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Abstract. Tackling the challenge of managing the full life-cycle of systems requires a well-defined mix of
approaches. While in the early phases model-driven approaches are frequently used to design systems,
in the later phases data-driven approaches are used to reason on different key performance indicators of
systems under operation. This immediately poses the question how operational data can be mapped back to
design models to evaluate existing designs and to reason about future re-designs. In this paper, we present
a novel approach for harmonizing model-driven and data-driven approaches. In particular, we introduce an
architecture for time-series data management to analyse runtime properties of systems which is derived
from design models. Having this systematic generation of time-series data management opens the door to
analyse data through design models. We show how such data analytics is specified for modelling languages
using standard metamodelling techniques and technologies.
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1 Introduction

In model-driven engineering (MDE), models are
the central artefact and used as a main driver
throughout the software development process, fi-
nally leading to an automated generation of soft-
ware systems (Lara et al. 2015). In the current
state-of-practice in MDE (Brambilla et al. 2017;
Karagiannis et al. 2016), models are used as an
abstraction and generalization of a system to be
developed. By definition, a model never describes
reality in its entirety, rather it describes a scope
of reality for a certain purpose in a given con-
text (Brambilla et al. 2017). Thus, models are
mostly used as prescriptive models for creating a
software system (Heldal et al. 2016). Such design
models determine the scope and details of a do-
main of interest to be studied. For this purpose,
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different types of general modelling languages
(e. g., state charts, class diagrams, etc.) may be
used or domain-specific languages (DSLs) (Kar-
agiannis et al. 2016) may be employed. It has
to be emphasized that engineers typically have
the desirable behaviour in mind when creating a
system, since they are not aware in these early
phases of many deviations that may take place at
runtime (van der Aalst 2016).

According to Brambilla et al. (2017) the im-
plementation phase deals with the mapping of
prescriptive models to some executable systems
and consists of three levels: (i) the modelling
level where the models are defined, (ii) the realiz-
ation level where the solutions are implemented
through artefacts that are used in the running
system, and (iii) the automation level where map-
pings from the modelling to the realization phase
are made. However, these levels are currently
only used for down-stream processes. The possib-
ility of up-stream processes is mostly neglected
in MDE (Mazak and Wimmer 2016). Especially,
for later phases of the system lifecycle descriptive
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models may be employed to better understand how
the system is actually realized and how it is operat-
ing in a certain environment (Mazak and Wimmer
2016). Compared to prescriptive models, those
descriptive models are only marginal explored in
the field of MDE, and if used at all, they are built
manually.

In this paper, we move towards a well-defined
mix of approaches to better manage the full life-
cycle of systems by combining prescriptive and
descriptive model types. In particular, we intro-
duce a model-driven time-series data analytics
architecture for harmonizing model-driven and
data-driven approaches. Based on this architec-
ture, we show how data analytics can be specified
for modelling languages using standard metamod-
elling techniques. This means, design-oriented
languages are equipped with extensions for repres-
enting runtime states as well as runtime histories,
which in turn allow the formulation and com-
putation of runtime properties with the Object
Constraint Language (OCL). This approach has
the advantage to directly interpret measurements
and events within the design models without in-
troducing an impedance mismatch.

The remainder of this paper is structured as
follows. Section 2 provides the background for
this paper by introducing a motivating example
which is subsequently used as running example.
Section 3 gives an overview of our architecture
for unifying model-driven and data-driven ap-
proaches. In Section 4, we present in detail how
time-series analytics can be integrated in metamod-
els. Section 5 discusses the related work. Finally,
in Section 6, we conclude with an outlook on
future work.

2 Motivating Example

In this section, we introduce a motivating example,
which will subsequently become the running ex-
ample of this paper. We first describe the example
from the modelling perspective, then from the
realization perspective with a focus on runtime
data collection, and finally conclude with the chal-
lenges we aim to address with this paper.

Model-Driven Perspective
As our motivating example, we consider a
grip-arm robot (gripper) with different position
properties of axis angles: BasePosition

(BP), MainArmPosition (MAP), and
GripperPosition (GP). From a device point of
view (cf. Figure 1(a)), the structure of the gripper
component and its behaviour are modelled at
design time by a subset of a SysML-like language,
i.e., blocks with associated state machines. The
top of Figure 1(a) shows the specific properties
(BP,MAP,GP) of the block, whereas the actual
property values depend on the different states
(e.g., Idle, Pick Up). The states are given at the
bottom of Figure 1(a).

By the given state machine, property value
changes are modelled. The gripper has certain
positions at initialization, in state Idle and in state
Pick Up. The assumption of the modelled state
machine is that as soon these states are reached,
the position values are set. However, such state
machines are a kind of black box, where only
the discrete values before entering the state and
after leaving the state are known (cf. Figure 1(b)).
While this may be sufficient for several design
tasks and discrete systems, for continuous systems
more information may be required. This is in
particular true for our example case. The gripper
represents a continuous system, since it does not
immediately realize the next position, but needs
time to move to the given place. Usually, such
information is not directly given in a design model,
but it may be important for several tasks such as
optimization, validation, and verification. The
ability to observe property value changes over
time within states may contribute to capture the
current capabilities and shortcomings of systems.
Thus, the presented approach of this paper aims to
transform the black box into a so-called “grey box”
to make the effects of value changes visible (see
Figure 1(c)). For instance, observation sequences
of property value changes are an important base
information of a system’s operation to compute
operating figures to check if the behaviour of each
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Figure 1: Different model-based views on a grip-arm robot.

gripper’s axis corresponds to the defined one in
the design model.

Data-Driven Perspective
For the technical realization of our example, we
developed a simulation model of the gripper con-
sisting of three angle sensors, which we executed
by the open source tool Blender1 . We deploy
the scenario of a pick-and-place unit, where the
gripper picks up different color-coded work pieces,
place them on a test rig, picks the items up again
and puts them down, depending on their red or
green color, in two different storage boxes. The
simulation environment receives its commands
via Message Queue Telemetry Transport (MQTT)
from a server controller implemented with Kotlin2
. The simulation enables to acquire transient data
streams in real-time from the angle axes of the
gripper (BP, MAP, GP, unit is radian), which are
equipped with sensors.

To react on events of interest provided by these
data streams, we employ the publish/subscribe
pattern. In our example, we subscribe to the
sensor topic to receive in a temporal distance of
15 milliseconds the filtered data streams of the
sensors of the gripper during simulation. Thereby,
we are interested in property value changes (i. e.,
positions of the axes) in the simulation at given
points in time. Messages from the sensor topic are

1 https://www.blender.org
2 https://kotlinlang.org

defined in JSON3 specifying the sending unit as
well as the measured data. The following example
shows such a message from the angle sensors of
the gripper to the controller.

{"entity": "GripperArm",

"basePosition": 0.0,

"mainArmPosition": 0.0,

"gripperPosition": 0.0}

This example shows the positions of the angle
axes at system initialization (see Figure 1). The
angle position of each axis has the value 0.0. The
default range of the angle values is [−π,π]. To
analyze our scenario, it is important to save the
measured data over time. For this purpose, we
use the time series database InfluxDB4 . InfluxDB
allows us to store a large amount of time-stamped
data. In addition, by the tool Grafana5we can
visualize our stored sensor values.

Challenges
Our motivating example is discussed from two
angles: (i) from the model-driven, i. e., how the
intended system should work, and (ii) from the
data-driven, i. e., how measurements can be taken
from the running system to reason about the ac-
tual realization. While the first perspective is
lacking concepts to define runtime data such as

3 http://json.org/example.html
4 https://www.influxdata.com
5 https://grafana.com
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time-series, the second perspective has to cor-
rectly interpret the collected measurements. The
challenge is how to overcome the gap between
those two perspectives (i) to monitor important
data from operation, (ii) to align the measure-
ments with the design model in order to provide
a semantic anchoring of the data, and (iii) to
provide meaningful analytics whereas the results
of the analytics are interpretable for the given
design models to reason about improvements or
fulfilments of given requirements.

3 Unifying Architecture for Model-Driven
and Data-Driven Approaches

In order to allow a smooth integration of model-
driven and data-driven approaches, we present in
this section an architecture, which builds on the
classical model to system downstream in terms of
code generators, but at the same time, supports
an upstream in terms of mapping data back to
design models. Figure 2 gives an overview of
this architecture. In the following section, a more
detailed description of the different parts will be
presented based on our running example.

The proposed architecture consists of four main
parts. First, the left hand side of Figure 2 cap-
tures the classical downstream MDE approach
(cf. (a) in Figure 2). At the metamodel layer, the
design language is defined with the help of a
metamodelling language (in our setting Ecore).
Conforming to the design language, the design
models are defined at the model level describing
the static (i. e., structure) and dynamic aspects
(i. e., behaviour) of a system to be developed. For
the vertical transition from the modelling to the
realization level we assume the existence of model-
to-text transformations for code generation. Thus,
this part of our architecture describes how we
can derive the executable system from the design
model as is the state-of-the-art in MDE.

Second, we continue with defining the first part
of the up-stream process of runtime data to the
design model (cf. (b) in Figure 2). In addition
to the actual systems, the runtime observer is
generated out of the design model. The runtime

observer collects important information from the
running system to represent the current state of
the system. Those observations should not only
be recorded by observing the running system, but
should be also representable at the model level.
Thus, we extend the design language with a
dedicated runtime language. This metamodel
defines the syntax to represent snapshots of the
running system connected to the design model
elements. Those snapshots are represented in
the runtime state models which extend the
design models and may be directly updated by
the runtime observer during runtime. In sum-
mary, this part of our architecture maps runtime
data at the model level for one single point in time
and may be used to monitor a system on the model
level.

Third, we define the runtime history of a system
(cf. (c) in Figure 2). For reasoning about, e.g.,
property value distributions, it is important to have
the complete history of value changes as starting
point as one snapshot is definitely not sufficient for
such computations. Thus, in the time series
database the observations of the running system
are stored. Based on these collected observations,
the runtime history models may be directly
updated. These models conform to the runtime
history language, which is an extension of the
runtime language. In the runtime history
language, the syntax is defined for representing
histories of runtime phenomena of interest, e.g.,
property values, events, etc.

Finally, after defining those concepts for storing
observation histories at the model level, it is also
possible to analyse the stored observations (cf. (d)
in Figure 2). For this purpose, we define runtime
properties based on the Object Constraint Lan-
guage (OCL) by introducing derived properties
for the metamodel elements. These derived prop-
erties enable us, e.g., (i) to compute descriptive
statistics, (ii) to evaluate monotony behaviour of
value changes, or (iii) to compute lower and upper
bounds of properties to mention just a few ex-
amples. Based on the runtime properties, the
runtime property values are computed by
analysing the collected time-series. Thus, runtime
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Figure 2: Unifying architecture for model-driven and data-driven perspectives.

data is back propagated to the design models and
this mapping allows to interpret the data through
the design model elements as there is a clear trace-
ability guaranteed from design elements, runtime
states, and runtime histories.

By this architecture, we are able to harmon-
ize model-driven and data-driven approaches,
where time-series data management of systems at
runtime can be derived from initial design models
and be used again at the model layer by importing
the time-series to model structures. How this
model structures are defined is the topic of the
next section.

4 Metamodelling Blueprint for Enhancing
Models with Time-Series Analysis

Based on our running example, we further detail
in this section how the afore presented architecture
can be realized for a given language. In partic-
ular, we show for the introduced design model-
ling language, how the extensions for runtime
states, runtime histories, and runtime properties
are defined as reusable metamodelling blueprints.
The time-series analysis we are focusing on for
demonstration purposes is about property value

changes of the axis angles (i. e., BP, MAP, GP) of
the gripper in our running example.

Design Elements
As already mentioned before, our starting point
is the availability of a design modelling language
expressed in Ecore. For our running example,
we model the structure of the gripper with its
properties as a kind of block diagram similar
to what is known from SysML. A block has an
associated state machine, where different states
and transitions are defined. For states, assignments
can be defined, which are executed when a state
is activated. The assignments in our exemplary
language are simple value assignments for the
properties of a block. The resulting metamodel
for the described design language is shown in
Figure 3.

Runtime States
In order to express concrete runtime states on the
model level, the metamodel has to be extended
with runtime concepts. For this task, there are
several existing approaches available, e. g., (Engels
et al. 2000; Mayerhofer et al. 2013; Meyers et al.
2014). Most of them add additional metamodel
elements to the design language to describe what
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Figure 3: Design metamodel for the running example.

runtime phenomena are of interest and how they
are connected to design concepts. For our running
example, the runtime language is considered
as an extension of the design metamodel to allow
representing property values for a given point in
time (i. e., for a snapshot of the running system).
In addition, transitions may fire during runtime.
Thus, the concept of transition firing is introduced.
While values are considered by measurements
during the operation phase, the firing of transitions
are categorized as events. Please note that the
relation to the design concepts has to be clearly
stated by the runtime concepts, e. g., the value
concept is related to the property concept. Figure 4
captures the concrete realization of the runtime
extension for our design language.

«design»

Property

TransitionFiring

«design»

Transition

Value
value: Float

[1..1] transition
[0..1] value

Figure 4: Runtime metamodel for the running example.

Runtime Histories
To reason about operation figures going beyond
one snapshot in time such as distributions, upper
and lower bounds, histories of property values
and event sequences are necessary. Therefore, we
need another extension which allows to represent
the runtime history of a system. For this, we

introduce a novel metamodelling blueprint which
introduces the concept of history by providing a
sequence of steps having a particular timestamp
associated. Figure 5 illustrates the separation
of steps into measurement snapshots and event
snapshots. These specific steps are forming the
event histories and measurement histories. The
measurement history contains all measurement
snapshots, which comprise values for given time
steps. Event histories do the same for events. In
our running example, the measurement snapshots
refer to the value runtime concept introduced by
the runtime extension and the event snapshots are
referring to the transition firing concept.

Having this base structure introduced allows us
to represent time-series data in design models by
using runtime concepts as glue between models
and data.

Runtime Properties
For analysing the time-series data represented in
the aforementioned runtime history models, we
introduce derived properties which actually repres-
ent runtime properties. Derived properties have
been already used heavily in the past for deriv-
ing additional information from given structures
and values. As we explicitly represent runtime
histories as model structures, we can make use
of derived properties to derive runtime inform-
ation from the base time-series recorded during
operation.

In the following we state three runtime prop-
erties for the given design language, namely for
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Figure 5: Runtime history metamodel for the running example.

the Property metaclass and the Assignment
metaclass. We use standard OCL to derive the
runtime properties.

For properties defined in blocks, it may be of
interest if their values are strictly increasing over
time or not. This can be expressed in OCL by
providing a derived history reference for properties
from the complete measurement history. The
reference only contains the slice of the full history
which concerns the given property. Using this
reference, we can simply collect all values as a
sequence (the ordering expresses the occurrence
of the values). If the sorted sequence corresponds
to the base sequence, then the property is strictly
increasing.

con t ex t Property : : isStrictlyIncreasing :
↪→Boolean

der i v e : s e l f . history . steps . measure . value−>
↪→flatten ( )−>sortedBy ( x | x ) = s e l f .
↪→history . steps . measure . value−>flatten ( )

Concerning the assignments within states, one
may be interested if the stated value is actually
realized by the system. For this, the realized values
may be collected by taking the last snapshots of
all assignment executions for a given assignment.

con t ex t Assignment : : realizedValues : S e t ( Float
↪→ )

der i v e : s e l f . histories −> c o l l e c t ( x | x . steps
↪→−> last ( ) ) −> c o l l e c t ( x | x . measure .
↪→value ) −> asSe t ( )

Having the set of realized values, the maximum
deviation is calculated by introducing another
derived property which builds on the previous
one.

con t ex t Assignment : : maxDeviation : Float
der i v e : s e l f . realizedValues −> c o l l e c t ( x | (

↪→ s e l f . value−x ) . abs ( ) ) −> sortedBy ( x | x )
↪→−> last ( )

5 Related Work
In this section, we discuss existing work with
respect to the contribution of this paper, namely
the combination of model-driven and data-driven
approaches with a focus on time-series analytics.
Therefore, we first discuss data-driven approaches
for enhancing existing domain specific languages
(DSLs), and subsequently, we enumerate existing
work which proposes dedicated DSLs for time-
series analytics.
Data-driven approaches for DSLs
An emerging field for data-enhanced modelling
languages is Web engineering. For instance,
Bernaschina et al. (2017) point to the fact that
there is the need for merging Web site navigation
statistics of user behaviour with the structure of
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the Web application models. The authors show the
advantages of combining user interaction models
with user tracking information in form of user
navigation logs, and details about the visualized
content in the pages. Their approach interweaves
design time information and runtime execution
data of Web sites in order to significantly im-
prove the analysis of user behaviour. In (Artner
et al. 2017), we combined navigation models with
Markov chains for representing navigation path
probabilities, which are derived from execution
logs. While these existing approaches for Web
applications follow the general idea of combin-
ing data-driven and model-driven approaches, the
approach of this paper is independent from the
actual domain and may be also used in the future
to reproduce these existing specific approaches.

Another very active research field is process
mining (van der Aalst 2016) which aims to dis-
cover process models from workflow execution
logs. A variety of process mining algorithms
exists that allows the discovery of different pro-
cess models in different formalisms. In (Wolny
et al. 2017), we present an initial architecture
how process mining may be related with time-
series mining. By this, not only the dependencies
between different process steps may be uncovered,
but also dependencies between data and process
steps are approachable.

Finally, in (Hartmann et al. 2017) the authors
present a DSL which allows not only the specifica-
tion of structural aspects of a systems, but also the
definition of so-called learned properties. Such
properties are computed from runtime data by
using some kind of machine learning algorithms.
Our approach directly allows to encode such prop-
erties as derived properties based on time-series
data computed with OCL as we model the runtime
history explicitly. In future work, it will be inter-
esting to combine our time-series analysis with
machine learning algorithms as proposed by Hart-
mann et al. (2017).

DSLs for Time-Series Analytics
The OMS3 modelling framework6introduces an
extensible and lightweight layer for a simulation
description expressed as Simulation DSL by using
Groovy7as a framework for providing the code gen-
erator implementation. In (David et al. 2012), the
authors present DSL variants in OMS3, e. g., the
Ensemble Streamflow Prediction (ESP) DSL. This
DSL uses time-series of historic meteorological
data as model input to predict future conditions. In
their approach, DSLs are employed for time-series
unlike in our approach, where we use time-series
for domain-specific modelling.

Gekko8is an open-source modelling approach
for time-series data management and for solv-
ing and analysing large-scale time-series models.
Gekko may be considered as a kind of DSL with
a time-series domain focus. It provides interfaces
to statistic packages such as R. In our approach,
we use an open-source time-series database which
offers besides high-availability storage and mon-
itoring of time-series, application metrics and
real-time analytics in addition. Nevertheless, in
future work it is of interest to evaluate different
possibilities to perform time-series analytics in
addition to our current approach.

6 Conclusion and Future Work

In this paper, we have introduced an unifying
architecture for combining model-driven and data-
driven approaches for system engineering. By this
architecture, we allow for specifying and comput-
ing runtime properties based on time-series data
through design models. The extensions needed
on the metamodel level are non-intrusive and con-
nected to existing approaches for specifying the
operational semantics of languages. The presen-
ted runtime history metamodel fragments are ap-
plicable for any design modelling language com-
prising features to be measured and events to be
tracked as the current metamodelling languages
Ecore and OCL are reused. We demonstrated our

6 https://alm.engr.colostate.edu/cb/project/oms
7 http://groovy-lang.org
8 http://t-t.dk/gekko
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approach for a cyber-physical production system
case. We have also realized a prototype in Eclipse
supporting our approach which is available on our
project website9 .

While the presented approach opens the door
for using time-series analytics in a model-driven
engineering toolbox, there are still several chal-
lenges to be tackled in the future. In particular,
we consider the following points on our roadmap:
scalability (e. g., should the analysis be performed
on the model level or directly in the time-series
database?), expressivity (e. g., which extensions of
OCL are necessary for statistical reasoning?), un-
derstandability (e. g., how to visualize time-series
oriented information in diagrams?), and predictab-
ility (e. g., how to derive and use operations from
time-series for predicting future runtime states?).
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