
Enterprise Modelling and Information Systems Architectures
Vol. 13, No. 2 (February 2018). DOI:10.18417/emisa.si.hcm.23
Understanding Semantic Completeness in Rule Frameworks for Modeling Cardinality Constraints 293
Special Issue on Conceptual Modelling in Honour of Heinrich C. Mayr

Understanding Semantic Completeness in Rule Frameworks for
Modeling Cardinality Constraints

Faiz Currima, Sudha Ram*,a

a Department of Management Information Systems, Eller College of Management, University of Arizona, Tucson, USA

Abstract. Modeling organizational rules during conceptual design provides a more accurate picture of the
underlying domain and helps enforce data integrity. In a database development context, there are many
advantages to explicitly representing rules during conceptual design. Early modeling ensures they are
visible to designers and users, thus improving requirements and validation. The rules can then be semi-
automatically translated into logical design code. One limitation to widespread adoption of such modeling
is variance in standards and semantics of rules. We consider cardinality constraints—a useful and integral
part of conceptual database design. Many papers discussing classification frameworks for cardinality
exist. Completeness of such schemes has always been in question since well-defined criteria do not exist to
evaluate them. We suggest a “reverse engineering” approach, i. e., one of defining conceptual modeling
constraint completeness based on mappings from the relational model. We develop a correspondence from
relational algebra operator combinations to existing semantic constraint types. In doing so, we also come
up with a new category of set-level cardinality constraints not previously examined in literature. We believe
our work demonstrates a unique approach to establishing conceptual framework completeness and enables
standardization of rule semantics which in turn allows for semantics-based (as opposed to procedural-based)
representation. On the implementation side, it supports developing automated mechanisms for translating
constraints to improve developer productivity.

Keywords. Database Design • Conceptual Database Modeling • Cardinality Constraints

1 Introduction and Motivation
Cardinality constraints have long been an integral
part of conceptual database diagrams since the
original entity-relationship (ER) model proposed
by Chen (Chen 1976). Other conceptual modeling
standards including Unified Modeling Language
(UML) (OMG 2015), and Object-role modeling
(ORM) (Halpin and Morgan 2010) also provide
support for cardinality. As do pre-design models
such as KCPM (Vöhringer and Mayr 2006). (The
terminology may vary across models, e.g., UML
or KCPM may term it as multiplicity.) A variety

* Corresponding author.
E-mail. ram@eller.arizona.edu
We thank Nicholas Neidig, Alankar Kampoowale, Girish
Mhatre, Anish Padiyara and Mark Vanderflugt for assistance
with developing the CARD system prototype.

of papers have examined cardinality constraints
in detail, and many frameworks and taxonomies
have been proposed to comprehensively organize
the types of cardinality constraints (Lenzerini and
Santucci 1983; Thalheim 1992; Liddle et al. 1993;
McAllister 1998; Ram and Khatri 2005). With
any taxonomy, including one for cardinality, the
question of semantic expressiveness or complete-
ness1 (Navathe et al. 1992) is pertinent. Establish-
ing completeness is valuable from a standpoint
of both theory and practice, and allows one to
establish an exhaustive mapping into implemen-
ted database constraints. Though authors have

1 We use the terms completeness, comprehensiveness and
expressiveness interchangeably. Some writers prefer the term
expressiveness since completeness often implies an absolute
completeness which can be difficult to establish.

http://dx.doi.org/10.18417/emisa.si.hcm.23
ram@eller.arizona.edu

Enterprise Modelling and Information Systems Architectures
Vol. 13, No. 2 (February 2018). DOI:10.18417/emisa.si.hcm.23

294 Faiz Currim, Sudha Ram
Special Issue on Conceptual Modelling in Honour of Heinrich C. Mayr

sought to address the issue of completeness of
their frameworks, it has remained a difficult and
open question. This is because it is hard to prove
in advance that a scheme (e.g., conceptual model
or a rule framework) is fully expressive. Options
to demonstrate completeness include envisioning
a large number of possible scenarios (including
covering what similar models have used in the
past) or extensive testing in the field. Each has its
costs and drawbacks, can be time-consuming, and
remain susceptible to not covering the needs of a
new application. This can lead to long delays in
adoption of a framework, since it may be impeded
due to the perception of it being “yet another in-
cremental version” that augments expressiveness
by some small amount but is not complete.

Proving expressiveness in the context of rule
frameworks is important, as it allows for a com-
prehensive set of constraint specifications and res-
ultant translation into code. This in turn provides
a much stronger case for incorporating rule frame-
works into design tools. Having a visible rule
repository is important for good managerial de-
cisions (Von Halle 2001) and researchers and prac-
titioners have recommended that user-specified
business rules applicable to data should be docu-
mented in the database schema itself (ISO 1987;
Simsion 2001). In data modeling, cardinality is
one such class of rules that must be modeled.

In this work, we focus on cardinality rules.2
Our objective is to determine how complete-

ness can be established for cardinality constraint
frameworks. We discuss previous approaches to
proposing comprehensiveness in the conceptual
modeling domain, and define completeness in a
novel way. Instead of viewing the transition from
the conceptual to the logical design stage as a
one-way street, we “reverse map” from relational
algebra to conceptual modeling constraint kinds.
We consider combinations of algebraic operations,
and show that a complete framework must express
constraints corresponding to all relevant operation

2 We use the terms constraints and rules synonymously
though we recognize that there are multiple interpretations
for “rule” in literature. We use policy to refer to the underlying
business directive that guides the constraint.

arrangements. We also test the feasibility of such
mapping with a proof-of-concept prototype system
and present some findings and recommendations
for DBMS support of these kinds of rules.

The rest of our paper is structured as follows.
We begin by reviewing prior work in rule rep-
resentation in conceptual and logical design in
section 2. In section 3, we address the issue
of completeness for semantic modeling and why
our proposed approach is reasonable. Section 4,
contains the discussion of the various relational
algebra operators and how different combinations
of them map to cardinality constraints (with a
SQL mapping for each constraint kind). There-
after, we discuss our evaluation and present our
recommendations in section 5. Section 6 contains
the conclusions and suggestions for future work.

2 Review of Related Work

We see support for representing a variety of rule
types in conceptual database design. The original
ER proposal allowed for representing identifying
attributes3 , cardinality, and implicitly—referential
integrity through the specification of relationships.
Extensions to the ER model have allowed desig-
nation of the mandatory vs. optional properties
for relationship participation, as well as for attrib-
utes, i.e., whether they can contain null values
(Figure 1). Newer modeling tools may further
allow specification of additional constraints such
as data types and domain ranges (see Figure 2) by
providing an interface that bridges conceptual and
logical design.

From a data management perspective, such
rules function as integrity constraints on a database
helping to ensure that the business policies and se-
mantics of the application are incorporated into the
database (Storey et al. 1996; Date 2000a; Simsion

3 Some authors prefer the term “primary key”; however, the
notion of primary keys comes from the relational model
(logical design), and we adopt the usage of “identifying
attributes” in context of conceptual design.

http://dx.doi.org/10.18417/emisa.si.hcm.23

Enterprise Modelling and Information Systems Architectures
Vol. 13, No. 2 (February 2018). DOI:10.18417/emisa.si.hcm.23
Understanding Semantic Completeness in Rule Frameworks for Modeling Cardinality Constraints 295
Special Issue on Conceptual Modelling in Honour of Heinrich C. Mayr

Figure 1: In this diagram, the attributes size and
headquarters may contain null values (syntax from
(Umanath and Scamell 2007))

2001). All well-known conceptual grammars4
provide support for cardinality, as it is needed to
determine the translation of a conceptual schema
into the corresponding logical relations (for the
purposes of our paper we assume the relational
model is used during logical design). Similarly,
cardinality is employed when mapping from a pre-
design glossary to a conceptual schema (Mayr and
Kop 2002). Cardinality rules are also useful for
other database purposes including normalization
(Navathe et al. 1992), schema integration (Ramesh
and Ram 1997), query optimization (Thalheim
1996), and managing privacy for sensitive data
(Sweeney 2002).

The importance of capturing and visibly rep-
resenting business rules has been highlighted by a
number of efforts (Date 2000b; Hay et al. 2000;
Von Halle 2001; Ross 2005; OMG 2017).

However, inclusion of support for representing
cardinality in modeling methodologies and tools
has been somewhat limited. One of the issues with
cardinality is the complexity in its semantics when
generalized beyond a binary relationship case or

4 We use the term grammar to refer to the formalism spe-
cifying the constructs and rules for conceptual design, e.g.,
ER Model. We use the term schema (or script) to refer to
the abstract description of the real world developed using
the constructs provided by the grammar (Wand and Weber
2002).

when dealing with temporal or spatial data. Com-
pounding this problem is the variations in intended
semantics as used in different modeling grammars
(Ferg 1991; Liddle et al. 1993). Over time, dif-
ferent approaches to address the problem have
been proposed. UML, for example, allows the
specification of complex cardinality constraints us-
ing the Object Constraint Language (OCL) (OCL
2014). Adapting an example from Warmer and
Kleppe (J. Warmer and A. Kleppe 1999), consider
the SubmitBids relationship schema in Figure
3. A requirement that “any supplier and project
combination can appear in the SubmitBids rela-
tionship between [h .. k] times”, where h and k are
a user-specified integer bounds, can be specified
using the OCL code in Figure 4.

A similar approach can be adopted to assert,
for instance, that a student can take the same
course up to m times (across semesters) or an
employee may be assigned to work on the same
project up to n times in a year. Being a procedural
specification in OCL, this option is not without its
own deficiencies. It does not scale well, and each
time we see such a constraint—we must rewrite
the logic for its implementation.

An alternative approach that exists in literature,
is to specify a conceptual taxonomy of the various
cardinality constraints, and then take advantage of
the classification scheme to denote the constraint
type and its parameters. Using a syntax formal-
ized previously (Currim and Ram 2012), we can
state the earlier participation5 constraint on the
SubmitBids relationship by:
CARD-R-PT (SubmitBids, (SUPPLIERS,

PROJECTS)) IN [h:k]

Thus, conciseness of annotation is better
achieved using a semantics-based or conceptual
classification. This can lead to improved analyst
productivity, and reduce the chance of errors while
writing a program. An advantage of this method
is that it can be mapped to the corresponding OCL

5 Briefly explaining the syntax, in their scheme CARD-R-PT
stands for a cardinality (CARD) constraint on an interaction
relationship (R), restricting participation (PT). The parameters
are the relationship involved, and the constrained entity
classes.

http://dx.doi.org/10.18417/emisa.si.hcm.23

Enterprise Modelling and Information Systems Architectures
Vol. 13, No. 2 (February 2018). DOI:10.18417/emisa.si.hcm.23

296 Faiz Currim, Sudha Ram
Special Issue on Conceptual Modelling in Honour of Heinrich C. Mayr

Figure 2: Using a conceptual design tool to specify the data type for the Size attribute, and a check constraint to
be implemented upon conversion to relational table (i.e., logical-level) creation code

Figure 3: The Submit Bids relationship

specification or triggers (which we show later in
this paper) in a straightforward manner. On the
other hand, a limitation with this approach, as
demonstrated by the augmented taxonomies pub-
lished over the years (Lenzerini and Santucci 1983;
Thalheim 1992; Liddle et al. 1993; McAllister
1998; Ram and Khatri 2005), is that establishing
comprehensiveness in the organized types of car-
dinality constraints is difficult. Successive efforts
have added support for new kinds of constraints.
While this improves the body of knowledge, it is
still desirable to have a sense of completeness so
that modeling tools can incorporate the taxonomy
and the related translation plans. Otherwise, an
argument can be made that logical-level proposals
that generate pseudo-code, while less efficient and
insensitive to the underlying semantics, provide

Figure 4: Sample OCL code for specifying a participa-
tion constraint

http://dx.doi.org/10.18417/emisa.si.hcm.23

Enterprise Modelling and Information Systems Architectures
Vol. 13, No. 2 (February 2018). DOI:10.18417/emisa.si.hcm.23
Understanding Semantic Completeness in Rule Frameworks for Modeling Cardinality Constraints 297
Special Issue on Conceptual Modelling in Honour of Heinrich C. Mayr

the flexibility of incorporating new kinds of con-
straints. To enable wider adoption of taxonomic
cardinality specification approaches for rule pro-
cessing and service-oriented computing in a het-
erogeneous environment, we feel a standardized
and complete framework for cardinality constraints
is important.

3 Addressing Completeness

As mentioned earlier, addressing the question
of rule framework completeness is valuable from
both a research and business standpoint. In the con-
text of semantic modeling and cardinality, while
authors have sought to address the matter of com-
pleteness of their frameworks, it has remained an
open issue. Completeness is difficult to measure
because there is no easy way to establish a priori
that a model has the necessary constructs to cap-
ture the semantics of every possible application.
The task can be simplified somewhat by narrowing
the scope of the taxonomy or model (which is one
of the reasons, besides compactness of representa-
tion, that we see a proliferation of domain-specific
conceptual grammars). Having reduced the target
modeling space, one can test completeness by
undertaking multiple case studies in a variety of
organizations in the field. The greater the number
of studies, the more confidence one has in the
expressiveness of the taxonomy.

Since grammars like the Entity-Relationship
model have already been extensively field-tested,
some authors have adopted the tactic of measur-
ing relative completeness where the new model
is measured against existing grammars (Bajaj and
Ram 2002). Thus, a conceptual model can be con-
sidered relatively complete if its constructs are at
least as expressive as previously developed models.
Applying the norm to constraint frameworks, we
can say that a framework is relatively complete if
the classified constraints incorporate those seen in
existing constraint systems. Most work to date has
implicitly adopted this approach while demonstrat-
ing that their proposed framework encompasses
previous classificatory schemes (Liddle et al. 1993;

McAllister 1998; Ram and Khatri 2005). An argu-
ment of insufficient confidence could, however, be
made against this methodology since cardinality
rules are not always thoroughly specified while
developing a conceptual schema, and thus our
faith in the completeness of existing classification
mechanisms may not be strong.

To address this issue we asked ourselves, “What
alternative benchmarks could be used for express-
iveness?” There was no simple answer due to
the absence of pre-existing criteria to define com-
pleteness. We knew that extensive organizational
testing is not practical in a reasonable timeframe.
The approach we chose instead was to adapt our
test for completeness by taking advantage of ex-
isting work in relational query sub-languages (in
our case, relational algebra), where completeness
has already been well-defined.

Previous efforts on completeness for ER-based
query languages (Atzeni and Chen 1981; Camp-
bell et al. 1985) are not based on relational algebra
or relational calculus, and instead have defined
expressiveness based on constructs within the ER
model. Our approach diverges from this, and
we argue that our “reverse engineering” (working
backwards from the logical design) strategy is ac-
ceptable for three reasons. Firstly, the underlying
theoretical model for both the entity relationship
and the relational models is the same, i.e., set
theory. The constructs for capturing and storing
data can be visualized as a derivation of sets in
both models. This, in part, accounts for the well-
defined and straightforward mapping between the
two models. Secondly, since relational language
completeness has been well-tested (and can thus
be construed as a sound measure), we may as well
take advantage of this knowledge while formu-
lating a measure of completeness for constraints.
Finally, we feel that since the implementation of
conceptual model cardinality constraints will typ-
ically be done in a relational database, it would be
reasonable to think that a classification scheme is
complete only if every cardinality constraint type
that can be implemented in a relational algebra is
also available in a conceptual model cardinality
framework.

http://dx.doi.org/10.18417/emisa.si.hcm.23

Enterprise Modelling and Information Systems Architectures
Vol. 13, No. 2 (February 2018). DOI:10.18417/emisa.si.hcm.23

298 Faiz Currim, Sudha Ram
Special Issue on Conceptual Modelling in Honour of Heinrich C. Mayr

4 Establishing Completeness Using
Relational Algebra

To begin, we intuitively establish the correspond-
ence between constraints and queries. Let us
take the example of a constraint: An employee
can work for between 1 and 25 projects specified
on the work_on relationship (see Figure 5). In
the relational model, this relationship would map
to a table work_on and an SQL query would
be executed to perform a count of projects for
the employee in the modified tuple. Depending
on the results, the system could determine if the
constraint were satisfied or violated.

Correspondingly, we argue that the evaluation
of every cardinality constraint can be mapped to
an SQL query (or relational algebra expression)
to be checked upon a database operation (insert,
delete or update). Since the query to evaluate a
cardinality constraint is but one kind of query, the
set of all possible cardinality constraint queries is
a strict subset of all possible queries. Thus, a lan-
guage that is constraint-complete will be a subset
of a language that is relationally complete. Next,
we discuss the operators required for relational
completeness, and the relevant subset needed for
checking cardinality constraints.

For a language to be relationally complete, it
must be capable of the following relational opera-
tions (Codd 1972): projection (π), selection (σ),
Cartesian product (×), union (∪), and set differ-
ence (−). Further, we consider a common exten-
sion, that of supporting aggregation and grouping
(ℑ) and including functions (like counts) on at-
tributes to be performed in a projection. As might
be expected, we do not need the full functionality
of all the relational operators π, σ, −, ℑ, ×, ∪
for checking cardinality constraints. We elaborate
below.

The projection π operator is unique in that it
filters attributes rather than tuples (or in other
words: extracts properties rather than entities).
In a general query language, any combination of
attributes and expressions may be desired in the
output and therefore the use of the π operator is

diverse. However, for checking a cardinality con-
straint—the only kind of query we are interested
in is a count. We denote the count based on a pro-
jection with the symbol πc. Two different kinds
of counting may be performed. The simplest is
to count entire tuples (SELECT COUNT (*) in
SQL), which we denote by πc*. Alternatively, a
count of distinct attribute values may be carried
out (SELECT COUNT (DISTINCT ⟨attribute⟩)),
which we denote using πcA.

The operators of Union and Set Difference {∪,
−} serve to either augment or reduce the member-
ship of the set under consideration (leading to the
creation of a new set). They are similar in that they
change the set membership, but not how elements
are counted within a defined set and therefore do
not change the nature of the cardinality constraint
being considered. Thus, they are not as important
from the perspective of a cardinality framework.

The Cartesian product {×} is usually performed
in conjunction with the selection operator σ to
create a “join”. Conceptual model constraints
often implicitly assume the use of joins. For
example, the constraint: An employee with the
designation of “Senior Consultant” can work for
between 1 and 10 projects, defined on the work_on
relationship (Figure 5), contains a predicate on
the participating EMPLOYEES entity class, and
hence implicitly uses a join (when considered in
the relational model). The constraint frameworks
we have encountered thus far only consider joins
within a relationship’s participating entity classes,
rather than joins among classes that may span a
chain of relationships (i.e., they would not consider
a constraint defined between employees and clients
in Figure 6). To address this, we propose the notion
of virtual relationships, discussed in more detail
elsewhere (Currim 2004); which naturally maps
to the definition of a logical view. A point to note
is that the nature of counting that is performed
does not change, merely the scope. Thus, we can
continue our analysis excluding such joins without
loss of generality.

Finally, we consider the two operators that
when applied to a set allow us to count specific
members or aspects of that set. Both selection

http://dx.doi.org/10.18417/emisa.si.hcm.23

Enterprise Modelling and Information Systems Architectures
Vol. 13, No. 2 (February 2018). DOI:10.18417/emisa.si.hcm.23
Understanding Semantic Completeness in Rule Frameworks for Modeling Cardinality Constraints 299
Special Issue on Conceptual Modelling in Honour of Heinrich C. Mayr

Figure 5: The work_on relationship

Figure 6: Employees, Projects and Clients

and grouping allow us to count specific aspects
of the set (or specific members). This determines
what is counted, and hence the kind of cardinality
constraint being examined. We examine both
these operators in more detail.

Selection (σ) may be performed on any attribute
combination within one or more relations. We
decompose this further into: σ performed on
an identifying attribute of a participating entity
(or entity combination), denoted by σID, and a
σ performed on a non-identifying attribute σA.
We separate the two because there is a direct
correspondence between an identifier and an entity
instance, which in turn allows us to ask the question
“how many” (i.e., count) as applicable to a given
entity (e.g., employee). While there has been
some deliberation in literature about the distinction
between entities and attributes, we do not get into
that discussion and instead refer the reader to
previous work (Weber 1996; Kop and Mayr 1998),
while assuming that the distinction is beneficial.
Related to the use of σID, we know from the query
languages that a σ need not contain only a single
identifier value, and could instead be evaluated
over a set of identifiers using either multiple OR
clauses, (in this case we can combine the set
of identifiers using an IN operator as well). We
denote a set of identifiers by: σID-Set. This leads to
the classification of a conceptual model constraint
category not previously discussed in literature,
that of set-level constraints (e.g., There should be

no more than 5 projects associated across the set
of employees: ’E004’, ’E005’, ’E007’).

Returning to σA, when the attribute A is from
a participating entity class, the σA serves to estab-
lish a predicate on the relevant entity class. This
does not impact the nature of the constraint, just
the scope of the set membership on which it is
defined. For example, consider constraints:
C1a: An employee can work for between 1 and
25 projects; and C1b: An employee with the
designation of “Senior Consultant” can work
for between 5 and 10 projects (this version also
considers a single employee, but has an additional
σ condition to only consider an employee if they
are a senior consultant).

The fundamental form of both these constraints
is the same in that they capture the number of
members of a “counted” entity class (projects)
that co-occur with each member of a “fixed” class
(employees). The only difference between them
is a predicate that restricts the membership of the
“fixed” set (or the “counted” set). This principle
holds whether we are considering instance-level
or set-level constraints. As an example, consider
the following constraints:
C2a: There should be no more than 50 projects
associated with the set of all employees; and
C2b: There should be no more than 5 projects
associated with the set of all employees with a
security clearance of “alpha” (this version also
considers a set of employees, but has an additional

http://dx.doi.org/10.18417/emisa.si.hcm.23

Enterprise Modelling and Information Systems Architectures
Vol. 13, No. 2 (February 2018). DOI:10.18417/emisa.si.hcm.23

300 Faiz Currim, Sudha Ram
Special Issue on Conceptual Modelling in Honour of Heinrich C. Mayr

σ condition to only consider those employees with
a security clearance of “alpha”).

Both these constraints are set-level constraints
where the “fixed” class is employees, and the
cardinality limits the association with projects (the
“counted” class). To summarize, using predicates
provides flexibility in expressing a constraint type,
but does not change the nature of what is counted.

The case may be made for separate considera-
tion of attributes in σA that are mutual properties
of entities in a relationship, e.g., counting employ-
ees who received a particular level of feedback
or rating for their work on the project. We adopt
a philosophy previously presented in literature
suggesting that relationships should not have at-
tributes of their own, but these must be either
modeled via a separate relationship or attaching
an additional associated (usually, weak) entity
class (Wand et al. 1999). The function of these
attributes in constraints consequently reduces to
that of predicates. Even if we do not adopt this
view, the only difference is that we end up with a
generalized version of constraint types that allow
for counting of not only entity instances but also
attribute values within a relationship. Either way,
the target relational constraint can be captured
using conceptual model constraints.

The grouping operation ℑ is a convenient exten-
sion of the σ applied to specific entity instances.
Instead of checking the count for a single instance,
it does so for each distinguishable instance in a re-
lationship. For example, we could perform a count
of projects for a single employee by specifying
an employeeID with the σ operator. Using ℑ

allows us to conveniently perform a similar count
for each employee without having to manually
enumerate each employee’s identifier. When a σ
is used in conjunction with a ℑ, it (the σ) serves
the role of either restricting the scope of the ℑ

(if the attributes the σ and ℑ are applied on are
identical), or that of predicate filtering. As is the
case for σ, we consider ℑ on identifying attributes
without loss of expressiveness.

We present our analysis of the semantics of
cardinality in the next two sections. The basic
approach followed is to examine combinations

of projection, selection and grouping and their
correspondence to various cardinality constraints.
For consistency, we assume the underlying con-
ceptual schema is developed using the ER model
(Appendix A summarizes the syntax used), and fol-
low cardinality terminology developed by Liddle
(Liddle et al. 1993) and extended by us (Currim
and Ram 2012). These papers also contain a
resolution among constraint naming conventions
used in a variety of semantic models and previous
frameworks. To formally clarify the semantics of
each constraint type, we use first order logic and
integrate it with a sample annotation syntax (re-
capped in Appendix B using BNF). A (simplified)
corporate schema6 used to illustrate the constraint
semantics follows.

4.1 CONSTRAINTS APPLICABLE TO
ENTITY CLASSES

A class constraint restricts the number of mem-
bers in the entity class. An attribute constraint
restricts the cardinality of the number of values
an entity instance can have (for an attribute), e.g.,
we may wish to restrict how many cities a project
can span. A domain cardinality constraint (en-
countered and formally defined by us during the
process of establishing completeness relative to
relational algebra) restricts the number of possible
values an attribute can take on for the set of en-
tity instances. The domain cardinality does not
restrict the number of cities for a single project
entity, rather specify a restriction across all (or
some subset of) projects.

The cardinality of a finite set E (e.g., entity
class) is written as |E|. Typically, the constraint
is specified with a lower and upper bound. We
represent the range of values between the bounds
by the set Card. Since E is finite, we say |E| ∈
Card, where Card ⊆ N ∪ {M}; N is the set of
natural numbers and the symbol M denotes “many”
(unrestricted upper bound). For convenience, in

6 To preserve the ternary semantics of cardinality constraints
(as these are easier to read and interpret), we don’t model
the change in cardinality due to the introduction of a weak
association class and the consequent change in degree of the
relationship to quaternary.

http://dx.doi.org/10.18417/emisa.si.hcm.23

Enterprise Modelling and Information Systems Architectures
Vol. 13, No. 2 (February 2018). DOI:10.18417/emisa.si.hcm.23
Understanding Semantic Completeness in Rule Frameworks for Modeling Cardinality Constraints 301
Special Issue on Conceptual Modelling in Honour of Heinrich C. Mayr

the syntactical version, we specify the lower and
upper limits of the constraint as ⟨min⟩ and ⟨max⟩,
where ⟨min⟩ ⊆ N, and ⟨max⟩ ⊆ N ∪ {M}. We
use A for attributes, and P to represent a predicate.
P(e(Akm)) signifies the mth predicate defined on
attribute Ak. For simplicity, we only describe the
use of predicates for entity class cardinality and
do not repeat the syntax for the constraint bounds
(i.e., “IN [⟨min⟩:⟨max⟩]”) for later constraints.
For an entity class E, we use πA(E) to denote
the projection of the values of attribute A across
all members of E, while πA(e) represents the
projection for a specific entity e, where e ∈ E.

In Table 2 we consider combinations of rela-
tional algebra operators as they apply to class
cardinality constraints. In Table 3, we use πcA

operations instead of πc*, which leads to attribute
and domain cardinality constraints. In the first
column we show the relational algebra expression,
followed by the semantics of the specified con-
straint (natural language). The final column has
the equivalent SQL query.

In the next sub-section, we discuss constraints
applicable to relationships.

4.2 CONSTRAINTS APPLICABLE TO
RELATIONSHIPS

An interaction relationship relates members of
one entity class to members of one or more en-
tity classes. Interaction relationship constraints
are classified into participation, set-participation,
projection, co-occurrence, set-co-occurrence, ap-
pearance, set-appearance, appearance-across-R,
and set-appearance-across-R constraints (the lat-
ter four types being applicable for unary relation-
ships). We begin by briefly describing each type
of constraint and illustrating its semantics using
the relationship assign from Figure 7. Thereafter,
each is discussed in detail. To formally clarify
the semantics of each constraint type, we use first
order logic.

Participation constraints look at a relationship
(e.g., employees being assigned to projects by
departments), and ask the question, “How many
times can an entity (e.g., an employee) participate
in the relationship?” Set-Participation constraints

(newly introduced by us) look at a (sub)set of en-
tities (e.g., employees belonging to the states of
California, Arizona and New Mexico) and ask,
“How many times can the set of entities considered
together participate in the relationship?” The gen-
eralized version of both these rule types consider
not just a single entity class, but also entity com-
binations, for example “How many times can a
given combination of employee and department
be assigned in the assign relationship?”

For the formal definition, we introduce entity
from relationship projection. Assume a relation-
ship R (e.g., the assign relationship) is formed by
the entity classes E1, . . . , Ei and each element r ∈
R (e.g., a specific assignment instance). Then we
define πEi(r) as the projection of the entity from
class Ei belonging to the relationship instance r,
while πEi (R) projects all members from Ei, present
within the relationship R. For the set-participation
constraints, to define a subset Ci of an entity class
Ei, we use Ci ⊆ Ei.

Projection constraints look at the relationship
and restrict how many distinct entity instances
can occur across the set of relationship instances.
Thus, “How many different projects can there be in
all (in the assign relationship)?” is an example of
the projection constraint. The generalized version
of this constraint examines entity combinations
from multiple entity classes.

Co-occurrence constraints consider an entity
already known to be participating in a relation-
ship, and ask how many members of another entity
class can co-occur with it. Thus, for example, one
could ask, “Given a project that exists in the assign
relationship, how many distinct departments can
co-occur with it?” The Set-Co-occurrence con-
straint (newly introduced by us) looks at a set of
entities known to be participating in a relationship
and asks how many members of another entity
class can co-occur with it. For example, “For
projects classified as high-security, how many
different meetings co-occur with them?” The gen-
eralized version of this constraint considers entity
combinations.

So far, we have only examined cardinality con-
straints defined over instances of a relationship.

http://dx.doi.org/10.18417/emisa.si.hcm.23

Enterprise Modelling and Information Systems Architectures
Vol. 13, No. 2 (February 2018). DOI:10.18417/emisa.si.hcm.23

302 Faiz Currim, Sudha Ram
Special Issue on Conceptual Modelling in Honour of Heinrich C. Mayr

Figure 7: A simplified corporate schema (ER and Relational versions)

Table 1: Semantics and sample syntax for Class and Attribute cardinality constraints

Class Cardinality CARD-C (E) IN [⟨min⟩:⟨max⟩] is defined as: |{ e : e ∈ E }| ∈ Card

(with predicates) CARD-C (E [⟨predicate conditions⟩]) |{ e : e ∈ E ∧ P (e(A11),
e(A12), . . . , e(Ak1), . . . , e(Akm)) }| ∈ Card

Attribute Cardinality CARD-A (E, A) ∀ e ∈ E, | { πA(e) } | ∈ Card

Domain Cardinality CARD-D (E, A) | { πA(E) } | ∈ Card

Including the notion of counting values across
attributes rather than tuples (i.e., the participat-
ing entity classes, rather than the relationship
instances) leads us to the examination of forms of
the appearance constraint. These are applicable
for unary relationships. For example, we may ask,
“How many roles supervisee, supervisor can a
single employee play within a single relationship
instance of the supervise relationship?” Thus, if
an employee can supervise herself, then she can
play two roles. This is an example of the appear-

ance constraint, which restricts the number of
roles in which a given member e of an entity class
E can appear in any instance r, r ∈ R. It applies to
an interaction relationship R in which the same un-
derlying entity class E participates in R in different
roles L1, . . . Lk. The Set-Appearance constraint
restricts the number of roles a set of entities can
play in any single entity instance. An Appearance
Across-R constraint restricts the number of roles
in which a given member of E can appear across
all instances of R (or some subset R’, R’ ⊆ R). A

http://dx.doi.org/10.18417/emisa.si.hcm.23

Enterprise Modelling and Information Systems Architectures
Vol. 13, No. 2 (February 2018). DOI:10.18417/emisa.si.hcm.23
Understanding Semantic Completeness in Rule Frameworks for Modeling Cardinality Constraints 303
Special Issue on Conceptual Modelling in Honour of Heinrich C. Mayr

Table 2: Semantic Analysis of Combinations of SQL Operations for Entity Classes

Algebraic Op-
erator

Semantics for an Entity Class SQL Equivalent

πc* i.e., applied
on the entity
(tuple)

Class cardinality constraint (number of members in
an entity class)

SELECT count(*) FROM
employees;

πc*, σ Class cardinality with predicate SELECT count(*)
FROM employees WHERE
state='CA';

πc*, ℑ Class cardinality of an attribute-defined subclass/sub-
set (while the equivalent cardinality may be com-
puted by using state as a discriminator to define
subclasses—we feel that it is somewhat artificial
to require creation of subclasses simply to enforce
cardinality). Note: it is not meaningful to use the
identifier as the grouping attribute—since that will
always yield one group per entity (i.e., any further
count will always equal to 1)

SELECT count(*) FROM
employees GROUP BY
state;

πc, ℑ, σ Class cardinality of a subset/subclass (based on pre-
dicate)

SELECT count(*) FROM
employees WHERE salary
> n GROUP BY state;

πc, - For completeness, we illustrate the effect of combin-
ing queries using the MINUS operator. As can be
seen, it is not meaningful to perform such counts
since it will return the count of the first query un-
less the cardinalities of the two sets in question are
identical, whereupon it will return no results. Instead,
the set difference should be performed first, and a
single count taken on the resulting set (which does
not change the nature of what is counted).

SELECT count(*)
FROM employees MINUS
SELECT count(*) FROM
managers;

Set-Appearance Across-R constraint restricts the
number of roles in which a given set C, C ⊆ E,
of entities can appear across R (or some subset
R’, R’ ⊆ R). We discuss the formal semantics and
syntax in Table 7. For convenience, we define
role projection operations. Role projection πL(r,
e) is defined as: R × E → P(L), where P(L) is
the power-set of L. It takes as input a relationship
instance r, an entity instance e, and returns the set
of roles that entity instance plays in the instance r.
We generalize this to allow for πL(r, C), where C

⊆ E, and define it as: R × P(C) → P(L). Similarly,
we define operations to allow for projection of
roles across instances of R, both: πL(R, e) and
πL(R, C). Doing so allows us to keep the definition
of the constraints compact.

Now that we have described the formal se-
mantics for the various relationship constraint
types, we consider combinations of relational al-
gebra operators and SQL as they apply to the
relevant cardinality constraints.

For appearance constraints, the query is non-

http://dx.doi.org/10.18417/emisa.si.hcm.23

Enterprise Modelling and Information Systems Architectures
Vol. 13, No. 2 (February 2018). DOI:10.18417/emisa.si.hcm.23

304 Faiz Currim, Sudha Ram
Special Issue on Conceptual Modelling in Honour of Heinrich C. Mayr

Table 3: Semantic Analysis of Combinations of SQL Operations for Attributes and Domains

Operator Semantics for an Entity Class SQL Equivalent
πcA i.e., applied
on a single attrib-
ute

Domain cardinality. Note: it is not useful to count
the identifying attribute—since that will always be
equal to the cardinality of the class itself

SELECT count(distinct
designation) FROM
employees;

πcA, σ Domain cardinality with a predicate (if non-
identifying attribute in the selection σ)

SELECT count(distinct
designation) FROM
employees WHERE
state='CA';

πcA, σID Attribute cardinality for a specific entity instance
(if part of the identifying attribute is included in
the count). This is only meaningful for a multi-
valued attribute (which in relational terms would be
translated into a separate table)

SELECT count(distinct
city) FROM
project_cities WHERE
projectID='J15';

πcA, ℑ Domain cardinality within each defined subset SELECT count(distinct
designation) FROM
employees GROUP BY
state;

πcA, ℑ, σ Domain cardinality within each defined subset (with
a predicate)

SELECT count(distinct
designation) FROM
employees WHERE salary
> n GROUP BY state;

πcA, - As discussed for the πc* case, it is not meaningful to
perform counts in this manner.

SELECT count(distinct
state) FROM employees
MINUS SELECT
count(distinct state)
FROM managers;

Table 4: Semantics and syntax for Participation (instance and set-level) constraints

Participation CARD-R-PT (R, E1, . . . , Ei) ∀ (e1 ∈ E1, . . . , ei ∈ Ei), |{r : r ∈ R ∧ πE1 (r) = e1 ∧

. . . ∧ πEi (r) = ei }| ∈ Card
(generalized)
Set Participation CARD-R-PT-SET (R, E1, . . . , Ei) |{r : r ∈ R ∧ πE1 (r) ∈ C1 ∧ . . . ∧ πEi (r) ∈ Ci }|

∈ Card

Table 5: Semantics and sample syntax for Projection constraints

Projection CARD-R-PJ (R, E1, . . . , Ei) |{r : r ∈ πE1„„ Ei (R) }| ∈ Card

trivial since SQL does not have an in-built function
to project roles. Unlike the extended projection

operators defined in Table 7 (which allow for
working with power sets), we further augment the

http://dx.doi.org/10.18417/emisa.si.hcm.23

Enterprise Modelling and Information Systems Architectures
Vol. 13, No. 2 (February 2018). DOI:10.18417/emisa.si.hcm.23
Understanding Semantic Completeness in Rule Frameworks for Modeling Cardinality Constraints 305
Special Issue on Conceptual Modelling in Honour of Heinrich C. Mayr

Table 6: Semantics and sample syntax for Co-occurrence (instance and set-level) constraints

Co-occurrence CARD-R-CO (R, (E1, . . . , Ei),(Ei+1, . . . , Ej)) ∀ s ∈ πE1„„ Ei (R), |{t : t πEi+1,. . . , Ej(R)
∧ (s ◦ t ∈ R) }| ∈ Card

Set Co-occurrence CARD-R-CO-SET (R, (E1, . . . , Ei),(Ei+1, . . . , Ej)) |{t : t ∈ πEi+1,. . . , Ej ∧ s ∈ πE1„„ Ei

∧ (s ◦ t ∈ R) ∧ πE1 (s) ∈ C1 ∧ ∧ πEi (r) ∈ Ci | ∈ Card

Table 7: Semantics and sample syntax for various kinds of Appearance constraints

Appearance CARD-R-AP (R, E, L1, . . . , Li) ∀ e ∈ E, | { l : l ∈ E πL(r, e) }| ∈ Card

Set Appearance Across-R CARD-R-AP-SET (R, E, L1, . . . , Li)|{ l : l ∈ πL(r, C) ∧ C ⊆ E }| ∈
Card

Appearance Across-R CARD-R-APAR (R, E, L1, . . . , Li) ∀ e ∈ E, |{ l : l ∈ E πL(R, e) }| ∈
Card

Set Appearance Across-R CARD-R-APAR-SET (R, E, L1, . . . , Li)|{ l : l ∈ πL(R, C) ∧ C ⊆ E }| ∈
Card

Table 8: Using only π

Algebraic
Operator

Semantics for an Entity Class SQL Equivalent

πc* Projection cardinality, i.e., number of association
instances in the relationship.

SELECT count(empID)
+ count(supervisorID)
FROM assign;

πcA Projection cardinality restricted to a participating
entity class.

SELECT count(distinct
empID) FROM assign;

πcA,B Projection cardinality restricted to a combination
of entities from participating entity classes. We
don’t consider concatenation (or correspondingly:
adding multiple attributes in the ℑ clause) in further
examples to preserve simplicity, but note that it allows
for combinations of entities from participating classes
to be considered rather than just from one class.

SELECT count(distinct
concat(empID,deptID))
FROM assign;

functions in the presence of multiple roles (see
Table 11 for details). This also demonstrates the
advantage of using a semantics-based approach,
rather than re-specifying the programming logic
for each instance of the constraint. For simplicity,
we assume a role-projection function exists for
relational algebra and demonstrate one set of feas-
ible solutions assuming two possible roles (based
on the supervise relationship).

In this section we discussed the equivalence
of conceptual modeling constraints and com-
binations of relational algebra operations. In
doing so, we introduce new constraints at the
set level. A similar exercise can be carried out
for other modeling constructs (e.g., superclasses
and subclasses). However, we feel the relational
algebra mappings for entity classes, attributes
and interaction relationships sufficiently demon-

http://dx.doi.org/10.18417/emisa.si.hcm.23

Enterprise Modelling and Information Systems Architectures
Vol. 13, No. 2 (February 2018). DOI:10.18417/emisa.si.hcm.23

306 Faiz Currim, Sudha Ram
Special Issue on Conceptual Modelling in Honour of Heinrich C. Mayr

Table 9: Using πc*, σ and ℑ

Operator Semantics for an ER Relationship SQL Equivalent
πc*, σID Participation cardinality, i.e., number times an entity

(or entity combination) participates in a relationship.
SELECT count(*)
FROM assign WHERE
projectID='P01';

πc*, ℑID Participation cardinality (for every projectID in the
relationship).

SELECT count(*)
FROM assign GROUP
BY projectID;

πc*, σA Projection cardinality, i.e., number of association
instances in the relationship matching the property
specified in the σ.

SELECT count(*) FROM
assign WHERE hours =
n;

πc*, ℑID, σA or
πc*,ℑID-x,σID-y

Participation cardinality. The combination of σ and
ℑ (performed on the same attribute) simply restricts
which tuples of the entire set are split into groups.
A ℑ performed on a different attribute than the σ
leads to a participation cardinality check with the σ
performing the role of predicate filtering. It remains
a form of participation cardinality. We use ℑID-x,
σID-y to indicate that the grouping and selection are
on different identifying attributes (i.e., different entity
classes). The σID-y condition may involve a single
value or a set of values. The accompanying SQL
example uses a set of values. A combination of σA

with σID-y may also be done.
A similar pattern is observed for co-occurrence con-
straints in Table 10 (discussion not repeated in the
interests of brevity).

SELECT count(*) FROM
assign WHERE hours > n
GROUP BY projectID;
SELECT count(*) FROM
assign WHERE empID IN
('E04', 'E05', 'E07')
GROUP BY projectID;

πc*, σID-Set Set-Participation cardinality, i.e., how often do a
set of entities considered together participate in a
relationship.

SELECT count(*)
FROM assign WHERE
projectID IN
('P01','P02','P03');

strates the important aspects of our approach.

5 Evaluation and Testing

To complement our approach for showing com-
pleteness of a cardinality taxonomy, we decided to
develop a prototype system to serve as a proof-of-
concept for the framework. To properly automate
the development of the constraint translation mod-
ule, we realized that the system needed to be aware

of the relational schema (to reference column and
table names in the SQL and triggers, for example).
While our over-arching purpose was to evaluate
whether the SQL mapping logic from our concep-
tual constraint specifications was correct, we felt
the experience would additionally inform us of any
database-implementation issues that could arise
for the translated constraints. This motivated our
development of the CARD (Constraint Automated
Representation for DBMSs) system (Figure 8).

http://dx.doi.org/10.18417/emisa.si.hcm.23

Enterprise Modelling and Information Systems Architectures
Vol. 13, No. 2 (February 2018). DOI:10.18417/emisa.si.hcm.23
Understanding Semantic Completeness in Rule Frameworks for Modeling Cardinality Constraints 307
Special Issue on Conceptual Modelling in Honour of Heinrich C. Mayr

Table 10: Using πcA, σ and ℑ

Operator Semantics for an ER Relationship SQL Equivalent
πcA, σID Co-occurrence cardinality, i.e., for an entity

defined in the σ clause, how many distinct
entity instances co-occur with it (π clause)?

SELECT count(distinct
empID) FROM assign WHERE
projectID='P01';

πcA, ℑID Co-occurrence cardinality for each entity
defined by the grouping attribute(s).

SELECT count(distinct
empID) FROM assign GROUP
BY projectID;

πcA, σA Projection cardinality, restricted to a subset
of association entities (matching the property
specified in the σ) from the participating entity
class (specified by the πcA).

SELECT count(distinct empID)
FROM assign WHERE hours > n;

πcA, ℑID, σA

or πc*, ℑID-x,
σID-y

Co-occurrence cardinality. When used in
combination, the grouping attribute(s) end up
being the fixed aspect of the co-occurrence
cardinality (it does not matter that a subset
of entities is specified by the σ, since these
are broken up for individual consideration by
the ℑ). The projection (counted) attribute
plays its usual role, while the attribute in the
σ clause works to filter the set of rows under
consideration similar to a predicate.

SELECT count (distinct empID)
FROM assign WHERE projectID
IN ('P01', 'P02', 'P03')
GROUP BY deptID, projectID;

πcA, σA or
πcA, σID-Set

Set co-occurrence cardinality, i.e., for a given
set of entities (fixed by σ) how many instances
of another entity class are associated with them
(counted in π).

SELECT count(distinct empID)
FROM assign WHERE projectID
IN ('P01', P02');

Users interact with the system and choose one
of the options to input a schema and associated
constraints. The system then uses knowledge of
standard ER-to-relational conversion logic to de-
velop the SQL (DDL statements) for table creation.
In addition, it takes advantage of the knowledge of
the schema and the cardinality-to-SQL mapping
we described in our paper, to generate the associ-
ated triggers. Currently, freeware and commercial
tools exist that can do the first part (i.e., take a
conceptual schema developed using ER modeling
or UML and convert it into relations with a limited
number of structural constraints). The latter part is
new, and developed as an extension by us to demon-
strate the practical feasibility of the translation

based on our completeness discussion. A system
like CARD can serve the software development
lifecycle (SDLC) by generating relational triggers
to manage the advanced constraints, which has the
two-fold advantage of improving both database
integrity and programmer productivity.

The prototype (currently implementing a subset
of the cardinality constraints) has been developed
in Java, and is available over the Internet (Currim
et al. 2010). For our prototype we picked Oracle as
the target DBMS, since it is widely-used. While
the SQL table creation code is designed to be
ANSI compliant and work across platforms, the
constraint triggers are generated in PL/SQL and
are Oracle specific (however, the core logic can

http://dx.doi.org/10.18417/emisa.si.hcm.23

Enterprise Modelling and Information Systems Architectures
Vol. 13, No. 2 (February 2018). DOI:10.18417/emisa.si.hcm.23

308 Faiz Currim, Sudha Ram
Special Issue on Conceptual Modelling in Honour of Heinrich C. Mayr

Table 11: Limiting roles (for Appearance constraint variants)

Operator Semantics for an ER Relationship SQL Equivalent
πL(r,e) Appearance cardinality, i.e., restricts how

many roles a given entity can play in a single
relationship instance. Note: while we use the
Oracle specific DUAL system table, this can
be translated into another platform like SQL
Server either by removing the reference to DUAL
(or for DB2: by using the SYSIBM.SYSDUMMY1
instead) or creating a schema specific table that
simply contained a single row/column to use
instead of dual.

SELECT COUNT(*) FROM (SELECT
'One Role' FROM dual WHERE
EXISTS (SELECT * FROM
supervise WHERE (empid='E01'
OR superviseID='E01'))
UNION SELECT 'Two Roles'
FROM dual WHERE EXISTS (
SELECT * FROM supervise
WHERE empid=superviseID AND
empid='E01'));

πL(R,e) Appearance Across-R cardinality (new). This
constraint restricts the number of roles a single
entity can play across all relationship instances.
In this case, a UNION ALL (bag semantics) is
required to prevent loss of information when
the same entity (identifier) is selected from two
different roles.

SELECT COUNT(*) FROM (SELECT
distinct empID FROM supervise
WHERE empid = 'E01' UNION ALL
SELECT distinct supervisorID
FROM supervise WHERE
supervisorID = 'E01');

πL(r,C) Set Appearance cardinality (new). This con-
straint restricts the number of roles a set of
entities can play in a single relationship in-
stance.

SELECT COUNT(*) FROM (SELECT
'One Role' FROM dual WHERE
EXISTS (SELECT * FROM
supervise WHERE (empid IN
('E01', 'E02') OR superviseID
IN('E01', 'E02'))) UNION
ALL SELECT 'Two Roles' FROM
dual WHERE EXISTS (SELECT
* FROM supervise WHERE
(empid IN ('E01', 'E02') AND
superviseID IN('E01', 'E02'))
);

πL(R,C) Set Appearance Across-R cardinality (new).
This is the set equivalent of the appearance
across-R constraint and restricts how many
roles a set of entities can appear in, across all
relationship instances.

SELECT COUNT(*) FROM (SELECT
'Role Employee' FROM dual
WHERE EXISTS (SELECT * FROM
supervise WHERE empid IN
('E01', 'E02')) UNION ALL
SELECT 'Role Supervisor' FROM
dual WHERE EXISTS (SELECT
* FROM supervise WHERE
superviseID IN ('E01', 'E02')
));

http://dx.doi.org/10.18417/emisa.si.hcm.23

Enterprise Modelling and Information Systems Architectures
Vol. 13, No. 2 (February 2018). DOI:10.18417/emisa.si.hcm.23
Understanding Semantic Completeness in Rule Frameworks for Modeling Cardinality Constraints 309
Special Issue on Conceptual Modelling in Honour of Heinrich C. Mayr

Figure 8: Architecture of the CARD system

Table 12: Implication of constraint parameters for triggering events

Constraint Property Trigger Fired On
Minimum cardinality specification of > 0 DELETE

Maximum cardinality of < M(any) INSERT

Predicates on Entity Class involved in Constraint UPDATE

be modified in a straightforward manner for other
platforms). The current interface supports creat-
ing schemas directly via a guided specification
interface, and importing schemas developed either
in Visio’s XML drawing format or directly in a
canonical ER-XML format developed by us (an
XML Schema specification that allows a standard
representation of an ER schema). This can be
extended in the future to allow additional XML
representations for ER or UML (since the core
constructs and their purpose are similar). All
options allow users to specify entity classes (in-
cluding strong and weak classes), relationships
(interaction, inclusion, etc.), and constraints.

We briefly describe the trigger generation
strategy employed. Depending on the nature of

the constraint summarized in Table 12, the fir-
ing event is set to INSERT, DELETE or UPDATE.
Since the integrity constraints must be checked
prior to any possible violations, we specify it be
checked BEFORE the database event takes place.
A minimum cardinality specification of > 0, im-
plies the need for a trigger fired on deletions,
while a specified maximum cardinality (other than
simply “many”) requires checking counts before
tuple insertion. We assume identifier values are
unchangeable. If the database allows updates to
primary key values, then update event triggers
must be used for both of the previous cases as
well. Triggers checked on update are also needed
when a predicate is specified for the constraint.
Our current system assumes that all constraint vi-

http://dx.doi.org/10.18417/emisa.si.hcm.23

Enterprise Modelling and Information Systems Architectures
Vol. 13, No. 2 (February 2018). DOI:10.18417/emisa.si.hcm.23

310 Faiz Currim, Sudha Ram
Special Issue on Conceptual Modelling in Honour of Heinrich C. Mayr

Figure 9: Generalized Trigger Template (Oracle)

olations must be prevented (hence an application
error is raised to block the database operation).
However, the user may choose to specify different
actions that could be taken, including simply gen-
erating warnings, logging the violations, and so
on (discussed in depth in active database literature
(Paton and Díaz 1999). We leave the handling of
violationaction refinements for future work.

Figure 9 shows a generalized trigger template.
While the automated generation may seem straight-
forward, we encounter locking granularity issues
for multi-user environments. Typically, a transac-
tion that only inserts a new tuple would not obtain
an exclusive table-level lock (since it is overly
restrictive). This can cause constraint violations.
Using our earlier example of, “any supplier and
project combination can appear in the Submit-
Bids relationship between [h .. k] times”, let’s
assume we were trying to enforce the upper bound
of k where currently there were k-1 entries for an
⟨s, j⟩ pair. Suppose two transactions t1 and t2
both attempt to insert a new instance of ⟨s, j⟩ with
some p1, p2, where p1 , p2, and the associated
triples were new to the relation (i.e., both ⟨s, j,
p1 ⟩ and ⟨s, j, p2⟩ < SubmitBids). Given that

each would not see the uncommitted inserts of
the other transaction, they would both count k-1
entries, and permit the insertion to proceed (since
the insertion likely would not violate any other
database constraints), resulting in k+1 instances
of the ⟨s, p⟩ pair (a violation). As can be seen, this
requires the use of an exclusive lock on affected
table which leads to inefficiencies.

For special classes of constraints, notably those
applied at the set level, another approach is to
maintain a constraint metadata table (CMT). The
CMT would contain the type, cardinality limits,
and current counts for the constraint in question.
Instead of performing the count on the data table
(e.g., SubmitBids) each time an insert took place,
the trigger could look up the CMT (the tuple cor-
responding to the constraint in question would be
locked) and suitably adjust the attribute for the
current count. The problem with applying this to
instance-level constraints (that are not restricted to
a small set of entities), is lack of scalability. There
could be a large number of suppliers (for example)
and we would not wish to store, one entry in the
CMT per supplier. Pre-sorting or an index vari-
ant (with a supplier-count pair) could make this

http://dx.doi.org/10.18417/emisa.si.hcm.23

Enterprise Modelling and Information Systems Architectures
Vol. 13, No. 2 (February 2018). DOI:10.18417/emisa.si.hcm.23
Understanding Semantic Completeness in Rule Frameworks for Modeling Cardinality Constraints 311
Special Issue on Conceptual Modelling in Honour of Heinrich C. Mayr

option more efficient at an instance level, but we
feel that an effective and generalizable solution
would require native DBMS support for cardinal-
ity constraint enforcement. Further, while some
would argue for application level support instead,
we feel instead that it would be more efficient
to perform the operations at the database level
(rather than transmit the data to the application to
do the check). In the case of the two transactions
t1 and t2 described previously, native DBMS sup-
port could permit better scheduling of potentially
conflicting transactions and re-use of knowledge
from recently performed counts.

6 Conclusions and Contributions

An information system may need to manage a large
number of rules from governmental, industry and
organizational requirements. Rules assert busi-
ness structure, can influence organizational be-
havior (Hay et al. 2000) and describe a state of
affairs that the business wants to exist (Morgan
2002). Understanding rules, including cardinality,
and modeling them in the conceptual schema in
a visible manner is crucial, because if they are
missed at this stage, they may never be enforced
(or be applied inconsistently) when the database is
implemented (Shao and Pound 1999). In addition
to the value of establishing completeness of a rule
framework from a research perspective, we also
see utility from the perspective of model-driven
architecture (MDA) (OMG 2001). The connec-
tion between conceptual modeling and MDA is
important in information systems development
(Kop et al. 2007), and approaches like MDA be-
nefit from standardized constraint representation
(J. B. Warmer and A. G. Kleppe 2003). Without
classification, there are limitations to enabling a
standardized syntax to represent constraint types
and the subsequent mapping into code. Establish-
ing completeness likewise benefits CASE tools
incorporating such frameworks.

We have discussed an approach to establishing
completeness of cardinality constraint frameworks.
In doing so, we added a constraint category (set-
level), orthogonal to existing types of cardinality

rules not previously seen in literature. Modeled
constraints may be represented in the conceptual
schema by the analyst using a variety of syntactical
approaches for ER or UML. Subsequently, a well-
defined mapping can be used to come up with the
corresponding implementation code.

The basic approach to supporting constraint
implementation is by translating the specific con-
straint logic into SQL and embedding that within
triggers or procedures. Given an ER schema and
the associated constraints, the relevant count of
data values can be checked against the constraint
limits. We described a prototype currently under
development to automatically translate modeled
constraints from the conceptual design level into
database triggers. Such checks can be imple-
mented using Oracle’s PL/SQL or SQL Server’s
Transact-SQL. Our efforts also lead us to recom-
mend better DBMS support for cardinality to
improve the efficiency of the constraint checking
triggers.

We feel our approach shows the value of concise
semantic-based rule annotation schemes.

Establishing completeness supports constraint
incorporation into CASE tools for productivity
gains during the development lifecycle. The plat-
form independent conceptual taxonomies (which
can be represented using a variety of syntaxes
including XML or the annotation scheme shown
in Appendix B) support distributed development
while fitting well into the service-oriented com-
puting paradigm. Although we used the ER model
in describing constraints in this paper, the exten-
sion to UML and other modeling languages is
straightforward. We feel future research direc-
tions could test whether similar approaches to
completeness can be extended to other kinds of
database rules, including temporal and spatial
integrity constraints.

References

Atzeni P., Chen P. P. (1981) Completeness of
query languages for the entity-relationship model.

http://dx.doi.org/10.18417/emisa.si.hcm.23

Enterprise Modelling and Information Systems Architectures
Vol. 13, No. 2 (February 2018). DOI:10.18417/emisa.si.hcm.23

312 Faiz Currim, Sudha Ram
Special Issue on Conceptual Modelling in Honour of Heinrich C. Mayr

In: Proceedings of the Second International Con-
ference on the Entity-Relationship Approach to In-
formation Modeling and Analysis. North-Holland
Publishing Co., pp. 109–122

Bajaj A., Ram S. (2002) SEAM: A State Activity
Entity Model for a Well Developed Workflow
Development Methodology. In: 14 (2), pp. 415–
431

Campbell D. M., Embley D. W., Czejdo B. D.
(1985) A relationally complete query language
for an entity-relationship model. In: Proceedings
of the Fourth International Conference on Entity-
Relationship Approach. IEEE Computer Society,
pp. 90–97

Chen P. P.-S. (1976) The entity-relationship
model—toward a unified view of data. In: ACM
Transactions on Database Systems (TODS) 1(1),
pp. 9–36

Codd E. F. (1972) Relational completeness of data
base sublanguages. IBM Corporation

Currim F. (2004) Spatio-Temporal Set-Based Con-
straints In Conceptual Modeling: A Theoretical
Framework and Evaluation. PhD thesis, University
of Arizona, Tucson, AZ

Currim F., Neidig N., Kampoowale A., Mhatre
G. (2010) The CARD System. In: Proceedings
of the Twenty-ninth International Conference on
Entity-Relationship Approach. Springer, pp. 433–
437

Currim F., Ram S. (2012) Modeling spatial and
temporal set-based constraints during conceptual
database design. In: Information Systems Research
23 (1), pp. 109–128

Date C. J. (2000a) An introduction to database
systems. In: Boston: Pearson/Addison Wesley
27(983), p. 22

Date C. J. (2000b) What not how: the busi-
ness rules approach to application development.
Addison-Wesley Professional

Ferg S. (1991) Cardinality Constraints in Entity-
Relationship Modeling.. In: ER, pp. 1–30

Halpin T., Morgan T. (2010) Information modeling
and relational databases. Morgan Kaufmann

Hay D., Healy K. A., Hall J., Bachman C., Breal
J., Funk J., Healy J., McBride D., McKee R.,
Moriarty T. (2000) Defining business rules-what
are they really. In: Final Report

ISO (1987) Information processing systems–
concepts and terminology for the conceptual
schema and the information base

Kop C., Mayr H. C. (1998) Conceptual predesign
bridging the gap between requirements and con-
ceptual design. In: Proceedings of the 3rd Interna-
tional Conference on Requirements Engineering
(ICRE’98). IEEE, pp. 90–98

Kop C., Mayr H. C., Yevdoshenko N. (2007)
Requirements Modeling and MDA–Proposal for a
Combined Approach. In: Advances in Information
Systems Development, pp. 191–201

Lenzerini M., Santucci G. (1983) Cardinality Con-
straints in the Entity-Relationship Model. In: ER,
pp. 529–549

Liddle S. W., Embley D. W., Woodfield S. N.
(1993) Cardinality constraints in semantic data
models. In: Data & Knowledge Engineering 11(3),
pp. 235–270

Mayr H. C., Kop C. (2002) A User Centered
Approach to Requirements Modeling. In: Proceed-
ings of the Modellierung 2002. Lecture Notes in
Informatics P-12 (LNI), GI-Edition, pp. 75–86

McAllister A. (1998) Complete rules for n-ary
relationship cardinality constraints. In: Data &
Knowledge Engineering 27(3), pp. 255–288

Morgan T. (2002) Business rules and information
systems: aligning IT with business goals. Addison-
Wesley Professional

Navathe S., Batini C., Ceri S. (1992) Concep-
tual Database Design–an Entity-Relationship Ap-
proach. In: Redwood City: Benjamin Cummings

OCL (2014) Object Constraint Language (OCL),
Version 2.4

http://dx.doi.org/10.18417/emisa.si.hcm.23

Enterprise Modelling and Information Systems Architectures
Vol. 13, No. 2 (February 2018). DOI:10.18417/emisa.si.hcm.23
Understanding Semantic Completeness in Rule Frameworks for Modeling Cardinality Constraints 313
Special Issue on Conceptual Modelling in Honour of Heinrich C. Mayr

OMG (2001) Model Driven Architecture

OMG (2015) Unified Modeling Language (UML),
version 2.5

OMG (2017) Semantics of Business Vocabulary
and Business Rules, version 1.4

Paton N. W., Díaz O. (1999) Active database
systems. In: ACM Computing Surveys (CSUR)
31(1), pp. 63–103

Ram S., Khatri V. (2005) A comprehensive frame-
work for modeling set-based business rules during
conceptual database design. In: Information Sys-
tems 30(2), pp. 89–118

Ramesh V., Ram S. (1997) Integrity constraint
integration in heterogeneous databases: An en-
hanced methodology for schema integration. In:
Information Systems 22(8), pp. 423–446

Ross R. (2005) Business Rule Concepts: Getting to
the Point of Knowledge. Business Rule Solutions
Inc.

Shao J., Pound C. (1999) Extracting business rules
from information systems. In: BT Technology
Journal 17(4), pp. 179–186

Simsion G. (2001) Data Modeling Essentials: Ana-
lysis, Design, and Innovation Scottsdale. In: AR,
Coriolis

Storey V. C., Yang H.-L., Goldstein R. C. (1996)
Semantic integrity constraints in knowledge-based
database design systems. In: Data & Knowledge
Engineering 20(1), pp. 1–37

Sweeney L. (2002) k-anonymity: A model for pro-
tecting privacy. In: International Journal of Uncer-
tainty, Fuzziness and Knowledge-Based Systems
10(05), pp. 557–570

Thalheim B. (1992) Fundamentals of cardinal-
ity constraints. In: International Conference on
Conceptual Modeling. Springer, pp. 7–23

Thalheim B. (1996) An overview on semantical
constraints for database models. In: Proceedings
of the 6th International Conference Intellectual
Systems and Computer Science

Umanath N. S., Scamell R. W. (2007) Data Model-
ing and Database Design. Thomson Course Tech-
nology

Vöhringer J., Mayr H. C. (2006) Integration of
schemas on the pre-design level using the KCPM-
approach. In: Advances in Information Systems
Development. Springer, pp. 623–634

Von Halle B. (2001) Business rules applied: build-
ing better systems using the business rules ap-
proach. Wiley Publishing

Wand Y., Storey V. C., Weber R. (1999) An on-
tological analysis of the relationship construct in
conceptual modeling. In: ACM Transactions on
Database Systems (TODS) 24(4), pp. 494–528

Wand Y., Weber R. (2002) Research commentary:
information systems and conceptual modeling—a
research agenda. In: Information systems research
13(4), pp. 363–376

Warmer J. B., Kleppe A. G. (2003) The object
constraint language: getting your models ready for
MDA. Addison-Wesley Professional

Warmer J., Kleppe A. (1999) The Object Con-
straint Language. Addison–Wesely

Weber R. (1996) Are attributes entities? A study
of database designers’ memory structures. In: In-
formation Systems Research 7(2), pp. 137–162

http://dx.doi.org/10.18417/emisa.si.hcm.23

Enterprise Modelling and Information Systems Architectures
Vol. 13, No. 2 (February 2018). DOI:10.18417/emisa.si.hcm.23

314 Faiz Currim, Sudha Ram
Special Issue on Conceptual Modelling in Honour of Heinrich C. Mayr

Appendix A : ER Model Syntax

Symbol Construct Description
Entity Class A set of entities for which common proper-

ties (attributes) are to be modeled

Regular Attribute Properties shared by all members of an
entity class.

Multi-valued Attribute A single entity may have more than one
value for such attributes

Identifying Attribute An attribute that distinguishes one member
entity from another

Partial Identifier An attribute in a weak entity class used
in conjunction with identifiers from strong
entity classes for distinguishing member
entities

Weak Entity Class An entity class dependent on another
(strong) entity class for its existence and
part or all of its identifying attribute

Interaction Relationship Association between members of one or
more entity classes

Identifying Relationship The arrow head denotes that a weak en-
tity class depends on the relationship to
determine its identifying classes

Inclusion Relationship
D : disjoint subclasses
O : overlapping subclasses

Relationship defining a generalization / spe-
cialization relationship between members
of entity classes

http://dx.doi.org/10.18417/emisa.si.hcm.23

Enterprise Modelling and Information Systems Architectures
Vol. 13, No. 2 (February 2018). DOI:10.18417/emisa.si.hcm.23
Understanding Semantic Completeness in Rule Frameworks for Modeling Cardinality Constraints 315
Special Issue on Conceptual Modelling in Honour of Heinrich C. Mayr

Appendix B : Annotation Syntax in Backus-Naur Form

⟨Construct Cardinality⟩ ::= ⟨Class Constraint⟩ | ⟨Attribute / Domain Constraint⟩ | ⟨Interaction
Relationship Constraint⟩

⟨Class Constraint⟩ ::= CARD-C (⟨Entity Class⟩)
⟨Attribute / Domain Constraint⟩ ::= CARD-A (⟨Entity Class⟩, Attribute) |

CARD-D (⟨Entity Class⟩, Attribute)
⟨Attributes⟩ ::= Attribute, ⟨Attributes⟩ | Attribute
⟨Interaction Relationship ::= CARD-R-PT (⟨RE⟩) | CARD-R-PT-SET (⟨RE⟩) |
Constraint⟩ CARD-R-PJ (⟨RE⟩) | CARD-R-CO (⟨RE⟩, ⟨Entity Classes⟩) |

CARD-R-CO-SET (⟨RE⟩, ⟨Entity Classes⟩)
⟨RE⟩ ::= Relationship, ⟨Entity Classes⟩
⟨Entity Classes⟩ ::= ⟨Entity Classes⟩, ⟨Entity Class⟩ | ⟨Entity Class⟩
⟨Entity Class⟩ ::= Entity Class | Role | Role:⟨Class⟩
⟨Class⟩ ::= ⟨Entity Class⟩ | Interaction Relationship Class
⟨Card⟩ ::= ⟨min⟩:⟨max⟩ | ⟨min⟩. . . ⟨max⟩ | set-builder definition
⟨min⟩ ::= Natural
⟨max⟩ ::= Natural | M

http://dx.doi.org/10.18417/emisa.si.hcm.23

