
 Enterprise Modelling and Information Systems Architectures

 Vol. 1, No. 1, October 2005

36 Håvard D. Jørgensen, Frank Lillehagen, Dag Karlsen

Håvard D. Jørgensen, Frank Lillehagen, Dag Karlsen

Collaborative Modelling and
Metamodelling with the Enterprise
Knowledge Architecture

This paper presents the Modelling Platform for Collaborative Enterprises (MPCE) currently being developed in
the ATHENA project. The platform enables interoperability between enterprises by providing an environment
where most aspects of the collaboration can be negotiated and described as enterprise models and metamodels. It
also facilitates business interaction by executing the models. We here introduce the metamodelling framework of
the MPCE, known as the Enterprise Knowledge Architecture (EKA). The EKA can represent models on any meta-
level in a uniform way. It departs from the conventional ordered meta-levels of software engineering. Instead it
treats models as a constellation of mutually reflective, partial views, e.g. different views from different companies.
Currently five tools are exchanging models through this framework, and we plan to submit it for standardization.

1 Introduction

The ATHENA project [Athe04] is developing a
modelling platform for cross-enterprise collaboration
(MPCE) [SLJ+05]. This paper describes the
modelling framework of this platform. The primary
objective of this work is to establish an Enterprise
Knowledge Architecture (EKA) for full enterprise
model exchange between

• Different companies
• Different disciplines, functions and roles
• Different modelling tools, languages, paradigms

and metamodelling architectures
The core of the MPCE is a model repository with its
content stored as EKA structures in XML format. This
paper describes the underlying rationale and design
of the EKA. Other interoperability research topics in
ATHENA include cross-organizational business
processes, ontologies, service-oriented
architectures, and model-driven architectures. While
these areas mainly deal with technical
interoperability between software tools, our work on
enterprise modelling emphasizes communication
between people. Our approach reflects the need to
see metamodelling as an integral part of modelling,
and to support concurrent modelling,
metamodelling, and model execution in order to
facilitate the processes of negotiating and

maintaining an unfolding, socially constructed shared
understanding between companies.

The second main objective of our research is to
extend the metamodelling capabilities of our Metis
tool. Metis is a generic enterprise modelling tool with
metamodelling capabilities so that customers can
adapt it to their local needs, preferences, and
terminologies. The tool was originally developed
around 1990 to support product design and
engineering, but in recent years it has been leading
in the Enterprise Architecture and IT Governance
markets.

Section 2 describes the background of this paper,
outlining the current metamodelling capabilities of
Metis. Then a number of requirements for
metamodelling and model interoperability are
outlined in section 3. Section 4 describes our
solution, while section 5 outlines the implementation
and usage experience. The second part of the
validation briefly compares our approach to related
standards such as MOF, OWL and RDF, before
section 7 points out directions for further work.

2 Background: Metis

Enterprise Architecture (EA) models cover many
aspects of the enterprise, connecting business
strategy to the operational level business processes,

Enterprise Modelling and Information Systems Architectures
Vol. 1, No. 1, October 2005

Collaborative Modelling and Metamodelling with the Enterprise Knowledge Architecture 37

Figure 1. Example enterprise architecture framework

Figure 2. Enterprise architecture example, with relationships connecting business strategies and operations to the
IT architecture

organizational structures, and IT infrastructures (cf.
Figure 1 and Figure 2). For large enterprises,
complete EA models can consist of hundreds of
thousands of objects and relationships stored in the
Metis Enterprise repository. In order to work with
such large models, powerful dynamic queries,

multiple views, and sub-model management are
critical capabilities.

Most Metis customers utilize the metamodelling
capabilities of the tool to define their own modelling
types. Models consist of objects and relationships,
and objects may have interfaces (roles).

 Enterprise Modelling and Information Systems Architectures

 Vol. 1, No. 1, October 2005

38 Håvard D. Jørgensen, Frank Lillehagen, Dag Karlsen

Relationships are binary, and go from one object or
relationship to another. Relationship type definitions
control which type of elements may be connected,
with cardinality constraints. Part-of decompositions
are supported natively, and may be visualized as
tree structures or nested (components inside their
parent). In the definition of an object type, you also
define which types of parts it can have. Since Metis
handles deep nesting, allowing you to zoom in to the
next level repeatedly within the same view, the
modelling area can be thought of as an infinite 2½
dimensional space.

Objects and relationships have properties and
behavioral features such as methods and criteria
(queries) that may be invoked during analysis.
Methods may also be used for implementing rules
ensuring that one property’s value is derived from
other properties on related objects or relationships.
Property value types such as enumerations may also
be defined.

Model elements are instances of one and only one
type, but they may represent both concrete
individuals as well as generic classes. Users define
new types in metamodelling forms. An example
metamodelling form is shown in Figure 3.

2.1 Enterprise Architecture Methodology

As an indication of how important metamodelling is
to Metis customers, we here briefly discuss its place
in the EA development methodology.

1. EA models are typically constructed to answer
some business questions, such as
• How can we optimize our application and

service portfolios?
• What are the effects if this application

becomes unavailable?
2. After a business question has been proposed

and prioritized for inclusion in the EA, we
identify the sources that can bring this data
into the EA
• Existing databases, spreadsheets or XML

data can be automatically imported
through the Metis Collection Framework.

• Some information may have to be
collected manually from people in the
company.

3. Once you know where to find the information,
you need to decide how it should be
represented in the EA model
• In what framework (Zachman, DoDAF,

etc.)?
• Using which modelling types?

Sometimes, the 3rd step will apply some of the
hundreds of modelling types already available. More
often, however, existing types have to be extended
with e.g. new properties or behavior in order to be
able to fully answer the business question.

Figure 3. Metis form for type definition.

.

Enterprise Modelling and Information Systems Architectures
Vol. 1, No. 1, October 2005

Collaborative Modelling and Metamodelling with the Enterprise Knowledge Architecture 39

2.2 Visualization

In order to manage complexity, each model can
consist of multiple model views (diagrams). New
views can be constructed dynamically, e.g. from
queries performed on the underlying model
repository. This viewing capability is crucial for
answering business questions, which are formulated
as model queries. Their result sets can be shown in
newly generated model views.

Each object or relationship may thus have multiple
visual representations, (even within one model
view). Symbols may be selected individually for each
view, but are typically inherited from the type’s
view-style. Macros are used for controlling the visual
elements (such as colors and texts) by property
values. This is widely applied, e.g. for indicating the
state of an object. A typical encoding would use grey
or green for objects that are in an ok state, and red
for objects that need attention. Macros may also be
defined locally for each view instance, e.g. to use a
picture to represent an object. In the symbol editor
view of Metis, users can draw their own object and
relationship symbols.

2.3 Templates and Metamodels

Related object, relationship, property, method,
criteria and visualization types are commonly
grouped together in metamodels. Often metamodels
reflect a particular domain, such as “Organization
structure” or “High-level business processes”.
Metamodels can be nested (include other
metamodels) in a hierarchy. A template is a starting
point for creating new models. In addition to a set of
metamodels, it may include some model elements,
e.g. to establish a framework for modelling such as
that shown in Figure 1. With Metis we offer a range
of standard templates, such as UML, Metis
Enterprise Architecture Framework, IT Management,
Business Process Modelling, Capital Asset Planning
with Business Cases, DoDAF, XML and Database
Import Configuration etc. Many customers and
consulting partners have also built their own
metamodels and templates.

In addition to basic metamodelling, Metis supports a
number of metamodel and model evolution
management services, such as:

• Changing the type of an existing object or
relationship (drag-and-drop)

• Changing the symbol of an object or
relationship view (drag-and-drop)

• Extend, restrict or replace the set of
metamodels available for a particular model

• Locally override a metamodel by replacing
some of its types.

Changes such as these may create inconsistencies in
the models. Sometimes this will cause data loss, e.g.
if you change the type of an object to one that does
not allow all its current properties. Other
inconsistencies, such as violation of relationship
connection rules or part rules, are tolerated. The
validation function in Metis checks your model and
flags all such inconsistencies. It also proposes
default resolution operations, e.g. relocating wrongly
connected parts.

3 Requirements

This section outlines requirements for a platform
that enables interoperability between modelling tools
and facilitates shared understanding to be
negotiated between people from difference
companies and backgrounds. Requirements will be
numbered (R1, R2 etc.) as they are introduced.

3.1 Multiple Modelling Dimensions

Enterprises have several dimensions. In order to
illustrate this, let us look at a product component,
such as an electronic circuit board. It has a process
lifecycle (design, manufacturing, maintenance,
recycling phases); it is handled by organizational
roles and responsibilities, which require knowledge
and skills, and use systems, data, and software
services. The product also has a product
decomposition structure and variant hierarchy, a
timeline (expected lifespan etc.), physical and
spatial properties (size, weight etc.), money
parameters (cost, pricing etc.), and there will be
decisions that control it (e.g. select among
alternative designs). All of these dimensions, and
potentially many more, may be represented in an
enterprise model.

Figure 4. Multiple interrelated model dimensions.

Product

Organi-
zation

Process

Complex
relationships,

tasks,
decisions

System

 Enterprise Modelling and Information Systems Architectures

 Vol. 1, No. 1, October 2005

40 Håvard D. Jørgensen, Frank Lillehagen, Dag Karlsen

Figure 4 above shows four such views, for the design
of business processes, organizational structures,
product portfolios and software systems,
respectively. The ATHENA enterprise modelling core
is called POP* because it is designed to capture
processes (P), organizations (O), products (P) and
any other (*) relevant enterprise dimension. The
EKA should be able to represent these dimensions
and utilize them to organize the modelling structures
in a manageable way (R1).

3.2 Language Definition

Language definition and extension, and subsequent
metamodel organization and management, is an
important model management challenge. New
language constructs can be defined by [Styh02]

• Disjunction (R2), where new constructs are
defined as specializations of existing
constructs in a top-down tree structure.
This is the common object-oriented
software approach.

• Conjunction (R3), where new constructs are
defined by composition of existing
constructs, involving multiple inheritance,
combining aspects.

In one view, we may for instance define “Project” as
a specialization of “Process”, e.g. stating that all
projects are unique, composite processes with a
clear objective. In another view, we may define
“Project” as a temporary “Organizational Unit” or as
a kind of “Budget item”. Within each view, we thus
need the conventional approach of language
extension by disjunction, while across views,
conjunction is needed. Studies have argued that

most enterprise concepts should have a conjunctive
definition [Styh02].

3.3 Model Interoperability through
Mutually Reflective Views

Multiple views are at the core of interoperability
problems. Different individuals, groups and
companies apply modelling tools with different
capabilities, languages and meta-languages, in order
to describe partially overlapping aspects of their
joint and separate enterprises. These differences
create interoperability problems on many levels (cf.
Figure 5).

Interoperability resolution will often benefit from
investigating multiple meta-levels together. For
instance, if we are trying to establish whether object
a in view A and object b in view B refer to equivalent
or overlapping concepts, we will benefit from
assessing which constructs in the languages of A and
B that they are instances of.

The existence of a standardized or common
framework that the companies agree to use will
make it easier to achieve interoperability. The
standard format can be defined on the data encoding
layer (e.g. XML Schema), as a common language
(e.g. UML or POP*), and/or as a meta-language
(MOF, RDF, OWL, or EKA). However, when a
common language has been selected, both
companies face the task of relating their views of
data and models to the common framework. It is
also known that a common language does not
guarantee interoperability, e.g. because there are
detailed semantics (one meta-level up) that are left
implicit.

Company A Company B

Metalanguage of A

Language of A

Objects of A

etc.

Data of A (eg. XML)

Metalanguage of B

Language of B

Objects of B

etc.

Data of B (eg. XML)
M0. Incompatible

data formats

M0. Incompatible
representation and

identification of elements

M1. Incompatible
languages

M2+. Incompatible
modeling architectures

Company A Company B

Metalanguage of A

Language of A

Objects of A

etc.

Data of A (eg. XML)

Metalanguage of B

Language of B

Objects of B

etc.

Data of B (eg. XML)
M0. Incompatible

data formats

M0. Incompatible
representation and

identification of elements

M1. Incompatible
languages

M2+. Incompatible
modeling architectures

Figure 5. Interoperability problems on different levels.

Enterprise Modelling and Information Systems Architectures
Vol. 1, No. 1, October 2005

Collaborative Modelling and Metamodelling with the Enterprise Knowledge Architecture 41

The identity, precision and granularity with which
objects are represented in a model view built with a
common language, also depends on interpretation
and pragmatic decisions by each party, and may
thus cause interoperability problems even if a
common language has been defined. Consequently,
interoperability requires assessment of multiple
meta-levels (R4) also in the presence of standards.

In general we cannot assume that different
companies, groups or individuals use compatible
concepts on any level [Kang99]. A modelling
approach to resolving interoperability problems
should thus not assume a single integrated objective
model or metamodel. Instead it should facilitate the
bringing together of any set of views. The process of
establishing relationships between views, in order to
achieve interoperability, consists of a set of
translation and resolution tasks and decisions (cf.
Figure 4). When integrated and related in this way,
each view will deepen the interpretation of the other
views; they will thus be mutually reflective (R5).

In order to grasp these processes, we have
examined literature on social negotiation of meaning
between people and groups from different
backgrounds [BeLu66; Weng98]. There we found
that ambiguity is a prerequisite for establishing
shared meaning, because even before sufficiently
shared understanding is established, we need some
common terms in order to communicate. Ambiguous
terms allow us to speak the same language even
though we don’t interpret the terms exactly the
same way. Formal languages, seeking to remove
interoperability problems by providing precise
semantics, prohibit the articulation of ambiguous
concepts, and thus provide no support for
negotiation of meaning. They are thus suitable for
reflecting a closed world where no interoperability
problems exist. They can document the outcome of
interoperability through negotiation, but not support
the negotiation process. For interoperability support,
we need an approach that tolerates ambiguity and
uncertainty (R6), but which can also express shared
understanding precisely when it is achieved (R7).

3.4 Supporting Modelling by Business
Users

Another key challenge is to enable business users to
perform modelling, to assist view resolution,
interpretation and execution. This requires
frameworks that are simple and intuitive (R8). In
order to address multi-level interoperability
problems and to be able to construct customized and
role-specific views (R9), metamodelling should be an
integrated part of modelling, not just a specialist
activity based on other tools and concepts then
modelling. Type definition or selection should be at

the control of the user, but constrained according to
authorization and modelling phase (R10).

3.5 Expressiveness

A metamodelling framework must be able to
represent several kinds of language elements. A
framework that is to facilitate interoperability
between several tools with different underlying
metametamodels should ideally include every kind of
element found in any tool. This expressiveness
requirements must however be balanced with
simplicity and usability (R8). For the tools we have
studied, these features are necessary:

• Object, property and relationship as first
class citizens that may possess properties
and have relationships between them
(R11),

• Instance evolution, that an element may
change type during its lifecycle (R12),

• Metamodelling on instance, class, and
meta-class levels (extending R4).

Among the features that are not well supported in
current metamodelling frameworks, we find refining,
specializing, decomposing and relating property and
relationship structures, other than as a side effect of
defining object class structures. As briefly discussed
above, weaving together aspect specifications from
different dimensions is another key challenge.
Aspects are also important for interoperability
because they enable a more clear specification of
what (aspects) two elements have in common, and
in which aspects they differ.

3.6 Summary of Requirements

R1 Multiple modelling dimensions/aspects

R2 Language extension by specialization

R3 Language extension by conjunction

R4 Metamodelling on multiple meta-layers

R5 Mutually reflective views

R6 Ambiguity and uncertainty

R7 Precision and formality

R8 Simple and intuitive languages

R9 Multiple views for roles, tasks etc.

R10 User-defined languages

R11 Expressiveness

R12 Instance evolution

.

 Enterprise Modelling and Information Systems Architectures

 Vol. 1, No. 1, October 2005

42 Håvard D. Jørgensen, Frank Lillehagen, Dag Karlsen

4 The ATHENA MPCE Platform

The core of the MPCE architecture is an enterprise
modelling repository with its content stored as
enterprise knowledge architecture (EKA) views
(discussed below). The platform also offers generic
modelling support services (e.g. transformation and
validation), administration services (e.g. access
control), model management services (e.g.
versioning and configuration management), and
knowledge management services, which include
meta-modelling. It also provides standardized
interfaces to different modelling tools, execution
services (e.g. messaging, process, and rule
engines), and integration services for plugging web
services and applications into model execution.

Figure 6 below shows the architecture of the first
implementation of the MPCE. At the top, we find five
modelling tools all accessing the common repository
through its web services. The repository is
implemented on top of the Metis Team server. In
addition to this server we have implemented EKA
services to assist with model merging. Metis Team
also provides a web browser interface that allows
users to upload and download files. Enterprise
models and metamodels are stored as files in the
EKA XML format. This XML format and the web
service interface are open and defined independently
of the underlying technology.

Figure 6. MPCE version 1.0 architecture.

4.1 Enterprise Knowledge Architecture

In order to meet the requirements outlined in
section 3, we have defined a metamodelling
framework, shown in Figure 7. The core element of
this architecture is Object. An Object may have
Properties, and Relationships link two Objects
through Origin and Target Roles. Relationships,
roles and properties are also objects, so they may
possess properties and have relationships to other
objects. Objects, properties, relationships, and roles,
together called elements, are contained within
Views that express (partial) models (cf. R9). States
make up the lifecycle of an object (R12).

The EKA does not separate between meta-classes,
classes and instances because this would make it
difficult to handle and integrate any meta-layer
structure. Instead, a special relationship called Is
between two objects (or relationships or properties),
denote that the origin is defined by the target, and
can thus express both specialization and
instantiation (R2). The instantiation relationship Is-a
shares most of the semantics of Is, but it is used to
separate meta-levels (for the modelling frameworks
where this is required). Other relationship types
include general links and associations, and
decomposition with (Part) and without (Member)
ownership. Relationships and properties have
cardinality. Note that this approach enables
classification, decomposition and states of
properties, relationships and views just like objects
(R11).

The EKA is inherently reflective (R5). This makes it
coherent, so users apply the same modelling
constructs (object, property, relationship) and
operations on any meta-level. They may perform
“metamodelling” operations such as adding a
property in the same way on instances and classes,
or for that matter relationship and property
instances and classes (R4). This facilitates instance
level exceptions and evolution (R12). Similarly,
users may perform modelling operations on classes,
e.g. adding default parts and property values.

Multi-dimensional views (R1) are captured as
multiple “Is” or “Is-a” relationships from an element.
This approach can also be applied to mix in new
aspects locally. For instance, if a group wants to add
a cost dimension to a process model, they simply
add an “Is” relationship from “Object” to “Cost
Component” in their model. All objects within the
model will then inherit the properties and behavior
of cost components. Such extensions can be local to
each view.

Multiple inheritance (R3) is controlled by “Is” and
“Is-a” links between the properties of objects. These
links articulate which properties are inherited from
which super. This also opens up for reuse along
other structures than classification and
specialization, e.g. to have property hierarchies
cross-cutting the class hierarchy. Through reflection,
we may define e.g. that a “Part”, “Member” or
ordinary relationship is an “Is” relationship as well,
enabling reuse along these dimensions. In previous
work, we have discovered several scenarios where
such inheritance is valuable for and intuitive to
business users [Jorg04].

EKA XML

Metis ARIS GRAI

MPCE Web Services (Standard WSDL)

EKA Services

Metis Team
Web Server

Web
Client

EKA XML

Metis Team 3.6 Repository

 Rational
 POP*
 Profile

MO2GO

Enterprise Modelling and Information Systems Architectures
Vol. 1, No. 1, October 2005

Collaborative Modelling and Metamodelling with the Enterprise Knowledge Architecture 43

Figure 7. The core concepts of the EKA.

The expressiveness of the EKA satisfies the
requirements listed in section 3.5. Aspects can be
represented as objects, and reused through local
“Is” links. Multiple inheritance allows not only
aspects, but also interoperability between
overlapping classification schemes, e.g. for different
companies, tools or disciplines. Because properties
and relationships are first class elements, they may
be defined and managed just like objects,
specialized and decomposed. Properties can have an
extensible set of properties themselves (meta-
properties) that define e.g. how they are to be
managed (e.g. “read-only”, “derived”). The tasks
and decisions involved in creating, selecting and
maintaining a relationship may e.g. be defined as a
process meta-view on the relationship. For instance,
most people would agree that behind the
relationship “marriage”, there is a complex process
that creates and sustains it.

Even though the EKA is this expressive, its core is
still quite simple compared to most other
frameworks (R8). This, together with coherent
modelling constructs and techniques across meta-
levels, implies that it should be useable for suitably
trained business people (R10). More work is
however needed in order to verify this. Our previous
experiences indicate that users are capable of both
modelling and metamodelling, provided customized
views are available for such tasks [Jorg04]. The
design and derivation of views for different contexts
will be a key challenge in our further work. We need
to design general frameworks for typical view types,
integrated in suitable methodology processes, in a
manner which can be adapted to each customer’s
organizational maturity and individual skill levels.

5 Related Work

Prior to defining this EKA framework we analyzed
existing standards such as MOF XMI (Meta Object
Facility XML Metadata Interchange) [Omg02], RDF
(Resource Description Framework) [W3C04a], and
OWL (Web Ontology Language) [W3C04b] Most of
these frameworks define a language as a set of class
concepts that objects in a model instantiate. Metis
today also follows this model, although it supports
instance modelling to a larger extent. Classes define
the expected properties and behavior of the objects,
and the relationships it can have with other objects.
During several years of research and industrial
experience with meta-modelling, we have discovered
numerous shortcomings of this model [Lill03;
Jorg04]:

• It handles unforeseen exceptions at the
instance level (such as the addition of a
property or a relationship) poorly (not
meeting R4).

• It does not support instance evolution,
where different classes may reflect different
states in the lifecycle of an object [AuFB93]
(not meeting R12).

• Multiple inheritance and instantiation is
often prohibited, making it difficult to
capture multiple dimensions of an element
(R1).

• Aspects or facets [OpSi97] cannot be used
to extend the local meaning of a concept
through mix-in inheritance (R3).

• Strict inheritance rules are too rigid for
evolving systems, where cancellation
inheritance is needed (allowing removal of

 Enterprise Modelling and Information Systems Architectures

 Vol. 1, No. 1, October 2005

44 Håvard D. Jørgensen, Frank Lillehagen, Dag Karlsen

inherited features) [Taiv95] (supporting R2
poorly).

• Properties are treated as second class
elements, existing only as part of an object.
There is poor support for decomposing and
specializing properties into attributes,
parameter trees and multiple value sets,
and you cannot classify or describe
properties with properties, making it more
or less impossible to manage property
structures (R11).

• Relationships are seen as simple one- or
two-way links. The tasks and decisions that
create and maintain a relationship cannot
be captured, making it difficult to grasp the
precise meaning and status of each link
(R11).

In MOF, we also found the meta-levels to be rigidly
separated, and the support for property and
relationship structures limited. MOF is also rather
large and complex (violating R8). OWL and RDF
schema better support property modelling, but
treats reflection as an exception rather than an
inherent feature, and has poor support for object
creation. Their lack of a first class relationship
construct is also problematic, because relationships
are the most important part of an enterprise
architecture model. On the other hand, most of
these frameworks, with the exception of basic RDF
and OWL Full, enable automatic reasoning (R7)
beyond what our flexible and user-oriented proposal
cater for. This is the result of a conscious design
decision, to start with a simple and flexible core, but
at the same time to facilitate extensions that may
introduce more rigor and control where it is needed
(combining R6 and R7).

6 Implementation and Usage
Experience

An XML Schema is defined for storing and
exchanging EKA model views. Since RDF is reflective
and does not define a type system, it is well suited
for our approach. We therefore chose to base the
EKA XML format on RDF. We also reuse RDF
mechanisms for e.g. identification, data types and
collections rather than to define our own. The
support of RDF for distributed modelling, e.g. its use
of namespaces, is also suitable for the EKA. We do
however not utilize XMI, RDF schema or OWL in our
definitions, because of the limitations discussed
above.

The EKA XML format has been applied to define a set
of common concepts for process modelling. These
constructs constitute the process dimension of the

ATHENA POP* multi-dimensional enterprise
modelling core. The five modelling tools are able to
exchange such process models. We have also
defined tool specific metamodel views, capturing the
translation between the POP* core and each tool’s
particular language. These metamodels have been
used to control view merging services provided by
the MPCE. In particular, the EKA has enabled us to
handle specific mapping problems:

• Between bipartite graphs such Event-driven
Process Chains (EPC) and single type
graphs, by representing EPC events as
objects that are members of the flow
relationships between the functions.

• Between tools that support roles and tools
that do not, by representing roles as part of
the relationship (cf. Figure 7).

• Enabling tool specific mappings, e.g. for
transferring execution properties from a
high-level process language (GRAI) to an
executable specification (MO2GO).

We have thus demonstrated that the EKA is suitable
for achieving interoperability at the model and
language level.

7 Conclusions and Further Work

This paper has presented interoperability challenges
associated with heterogeneous modelling
architectures. A perspective was advocated where
every model is regarded as an incomplete and
partial view. Interoperability problems were
conceptualized as the lack of relationships between
heterogeneous views on different meta-levels.
Requirements for a modelling architecture that
facilitated such mutually reflective views were
articulated. It was found that existing architectures
could not meet these requirements directly, and thus
a new solution, called the Enterprise Knowledge
Architecture (EKA) was presented. The underlying
perspective of the EKA is aligned with human
knowledge, sense-making and communication,
rather than software programming languages.
Experiences show that the EKA can be implemented
and applied as a model and metamodel exchange
format.

The ATHENA project aims to promote its results as
international interoperability standards where that is
appropriate. Both the services of the modelling
platform for collaborative enterprises (MPCE) and
the EKA formats will be considered as candidates for
such standardization. In our further research, we see
the need for addressing several open issues:

Enterprise Modelling and Information Systems Architectures
Vol. 1, No. 1, October 2005

Collaborative Modelling and Metamodelling with the Enterprise Knowledge Architecture 45

• Whether the EKA also can utilize
metametamodels to achieve
interoperability, and not just languages and
models as today?

• What relationship types are needed for
connecting heterogeneous views (other
than “Is”), and what task and decisions
patterns create them?

• Which kinds of views are needed for
different purposes and what services should
they include?

• Replication, reuse and other basic modelling
services need to be detailed and
implemented in a flexible manner.
Inheritance rules should be defined to
relieve the users of having to define change
scopes and reuse patterns manually every
time they change a reused view [Jorg04].

• What negotiation, mapping and resolution
services are useful for model driven
interoperability establishment on top of the
EKA?

7.1 Acknowledgements

This work is supported by the European Union, 6th
framework program for research, through the
ATHENA integrated project (2004-2007). Other
partners in the project have contributed to this work
by challenging our ideas and proposing
improvements.

References

[Athe04] ATHENA 2004- 2007, Advanced Technologies for
interoperability of Heterogeneous Enterprise Networks
and their Applications, http://www.athena-ip.org/, 22-
09-2005.

[AuFB93] Augeraud, M. & Freeman-Benson, B. N. 1993.
Dynamic Objects, ACM Conference on Organizational
Computing Systems (COOCS), Milpitas, California,
USA.

[BeLu66] Berger, P. L. & Luckmann, T. 1966. The Social
Construction of Reality. A Treatise in the Sociology of
Knowledge. Penguin Books, USA,

[Jorg04] Jørgensen, H. D. 2004. Interactive Process
Models. PhD thesis, Norwegian University of Science
and Technology, Trondheim, Norway, http://www.diva-
portal.org/ntnu/theses/abstract.xsql?dbid=4, 22-09-
2005.

[Kang99] Kangassalo, H. 1999. Are Global Understanding,
Communication and Information Management in
Information Systems Possible?, in Conceptual
Modeling. Current Issues and Future Directions,
Springer, LNCS 1565.

[Kicz96] Kiczales, G. 1996. Beyond the Black Box: Open
Implementation, IEEE Software, vol. 13, no. 1.

[Lill03] Lillehagen, F. 2003. The Foundation of the AKM
Technology, in Jardim-Gonçalves, Cha & Steiger-
Garção (eds), Concurrent Engineering, Enhanced
Interoperable Systems, Rotterdam: Balkema.

[Omg02] OMG 2002. Meta-Object Facility Specification
Version 1.4,
http://www.omg.org/mda/specs.htm#MOF, 22-09-
2005.

[OpSi97] Opdahl, A. L. & Sindre, G. 1997. Facet Modelling:
An Approach to Flexible and Integrated Conceptual
Modelling, Information Systems, vol. 22, no. 5.

[SLJ+05] Solheim, H.G., Lillehagen, F., Jørgensen, H.D.,
Karlsen, D. & Smith-Meyer, H. 2005, Obliterating the
border - Concurrent modeling and execution platform,
Proceedings of CE 2005.

[Styh02] Styhre, A. 2002. Thinking with AND: Management
Concepts and Multiplicities, Organization, vol. 9, no. 3.

[Taiv96] Taivalsaari, A. 1996. On the Notion of Inheritance,
ACM Computing Surveys, vol. 28, no. 3.

[Trou05] Metis 5.0 product information,
http://www.toux.com, 22-09-2005.

[Weng98] Wenger, E. 1998. Communities of Practice.
Learning Meaning and Identity. Cambridge University
Press, UK.

[W3C04a] RDF Primer, W3C Recommendation 10 Feb 2004,
Manola, Miller, eds. http://www.w3c.org/RDF/, 22-09-
2005.

[W3C04b] OWL Web Ontology Language Reference, W3C
Recommendation 10 Feb 2004. Dean, Schreiber (ed),
http://www.w3c.org/2004/OWL/, 22-09-2005.

Håvard D. Jørgensen, Frank Lillehagen, Dag Karlsen

Troux Technologies AS
PO Box 482, N-1327 Lysaker, Norway
{hjorgensen, flillehagen, dkarlsen}@troux.com
http://www.troux.com/services/research/

