 – The Uni-
fied Modeling Language. Modeling Languages,
Concepts, and Tools. Springer, pp. 19–33

Atkinson C., Kühne T. (2005) Concepts for com-
paring modeling tool architectures. In: Interna-
tional Conference on Model Driven Engineering
Languages and Systems. Springer, pp. 398–413

De Lara J., Guerra E. (2010) Deepmeta-modelling
with MetaDepth. In: International conference on
modelling techniques and tools for computer per-
formance evaluation. Springer, pp. 1–20

Golra F. R., Beugnard A., Dagnat F., Guerin S.,
Guychard C. (2016a) Addressing modularity for
heterogeneous multi-model systems using model
federation. In: Companion Proceedings of the 15th
International Conference on Modularity, pp. 206–
211

Golra F. R., Beugnard A., Dagnat F., Guerin S.,
Guychard C. (2016b) Using Free Modeling As
an Agile Method for Developing Domain Specific
Modeling Languages. In: Proc. of the ACM/IEEE
19th International Conf. on Model Driven Engi-
neering Languages and Systems. MODELS ’16.
Saint-Malo, France, pp. 24–34

Golra F. R., Dagnat F. (2011) The lazy initializa-
tion multilayered modeling framework. In: Taylor
R. N., Gall H. C., Medvidovic N. (eds.) Proceed-
ings of the 33rd International Conference on Soft-
ware Engineering, ICSE 2011, Waikiki, Honolulu,
HI, USA, May 21-28, 2011. ACM, pp. 924–927

http://dx.doi.org/10.18417/emisa.17.9
http://purl.org/emisajchallenge
http://purl.org/emisajchallenge

Enterprise Modelling and Information Systems Architectures
Vol. 17, No. 9 (2022). DOI:10.18417/emisa.17.9
Multi-Level Modeling with Openflexo/FML 21
Special Issue on Multi-Level Modeling Process Challenge

JeusfeldM. A. (2019) DeepTelos for ConceptBase:
A contribution to theMULTI process challenge. In:
2019 ACM/IEEE 22nd International Conference
on Model Driven Engineering Languages and
Systems Companion (MODELS-C). IEEE, pp. 66–
77

Jeusfeld M. A., Neumayr B. (2016) DeepTelos:
Multi-level modeling with most general instances.
In: International Conference on Conceptual Mod-
eling. Springer, pp. 198–211

Johnson R., Woolf B. (1997) Type Object In: Pat-
tern Languages of Program Design 3 Martin R.,
Riehle D., Buschmann F. (eds.), 1st ed. Software
Pattern Series Addison-Wesley Longman Publish-
ing Co., Inc., USA chap. 4, pp. 47–65

Lara J. D., Guerra E. (2018) Refactoring Multi-
Level Models. In: ACM Transactions on Software
Engineering and Methodology (TOSEM) 27(4)

Macías F., Rutle A., Stolz V. (2016) MultEcore:
Combining the best of fixed-level and multilevel
metamodelling. In: Proceedings of the 3rd In-
ternational Workshop on Multi-Level Modelling.
CEUR Workshop Proceedings Vol. 1722. CEUR-
WS.org, pp. 66–75 http://ceur-ws.org/Vol-1722/

Mylopoulos J., Borgida A., Jarke M., Koubarakis
M. (1990) Telos: Representing Knowledge about
Information Systems. In: ACM Transactions on
Information Systems (TOIS) 8(4), pp. 325–362

Object Management Group (2016) Semantic Mod-
eling for Information Federation (SIMF). https:
//www.omg.org/cgi-bin/doc.cgi?ad/2011-12-10.
Last Access: February 23𝑟𝑑 , 2022

OMG (2013) OMG Meta Object Facility (MOF)
Core Specification, Version 2.4.1. http://www.omg.
org/spec/MOF/2.4.1. Last Access: February 23𝑟𝑑 ,
2022

Openflexo (2019) Openflexo Project. https://www.
openflexo.org/. Last Access: February 23𝑟𝑑 , 2022

Rodríguez A., Macías F. (2019) Multilevel Mod-
elling with MultEcore: A Contribution to the
MULTI Process Challenge. In: 2019 ACM/IEEE
22nd International Conference on Model Driven
Engineering Languages and Systems Companion
(MODELS-C), pp. 152–163

Somogyi F. A., Mezei G., Theisz Z., Bácsi S.,
Palatinszky D. (2021) Playground for multi-level
modeling constructs. In: Software and Systems
Modeling

Somogyi F. A., Mezei G., Urbán D., Theisz Z.,
Bácsi S., Palatinszky D. (2019) Multi-level Mod-
eling with DMLA - A Contribution to the MULTI
Process Challenge. In: 2019 ACM/IEEE 22nd
International Conference on Model Driven En-
gineering Languages and Systems Companion
(MODELS-C), pp. 119–127

Steinberg D., Budinsky F., Merks E., Paternostro
M. (2008) EMF: Eclipse Modeling Framework.
Pearson Education

Urbán D., Mezei G., Theisz Z. (2017) Formalism
for Static Aspects of Dynamic Metamodeling. In:
Periodica Polytechnica Electrical Engineering and
Computer Science 61(1), pp. 34–47

http://dx.doi.org/10.18417/emisa.17.9
http://ceur-ws.org/Vol-1722/
https://www.omg.org/cgi-bin/doc.cgi?ad/2011-12-10
https://www.omg.org/cgi-bin/doc.cgi?ad/2011-12-10
http://www.omg.org/spec/MOF/2.4.1
http://www.omg.org/spec/MOF/2.4.1
https://www.openflexo.org/
https://www.openflexo.org/

	Introduction
	Technology
	Analysis
	Model presentation
	Satisfaction of requirements
	Assessment of the modeling solution
	Related work
	Conclusions

