
 Enterprise Modelling and Information Systems Architectures

 Vol. 1, No. 1, October 2005

14 Nicolas Cuntz, Ekkart Kindler

Nicolas Cuntz, Ekkart Kindler

On the semantics of EPCs

Efficient calculation and simulation

 One of the most debatable features of Event driven Process Chains (EPCs) is their non-local semantics, which
results in some difficulties when formalising their semantics. Recently, we have overcome these problems by using
techniques from fixed-point theory for defining the semantics of an EPC, which consists of a pair of related
transition relations. This fixed-point characterisation of the semantics of EPCs provides a mathematical
characterisation of the semantics of EPCs only. For simulating an EPC based on this semantics, we need an
efficient way for calculating the corresponding pair of transition relations. A naive implementation of the
underlying fixed-point iteration for calculating the transition relations results in a practically useless algorithm.

In this paper, we show how to calculate the semantics of an EPC in a more efficient way by employing different
techniques and optimisations from symbolic model checking. We also analysed all kinds of simplifications of EPCs
to make the calculation of the semantics more efficient, but it turned out that most of these techniques are
ineffective. Still, our algorithms are fast enough for simulating practical size EPCs.

In order to demonstrate the efficiency of our algorithms and data structures, we have started an open source
project called EPC Tools, which could be a good starting point for an open source tool for the EPC community.

1 Introduction

Event driven Process Chains (EPCs) have been
introduced in the early 90ties for modelling business
processes [KeNS92]. Initially, EPCs have been used
informally only, without a fixed formal semantics.
For easing the modelling of business processes with
EPCs, the informal semantics proposed for the OR-
join and the XOR-join connectors of EPCs was non-
local. This non-local semantics, however, results in
severe problems when it comes to a formalisation of
the semantics of EPCs and, recurrently, resulted in a
debate on the semantics of EPCs [LaSW98, Ritt00].
It turned out that these problems are inherent to the
informal non-local semantics of EPCs. In [AaDK02],
we pin-pointed these arguments and proved that a
formal semantics that exactly captures the non-local
semantics of EPCs in terms of a single transition
relation does not exist. But, we could define a
semantics for an EPC that consists of a pair of two
correlated transition relations by using fixed-point
theory [Kind04b].

Due to their non-local semantics, EPCs cannot be
simulated by looking at the current state only;
rather it requires calculating the transition relations
beforehand. In principle, the two transition relations
defined as the semantics of an EPC can be calculated
by fixed-point iteration. The problem, however, is
that the calculation of the two transition relations by
naive fixed-point iteration is very inefficient and
intractable in practise. In this paper, we will show
that some techniques from symbolic model checking
[BCM+92, McMi93, ClGP99] and ordered binary
decision diagrams (OBDDs) [Brya86] can be used for
calculating the semantics of EPCs in a more efficient
way.

We have implemented an EPC tool based on these
techniques, which simulates practically relevant
EPCs within a reasonable response time. Since this
tool calculates the transition relations of an EPC
anyway, it was easy to implement some simple
semantical checks; and it should be easy to add all
kinds of more sophisticated analysis and verification
methods. The tool is open source and is based on
the Eclipse platform [Ecli]. Therefore, it could serve
as the starting point of an open source project for an

Enterprise Modelling and Information Systems Architectures
Vol. 1, No. 1, October 2005

On the semantics of EPCs 15

EPC tool with all kinds of analysis, simulation, and
verification features, which is the reason for calling it
EPC Tools.

2 Syntax and semantics of EPCs

In this section, we introduce the syntax and the
semantics of EPCs as motivated, discussed and
formalised in [Kind04b], which was based on the
informal ideas as presented in [KeNS92, NüRu02].

2.1 Syntax

Figure 1 shows an example of an EPC. It consists of
three kinds of nodes: events, which are graphically
represented as hexagons, functions, which are
represented as rounded boxes, and connectors,
which are represented as circles. The dashed arcs
between the different nodes represent the control
flow. The two black circles do not belong to the EPC
itself; they represent a state of the EPC. A state,
basically, assigns a number of process folders to
each arc of the EPC. Each black circle represents a
process folder at the corresponding arc.

f1

Start1

Inner1

f’1

Stop1

f2

Start2

Inner2

f’2

Stop2

c2c1

Figure 1: An EPC

Mathematically, the nodes are represented by three
pairwise disjoint sets E, F, and C, which represent
the events, functions, and connectors, respectively.
We denote the set of all nodes by N = E ∪ F ∪ C. The
type of each connector is defined by a mapping l : C
→ { and, or, xor }. The control flow arcs are a subset A ⊆
N × N.

For some node n ∈ N, nin denotes the set of its ingoing
arcs, and nout denote the set of its outgoing arcs. With
this notation, we can formalise the syntactical
restrictions of EPCs: Each connector c ∈ C is either a
join connector, i.e. ⎪cin⎪ > 1 and ⎪cout⎪ = 1, or it is a

split connector, i.e. ⎪cin⎪ = 1 and ⎪cout⎪ > 1. Moreover,
every function f ∈ F has exactly one ingoing and one
outgoing arc (i.e. ⎪fin⎪ = ⎪fout⎪ = 1), and every event e ∈
E has at most one ingoing arc and at most one
outgoing arc (i.e. ⎪ein⎪ ≤ 1 and ⎪eout⎪ ≤ 1). Note that
there are some more syntactical restrictions on
EPCs. But, we omit these restrictions here because
they are not important for our semantical
considerations (see [NüRu02] for details).

f fe ea. b.

c. d.

e. f.

g. h.

Figure 2: The transition relations for the different
nodes

A state of an EPC assigns a number of process
folders to each arc of the EPC; here, we assume that
there is at most one process folder at each arc. So a
state σ is a mapping σ : A → { 0, 1 }. The set of all
states will be denoted by ∑.

2.2 Transition relation

The semantics of an EPC defines how process folders
are propagated through an EPC. This can be
formalised by a transition relation R ⊆ ∑ × N × ∑,
where the first component denotes the source state,
the third component denotes the target state, and
the middle component denotes the involved node.
Clearly, the definition of this relation depends on the
involved node, which is the reason for defining it for
each node n separately Rn ⊆ ∑ × { n } × ∑ later in this
paper.

 Enterprise Modelling and Information Systems Architectures

 Vol. 1, No. 1, October 2005

16 Nicolas Cuntz, Ekkart Kindler

For events and functions, a process folder is simply
propagated from the ingoing arc to the outgoing arc.
The transition relation Rn for events and functions is
graphically represented in the top row of Figure 2 (a.
and b.). For connectors, the propagation of folders
depends on the type of the connector (AND, OR,
resp. XOR) and whether it is a join or a split
connector. Figure 2 shows the transition relation for
the connectors. For example, the AND-split
connector (c.) propagates a folder from its ingoing
arc to all outgoing arcs. Note that an AND-split
connector can propagate the folder only when there
are no folders on the outgoing arcs, because we do
not consider multiple folders here. The AND-join
connector (d.) needs one folder on each ingoing arc,
all of which are propagated to a single folder on the
outgoing arc.

The more interesting connectors are the OR-join and
the XOR-join connectors. Here, we focus on the
XOR-join. An XOR-join (h.) waits for a folder on one
ingoing arc, which is then propagated to the
outgoing arc. But, there is one additional condition:
The XOR-join must not propagate the folder, if there
is or there could arrive a folder on the other ingoing
arc.

In Figure 2 (h), this additional condition is
represented by a label with a crossed out arrow at
the other arc. Note that this condition cannot be
checked locally in the current state: whether a folder
could arrive on the other arc or not depends on the
overall behaviour of the EPC. Therefore, we call the
semantics of the XOR-join connector non-local.
Likewise, the OR-join (f.) has a non-local semantics.

Note that, in this informal definition of the transition
relation, we refer to the transition relation itself
when we require that no folders should arrive at
some arcs according to the transition relation.
Therefore, we cannot immediately translate it to a
mathematically sound definition. In order to resolve
this problem, we assume that some transition
relation P is given already, and whenever we refer to
the non-local condition, we refer to this transition
relation P. Thus, Figure 2 defines a mapping R(P) for
each node, which defines a transition relation R(P) for
some given transition relation P. Actually, we define
a mapping Rn(P) for each node n separately, where
R(P) is the union of all Rn(P).

The most important property of R(P) is that it is
monotonously decreasing in P, i.e. for each two
transition relations P and P' with P ⊆ P' we have R(P) ⊇
R(P’). The reason is that P occurs under a negation in
the definition of R(P) (see [Kind04b] for more
details).

2.3 Semantics

Based on R(P), we can now define the semantics of
the EPC. Ideally, we would like to define it to be a
fixed-point P = R(P). Unfortunately, there are EPCs for
which the mapping R does not have a fixed-point.
So, we define it as a pair of transition relations P and
Q such that P = R(Q) and Q = R(P), where P is the least
such transition relation and Q is the greatest such
transition relation. In [Kind04b], we proved that this
pair is uniquely defined by exploiting the fact that R
is monotonously decreasing. We called P the
pessimistic transition relation of the EPC, and we
called Q the optimistic transition relation of the EPC.
Unfortunately, P and Q can be different for some
(nasty) EPCs, and we have argued that these are
exactly the EPCs for which a single transition relation
cannot fully capture the informal semantics of EPCs.
For EPCs for which P and Q coincide, the semantics
exactly captures the informal semantics. Therefore,
we call EPCs with P = Q clean.

In [Kind04b], we did not bother to give an
operational characterisation of this semantics, since
we were interested only in defining a precise
semantics. But, the fixed-point theorem of Kleene
immediately gives us a simple algorithm for
calculating the pair (P, Q), which is called fixed-point
approximation or fixed-point iteration:

Let P0 = ∅ and Q0 = ∑×∑. For each i, we define Pi+1 =
R(Qi) and Qi+1 = R(Pi). Since R(P) is monotonously
decreasing, we have that Pi ⊆ Pi+1 and Qi ⊇ Qi+1 for each
i.

Moreover, ∑ × N × ∑ is finite, which implies that, for
some i, we will have Pi+1 = Pi and Qi+1 = Qi. For this i,
we have R(Pi) = Qi+1 = Qi and R(Qi) = Pi+1 = Pi. And this
pair (Pi , Qi) is the semantics of the EPC. So, starting
with P0 = ∅ and Q0 = ∑×∑ and iteratively computing
the next Pi+1 and Qi+1 will eventually terminate with
the semantics of the EPC.

Unfortunately, an explicit representation of the
transition relations Pi and Qi and an explicit
calculation of Pi+1 = R(Qi) and Qi+1 = R(Pi) is extremely
inefficient. For realistic EPCs, there are millions of
potential states ∑ and billions of potential arcs in the
transition relation1. Moreover, an explicit calculation
of R(P) involves a reachability analysis on P. So a
naive explicit implementation of the fixed-point
approximation does not work in practise.

1 Note that not all of these states will be reachable in the
final semantics, but they must be considered during the
calculation of the semantics.

Enterprise Modelling and Information Systems Architectures
Vol. 1, No. 1, October 2005

On the semantics of EPCs 17

3 Calculating the transition
relations

In the previous sections, we have rephrased the
semantics of EPCs in an operational way. Next, we
will show how the two transition relations can be
calculated in a more efficient way. To this end, we
will use ordered binary decision diagrams and
techniques from symbolic model checking. We use
formulas and temporal formulas for representing the
transition relation Rn(P) of each node n of the EPC,
and we will show how these formulas can be used
for efficiently calculating the semantics of the
underlying EPC.

3.1 Representing Rn(P) by formulas

Let us start with the formula for an AND-split
connector, with ingoing arc i and outgoing arcs o1, … ,
on. In order to define the corresponding behaviour,
we assume that i and o1, … , on are boolean variables.
The values of these variables represent the state
before the transition, where value true means that
there is a process folder on the corresponding arc,
and value false means that there is no process folder.
Moreover, we introduce the primed version i' and o1',
… , on' for each arc, which represent the state after
the transition. With this notation and understanding,
the behaviour of the AND-split can be expressed by
the following formula (cf. Fig. 2 (c)):

i ∧ ¬o1 ∧ … ∧ ¬on ∧ ¬i' ∧ o1' ∧ … ∧ on'

This formula exactly captures the fact that there
must be a folder on the ingoing arc i of the AND-split
and there must be no folders on the outgoing arcs o1,
… , on before firing the AND-split; and, after firing the
AND-split, the ingoing arc has no folder anymore,
but the outgoing arcs have a folder each.
Altogether, the formula is an immediate translation
of Figure 2 (c) (as formalised in [Kind04b]), where
we assume that variables not occurring in the
formula do not change.

Altogether, we can apply this standard technique
[ClGP99, HuRy00] for defining the behaviour of all
EPC nodes with a local semantics. The complete list
of formulas for all connectors is shown below,
where, for simplicity, we assume that connectors
have at most two input and output arcs (cf. Fig. 2):

a. / b.: For n ∈ E ∪ F with nin = {i} and nout = {o}, the
formula for Rn(P) is

i ∧ ¬o ∧ ¬i' ∧ o'.

c.: For n = c ∈ C with l(c) = and, cin = {i}, and cout = {o1, o2},

i ∧ ¬ o1 ∧ ¬ o2 ∧ ¬ i' ∧ o1' ∧o2'.

d.: For n = c ∈ C with l(c) = and, cin = {i1, i2}, and cout ={o}, the
formula for Rn(P) is

 i1 ∧ i2 ∧ ¬o ∧ ¬i1' ∧ ¬i2' ∧ o'.

e.: For n = c ∈ C with l(c) = or, cin = {i}, and cout = {o1, o2}, the
formula for Rn(P) is

i ∧ ¬(o1 ∧ o2) ∧ ¬i' ∧ (o1 ⇒ o1') ∧ (o2 ⇒ o2') ∧ (o1 ≠ o1' ∨ o2 ≠ o2')

g.: For n = c ∈ C with l(c) = xor, cin = {i }, and cout ={o1, o2},
the formula for Rn(P) is

i ∧ ¬(o1 ∧ o2) ∧ ¬i' ∧ (o1 ⇒ o1') ∧ (o2 ⇒ o2') ∧ (o1 ≠ o1' xor o2 ≠ o2')

The formulas for the OR-split and the XOR-split
connectors are a bit more involved. For the OR-split
connector (cf. Fig. 2 (e)), it is required that no
outgoing arcs has less folders than before and at
least one has more. Since we do not consider
multiple folders, this constraint can be formulated in
terms of an implication o ⇒ o' (i.e. if there is a folder
on o in the source state of the transition then there is
a folder on o in the target state of the transition).

For the XOR-split (cf. Fig. 2 (g)) connector, we also
require that no outgoing arc has less folders than
before and exactly one arc has one more. Some
formulas are a bit involved, but, in principle, there is
no problem with these formulas for the local
connectors, because the transition relation Rn(P) does
not refer to P.

But how can the formulas for the non-local operators
be formalised? For these connectors, the definition
of Rn(P) refers to P. So, we need to refer to P in the
formula for Rn(P) somehow. To this end, we use a
temporal logic formula that is interpreted on the
transition relation2 P. Since we use very simple
temporal formulas only, we do not introduce
temporal logic in full detail, here. The only temporal
operator needed for now is the CTL operator EF (see
[ClGP99, HuRy00] for details): For some formula ϕ,
the temporal formula EF ϕ is true in exactly those
states from which a state can be reached (with
respect to P) in which ϕ is valid3. This way, we can
express that no folder can arrive on some arc i by
the formula ¬EF i.

With this temporal formula, it is easy to express the
behaviour of the XOR-join connector: For an XOR-

2 Technically, P is considered as a Kripke structure on which
the temporal formula is interpreted.

3 The temporal operator EF can be read „there Exists a
Future“.

 Enterprise Modelling and Information Systems Architectures

 Vol. 1, No. 1, October 2005

18 Nicolas Cuntz, Ekkart Kindler

join connector with two ingoing arcs i1 and i2 and one
outgoing arc o, the formula

((i1 ∧ ¬EF i2) ∨ (¬EF i1 ∧ i2)) ∧ ¬ o ∧ ¬i1' ∧ ¬i2' ∧ o'

precisely captures its behaviour. The formulas ¬ EF
i1 and ¬ EF i2 guarantee that a transition does occur
only when no folder can arrive from the respective
other arc.

For the OR-join connector, the transition relation is
similar. It requires that there is one folder on one
ingoing arc and, if there is no folder on the other
ingoing arc no folder can arrive at this arc anymore.
Altogether, we define:

f.: For n = c ∈ C with l(c) = or, cin = {i1, i2}, and cout ={o}, the
formula for Rn(P) is

((i1 ∧ i2) ∨ (i1 ∧ ¬EF i2) ∨ (¬EF i1 ∧ i2)) ∧ ¬o ∧ ¬i1' ∧ ¬i2' ∧
o'.

h.: For n = c ∈ C with l(c) = xor, cin = {i1, i2}, and cout ={o}, the
formula for Rn(P) is

((i1 ∧ ¬EF i2) ∨ (¬EF i1 ∧ i2)) ∧ ¬o ∧ ¬i1' ∧ ¬i2' ∧ o'.

Experts in model checking may be a bit concerned
about mixing primed variables and temporal
operators in a single formula. Usually, there are
transition formulas that may contain primed
variables, but no temporal operators, and there are
temporal formulas that must not contain primed
variables. A transition formula or a set of transition
formulas represents the underlying system; the
temporal formulas represent properties to be
verified for that system. Though uncommon, there is
no harm in mixing primed variables and temporal
operators in a single formula. Such a formula
defines a new transition relation based on a given
transition relation, which is exactly what we need for
calculating Rn(P).

3.2 Computing the transition relations

Next, we will discuss how to calculate the two
transition relations that actually represent the
semantics of an EPC, where we assume that the EPC
has the local nodes l1, … , lj and the non-local nodes
n1, … , nk, and g1, … , gj are the formulas representing
the transition relations for the local nodes, and h1, … ,
hk are the formulas representing the transition
relations for the non-local nodes.

Let us first discuss the operations from model
checking that we need for this calculation. In
symbolic model checking, a transition relation given
as a formula (with primed variables) is transformed

into a data structure that is called a reduced ordered
binary decision diagram4 (ROBDD), which has the
nice feature that equivalent formulas will have
exactly the same ROBDD representation. For a
formula f with primed variables without temporal
operators, there is a standard procedure for this
transformation [ClGP99, HuRy00]. We denote this
procedure by f.toROBDD(), which is close to the
corresponding methods of our object oriented model
checker MCiE [Kind04a].

Formulas with primed variables and temporal
variables are very uncommon. So there is no
standard procedure for converting it to an ROBDD.
But, there is a standard procedure for calculating an
ROBDD representing the set of states of a transition
system in which a given temporal formula is true. We
assume that the transition system is given as a set P
of ROBDDs representing the transitions of the
system. This procedure can be easily extended to
formulas that contain primed variables. For such a
formula f and an ROBDD-representation P of the
transition relation, f.toROBDD(P)calculates the
resulting ROBDD.

Given some transition system Pcurr (represented as a
set of ROBDDs), we can calculate the transition
system Pnext = R(Pcurr) as follows:

Pnext:={ g1.toROBDD(),..., gj.toROBDD()};
for i:= 1 to k do
 Pnext:= Pnext.add(hi.toROBDD(Pcurr));

In the first line, we insert all the transitions of the
local nodes to Pnext; in the loop, we add the
transition relation for each non-local node to Pnext.
To be precise, the calculation is a bit more involved:
In order to exactly capture the semantics formalised
in [Kind04b], we must switch off the transition
relation corresponding to node ni for calculating the
next transition relation for node ni. Since this is a
minor technical detail, we do not include this into the
presented pseudo code.

Based on this code, we can easily execute the fixed-
point iteration discussed in Section 2: We start with
P0 = ∅ and Q0 = ∑×∑ and the iteratively calculate Pi+1 =
R(Qi) and Qi+1 = R(Pi).

In order to save computation time, we do not
calculate every Pi and every Qi, rather we calculate
Q0, P1, Q2, P3, … in a zig-zag way. As stated before,

4 Often reduced ordered binary decision diagrams are called
ordered binary decision diagrams (OBDDs) or even binary
decision diagrams (BDDs) only. We stick to the term ROBDD
throughout this paper.

Enterprise Modelling and Information Systems Architectures
Vol. 1, No. 1, October 2005

On the semantics of EPCs 19

we will eventually end up with Pi+2 = Pi and Qi+2 = Qi ;
in order to detect this point, we need to store the
last two versions of the calculated transition
relations and compare them to the next one. When
they are equal, we have calculated the two transition
relations that represent the semantics of the EPC.

The pseudo code for the resulting algorithm is shown
below:

Pnext:={ false }; // P0
Pcurr:={ true }; // Q0
step:= 1;

repeat
 Pprev:= Pcurr;
 Pcurr:= Pnext;
 step:= step + 1;

 // Pnext := R(Pcurr)
 Pnext:={ g1.toROBDD(),..., gj.toROBDD()};
 for i:= 1 to k do
 Pnext:= Pnext.add(hi.toROBDD(Pcurr));

until Pnext == Pprev;

Upon termination Pcurr and Pnext contain the two
transition relations for the EPC. The question,
however, is which of them is the pessimistic
transition relation and which of them is the
optimistic transition relation. In order to decide this,
we use the step counter. If it is odd, Pcurr is a Pi
relation and thus represents the pessimistic
transition relation and Pnext is the optimistic
transition relation; if the step counter is even, Pcurr
is a Qi relation and, thus, represents the optimistic
transition relation and Pnext is the pessimistic
transition relation.

3.3 Simulation

Once we have calculated the two transition relations
for an EPC, it is easy to simulate it. For some given
state, we must calculate all nodes that can
propagate a process folder (according to the
pessimistic or according to the optimistic transition
relation). In that case, we call the corresponding
node enabled in this state. Since we store the
calculated ROBDDs Pn for the transition relation of
node n separately, checking the enabledness is
simple. Let enabled be the CTL formula EX true,
which is valid in all states for which the underlying
transition relation has a successor. Then
enabled.toROBDD(Pn) calculates all those states in
which the node is enabled.

When the user wants to fire an enabled transition,
the simulator explicitly removes and adds the
folders in the current state according to semantics
of the corresponding node. It is not necessary to use

ROBDDs here because only the enabledness of a
node is non-local. The propagation of the folders can
be calculated locally.

3.4 Implementation

It is easy to implement the above algorithms based
on some standard ROBDD package. The only tricky
part might be the mixed occurrence of primed
variables and temporal operators in formulas. Since
our own Model Checking in Education (MCiE) project
immediately supports this kind of formulas, we
implemented the algorithm based on MCiE. Though
MCiE is implemented in Java and efficiency is not
MCiE's highest priority, the first experiments with
this algorithm were surprisingly good. Without
further optimisations, it worked reasonably well on
small EPCs. For calculating the semantics for larger
EPCs, however, we had to come up with some
optimisations, which will be discussed below.

4 Optimisations

As mentioned above, we had to apply several tricks
and optimisations in order to compute the semantics
of larger EPCs. In our discussion, we distinguish
between two different kinds of optimisations.

The first kind exploits properties of the semantics of
EPCs in order to reduce and to simplify them. The
idea is to calculate the semantics of a simpler and
smaller EPC and, based on this information, simulate
the original EPC. These optimisations have been
investigated in [Cunt04]. Unfortunately, there are
many negative results, which, basically, can be
considered as a backfiring of the non-local semantics
of EPCs. The non-local semantics of EPCs seems to
have many nasty side effects and renders many
ideas for optimisations impossible—except for very
trivial ones.

The second kind is a smart application and
combination of optimisation techniques generally
known from model checking. It turned out that
these techniques were much more effective than the
ones for EPCs and could be used in combination with
the ones for EPCs.

Note that, in spite of all our optimisations, the worst
case complexity of our algorithms is still very bad: it
is exponential. It is an interesting open question
whether this is inherent to the semantics of EPCs or
not. But, we feel that this worst case complexity
cannot be avoided because of the non-local
semantics of EPCs. But our experimental results
have shown that, for many practical examples, we
can calculate the semantics of many practically
relevant EPCs in a reasonable time.

 Enterprise Modelling and Information Systems Architectures

 Vol. 1, No. 1, October 2005

20 Nicolas Cuntz, Ekkart Kindler

4.1 EPC techniques

We start with a brief discussion of techniques that
exploit the properties of EPCs.

Eliminating chains

It is clear that reducing the size of an EPC also
reduces the complexity of the simulation problem.
For our model checking algorithm, the number of
arcs of the simulated EPC is essential, because the
computation time is exponential in the number of
variables, i.e. in the number of arcs.

One possible approach is to simplify an EPC by
eliminating chains of nodes that do not influence the
semantical behaviour of other nodes. Obviously, a
sequence of consecutive event and function nodes
such as the ones shown in Figure 3 (labelled Event
and Function) can be omitted when computing the
enabledness of the XOR-join connectors. We call this
optimisation chain elimination. We can apply chain
elimination, when the following two conditions are
satisfied:

1. In the considered state, there are no process
folders on the arcs eliminated by this simplification.

It is obvious that, otherwise, a process folder in the
predecessor set of an XOR-join connector which
could influence the behaviour of the XOR-join in the
original EPC would be missing in the simplified EPC.

Note that this condition implies that we can omit
only those arcs from a chain that do not have a
folder on them. Therefore, chain elimination depends
on the considered state of the EPC. For simulation,
this is no problem because we can compute another
simplified EPC each time the state has changed.
Since the simplified EPC is much smaller than the
original one, we can hope that the fixed-point
computation is significantly faster for the reduced
EPC. For analysis and, in particular, for checking
whether the semantics of an EPC is clean, however,
we cannot apply this chain elimination technique
directly.

2. In order to correctly apply chain elimination, it is
necessary that in no reachable state of the reduced
EPC, a node is blocked because of a process folder
on one of its outgoing edges. We call such states
contact situations. The problem with contact
situations is, that the simplified EPCs tend to have
more contact situations as compared to the original
EPCs. In this case, the behaviour of the original and
the simplified EPC are different. The simplified EPC is
blocked, whereas the original version could still fire.
Therefore, we cannot use the simplified version for
simulating the original one. Fortunately, it is easy to
calculate whether the simplified EPC has reachable

contact situations, which provides us an a posteriori
condition, whether chain elimination could be
applied. If the condition is not met, we must switch
back to calculating the semantics of the original EPC,
which of course is less efficient.

If both conditions have been checked, the simulator
can use the transition relation computed for the
simplified EPC to determine whether an XOR-join
resp. an OR-join connector is enabled in the original
EPC or not (other nodes can be checked locally
anyway). Because we eliminated only event and
function nodes, those connectors are still contained
in the reduced EPC.

The main disadvantage of the chain elimination
approach is that it cannot be applied for arbitrary
EPCs and that its applicability depends on the
current state. Also, chain elimination does not allow
us to calculate the complete semantics of an EPC.
Therefore, it can be used for simulation only; it
cannot be used for our analysis and verification
algorithms.

Syntactical restrictions

Another idea for simplifying the simulation problem
was to identify some restricted classes of EPCs for
which no fixed-point iteration would be necessary.
For example, we considered EPCs without cycles on
non-local nodes such as the ones shown in Figure 1,
or EPCs that are constructed from clean EPC
constructs only. We hoped that we could calculate
the semantics of EPCs from these sub-classes in a
much more efficient way. Unfortunately, it turned
out that this hope was in vain, and we found some
nasty counter-examples, which spoilt this approach.
A detailed discussion of these negative results can
be found in [Cunt04].

4.2 Model checking techniques

There are many techniques that make model
checking more efficient. Using ROBDDs as a
representation for sets of states and for the
transition relations is one of them. It is only this
choice that made our algorithms work for small
examples. In addition to using ROBDDs, we used
two other techniques: optimisation of the variable
order and partitioning of the transition relation.

Enterprise Modelling and Information Systems Architectures
Vol. 1, No. 1, October 2005

On the semantics of EPCs 21

Event 1

Function 1

Event 3

Function 3

Function 4

Event 4

Function 2

Event 2

Event

Function

Figure 3: The example used for the measurements
in Figure 4

Variable order

It is well-known that the size (number of nodes) of
the ROBDDs representing some boolean function or
formula strongly depends on the chosen variable
order. In turn, the computation time of the
operations on ROBDDs depends on the size of the
ROBDDs.

So, it is important to find a good variable order for
efficiently calculating the semantics of EPCs. One
heuristic for a good variable order is that related
variables should be close to each other in the
variable order. For EPCs, it is quite easy to identify
those variables (arcs) that are related: Two
variables resp. arcs are related, when they are
attached to the same node. The problem, however,
is that each arc belongs to two nodes; so it is
impossible to have all related variables close to each
other in the variable order, in particular, when the
EPC has cycles in its control flow arcs. In order to
calculate a good variable order, we thought of some
sophisticated schemes. But, in the end, it turned out
that a simple breadth first traversal of all nodes
starting from the start events of the EPC provided a
variable order with the best results.

Though this variable order provided satisfactory
results, we feel that there is some room for further
improvement, which needs some further
investigation.

Partitioning the transition relation

In the algorithm for calculating the transition
relations of an EPC, we distinguish the ROBDDs for
the transition relations for each node of the ROBDD.
It is well known that this results in much less nodes
for representing the transition relation than for
representing all transitions within a single ROBDD.

In order to make these ROBDDs even smaller, we
imposed one additional assumption on the formulas
representing the transition relation: we assume that
all variables not occurring in the formula do not
change. Expressed in a naive way, this means
adding the formula a1 = a1' ∧ a2 = a2' ∧ … ∧ an = an' for all
variables that are not touched by this node. Adding
this formula explicitly to the transition relation,
however, would result in much bigger ROBDDs,
which in turn would result in much longer
computation times. Therefore, we did not add this
formula to the representation of the transition
relation, but we implemented the procedure for
calculating EX within the ROBDD library in such a
way that these variables were implicitly assumed to
be unchanged. This unchanged variables
optimisation resulted in significantly better
computation times.

4.3 Measurements

In order to illustrate the benefits of the above
optimisations, Figure 4 shows the computation times
for calculating the semantics of the example of
Figure 3 for the different optimisation techniques. In
order to see the influence of the size of the EPC, we
measured the computation time for different
numbers of nodes on the chain between Event 4 and
Function 4. The x-axis represents the number of
nodes of the EPC, the y-axis shows the computation
times for the different optimisations.

The first graph shows the computation time without
partitioning the transition relations. The second
graph shows the computation time with partitioning,
but without the improvement for unchanged
variables. The third graph shows the time when
incorporating also the optimisation for unchanged
variables in the transition relations. The fourth graph
shows the time with an optimised variable order.
Note that partitioning the transition relation along
with an explicit algorithm for unchanged variables
makes a significant difference in the computation
times.

The fifth graph shows that chain elimination can
dramatically improve the simulation of EPCs. Note,
however, that this example is a bit misleading
because it was chosen to show the positive effect of
chain elimination. In other examples, the figures are
not as impressing and, in many situations, chain
elimination is not applicable at all (see discussion
above).

Once the transition relation was computed, the
simulation itself could be done in virtually no time.

The above figures come from a technical example.
In order to get some experience with real world

 Enterprise Modelling and Information Systems Architectures

 Vol. 1, No. 1, October 2005

22 Nicolas Cuntz, Ekkart Kindler

Figure 4: Benefit of the implemented optimisation techniques (compare to Figure 3)

examples, we have done some experiments with
some EPC models from the SAP reference processes
of the ARIS Toolset5:

For EPCs with 20 to 30 nodes the semantics was
calculated within milliseconds to about 4 seconds,
depending on the structure of the EPC. The chosen
EPCs examples and the precise figures can be found
in [CuKi04b].

5 EPC Tools

The algorithms for calculating the semantics of an
EPC and for simulating an EPC based on this
semantics is integrated into an Eclipse [Ecli] based
tool, which we call EPC Tools. EPC Tools is open
source and can be down-loaded from the EPC Tools
web site [CuKi04a].

Figure 5 shows a screen-shot of Eclipse with the EPC
Tools plugin running. EPC Tools comes with a
graphical editor and an interactive simulator for
EPCs. Moreover, it is easy to import EPCs from other
tools because EPC Tools supports the EPC exchange
format EPML [MeNü04a], and there are converters

5 ARIS Toolset is a registered trademark of IDS Scheer. For
more information see http://www.ids-scheer.com/

between the AML format of the ARIS Toolset and
EPML [MeNü04b].

Moreover, EPC Tools checks simple semantical
properties of the EPC. For example, it indicates
whether the EPC is clean, i.e. whether both
transition relations coincide. This is important,
because unclean EPCs can easily lead to different
interpretations and should be considered harmful.
EPC Tools identifies unclean EPCs right away. In
addition, EPC Tools checks whether an EPC might
deadlock and whether there are contact situation,
i.e. whether there are situations in which nodes are
only blocked because of process folders on their
outgoing arcs. Often, such contact situations indicate
bad design.

The properties checked right now in EPC Tools,
however, are quite preliminary. Once the semantics
of the EPC is calculated, we could easily do much
more. For example, we could check some soundness
properties similar to the soundness criteria for
workflow nets as proposed by van der Aalst
[AaHe02] or we could check properties by applying
model checking. This should take less time than
calculating the semantics.

Overview on the functionality

The EPC Tools plugin can be used to edit, to
simulate, and to analyse EPCs with the help of
graphical control elements integrated into the

 0

 2000

 4000

 6000

 8000

 10000

 12000
1

2

4

3

5

 14000

 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

tim
e

in
 m

s

nodes

1

3

2

4

5

Naive approach using model checking

+ unchanged variables optimization

+ partitioning of the transition relation
(+ variable order optimization)

+ variable order optimization

+ chain optimization

(− variable order optimization)

Enterprise Modelling and Information Systems Architectures
Vol. 1, No. 1, October 2005

On the semantics of EPCs 23

Figure 5: EPC Tools in the Eclipse environment

Eclipse environment. The editor functions are
provided by a tool palette containing buttons for
adding nodes and arcs to the EPC. Pushing the
“select” button allows a user to move, rename, and
scale nodes directly by clicking on them. Some other
functions like undo commands are accessible
through a context menu (cf. Fig. 5). In addition, EPC
Tools provides a print function and allows a user to
zoom into and out of EPC diagrams by using the
standard Eclipse toolbar and the main menu.

The simulator functions are located in the lower part
of the panel in the middle. It is possible to highlight
all currently enabled nodes (button “refresh
enabled”), and then to simulate one step by
specifying a node or by randomly choosing a node
(button “step simulation”). The randomised
simulation (button “random simulation”) can be very
useful when simulating several steps consecutively
by simply clicking one button. A checkbox defines

whether the simulation should be done according to
the optimistic or according to the pessimistic
transition relation. In the same panel, there are
some LEDs corresponding to the properties of the
EPC. This information is updated by pushing the
“refresh info” button. Then, the LEDs light up green
or red in order to indicate the valid and invalid
properties.

6 Conclusion

In this paper, we have shown that the semantics of
an EPC can be efficiently calculated by using
ROBDDs and techniques from model checking. With
the presented optimisations, the simulation of
medium size EPCs works quite well and is practically
feasible—even when taking into account the non-

 Enterprise Modelling and Information Systems Architectures

 Vol. 1, No. 1, October 2005

24 Nicolas Cuntz, Ekkart Kindler

local semantics of the XOR-join and the OR-join
connector. Moreover, it is quite easy to adapt this
algorithm to slightly different semantics of EPCs (see
[Kind04b] for some alternatives): We need to
change only the temporal formulas for defining the
transition relations of the different types of nodes of
EPCs.

The presented algorithms have been implemented in
a new Tool for EPCs, which is Eclipse based and is
called EPC Tools. This tool comes with a graphical
editor and it is easy to extend it by new features.
EPC Tools is open source published under the GNU
Public License, which might make it a good starting
point for an open source tool for EPCs. It can be
downloaded from [CuKi04a].

References

[AaDK02] van der Aalst, W.; Desel, J.; Kindler, E.: On the
semantics of EPCs: A vicious circle. In: Nüttgens, M.;
Rump, F. J. (eds.): EPK 2002, Geschäftsprozess-
management mit Ereignisgesteuerten Prozessketten,
November 2002, pp. 71–79.

[AaHe02] van der Aalst, W.; van Hee, K.: Workflow
Management: Models, Methods, and Systems.
Cooperative Information Systems. The MIT Press,
2002.

[BCM+92] Burch, J.; Clarke, E.; McMillan, K.; Dill, D.;
Hwang, L.: Symbolic model checking: 1020 states and
beyond. Information and Computation 98 (1992),
pp.142–170.

[Brya86] Bryant, R. E.: Graph-based algorithms for boolean
function manipulation. IEEE Trans. Computers 35
(1986), pp. 677–691.

[ClGP99] Clarke, E.; Grumberg, O.; Peled, D.: Model
checking. MIT Press, 1999.

[Cunt04] Cuntz, N.: Über die effiziente Simulation von
Ereignisgesteuerten Prozessketten. Master's thesis.
University of Paderborn, Department of Computer
Science, June 2004.

[CuKi04a] Cuntz, N.; Kindler, E.: The EPC Tools Project.
http://www.upb.de/cs/kindler/research/EPCTools,
2004.

[CuKi04b] Cuntz, N.; Kindler, E.: On the semantics of EPCs:
Efficient Calculation and Simulation.
In: Nüttgens, M.; Rump, F.~J. (eds.): EPK 2004,
Geschäftsprozessmanagement mit Ereignisgesteuerten
Prozessketten, October 2004, pp. 7–26.

[Ecli] The Eclipse Foundation: The Eclipse platform.
http://www.eclipse.org.

[HuRy00] Huth, M.; Ryan, M.: Logic in Computer Science:
Modelling and reasoning about systems. Cambridge
University Press, 2000.

[Kind04a] Kindler, E.: The Model Checking in Education
(MCiE) Project.
http://www.upb.de/cs/kindler/teaching/MCiE, 2004.

[Kind04b] Kindler, E.: On the semantics of EPCs: Resolving
the vicious circle. In: Desel, J.; Pernici, B.; Weske, M.
(eds.): Business Process Management, Second
International Conference, BPM 2004, June 2004.
Springer, LNCS 3080, pp. 82–97.

[KeNS92] Keller, G.; Nüttgens, M.; Scheer, A.-W.:
Semantische Prozessmodellierung auf der Grundlage
Ereignisgesteuerter Prozessketten (EPK). Technical
Report Veröffentlichungen des Instituts für
Wirtschaftsinformatik (IWi), Heft 89. Universität des
Saarlandes, January 1992.

[LaSW98] Langner, P.; Schneider, C.; Wehler, J.: Petri Net
Based Certification of Event driven Process Chains.
In: Desel, J.; Silva, M. (eds.): Application and Theory
of Petri Nets 1998, June 1998. Springer. LNCS 1420,
pp. 286–305.

[McMi93] McMillan, K. L.: Symbolic Model Checking. Kluwer
Academic Publishers, 1993.

[MeNü04a] Mendling, J.; Nüttgens, M.: Exchanging EPC
Business Process Models with EPML. In: Mendling, J.;
Nüttgens, M. (eds.): XML interchange formats for
business process management, Proceedings of the 1st
Workshop XML4BPM, March 2004, pp. 61–80.

[MeNü04b] Mendling, J. and Nüttgens, M.: Transformation
of ARIS Markup Language to EPML. In: Nüttgens, M.;
Rump, F. J. (eds.): EPK~2004,
Geschäftsprozessmanagement mit Ereignisgesteuerten
Prozessketten, October 2004, pp. 27–38.

[NüRu02] Nüttgens, M. and Rump, F. J.: Syntax und
Semantik Ereignisgesteuerter Prozessketten (EPK). In:
PROMISE 2002, Prozessorientierte Methoden und
Werkzeuge für die Entwicklung von
Informationssystemen. GI Lecture Notes in
Informatics, 2002, P-21, pp. 64–77.

[Ritt00] Rittgen, P.: Quo vadis EPK in ARIS?
Wirtschaftsinformatik 42 (2002):pp. 27–35.

Nicolas Cuntz

Computer Graphics and Multimedia Systems Group
University of Siegen
Siegen, Germany
nicolas.cuntz@uni-siegen.de

Ekkart Kindler

Software Engineering Group
University of Paderborn
Paderborn, Germany
kindler@upb.de

