
Enterprise Modelling and Information Systems Architectures
Vol. 15, No. 2 (2020). DOI:10.18417/emisa.15.2
A Deep Perspective on the ArchiMate Modeling Language and Standard 1

A Deep Perspective on the ArchiMate Modeling Language and
Standard

Colin Atkinson*,a, Thomas Kühneb

a University of Mannheim, Germany
b Victoria University of Wellington, New Zealand

Abstract. Given the scale, complexity and variety of enterprise architectures, approaches for modeling
them need to be as simple and flexible as possible in order to minimize the accidental complexity within
enterprise architecture models. Multi-level modeling techniques offer an effective way of achieving this but
to date there has been little research into how they could contribute to enterprise architecture modeling. In
this article we therefore explore how the former could be best leveraged within the latter by considering
the modeling goals, architecture and principles of one of the most concrete and widely used enterprise
architecture modeling standards: ArchiMate. More specifically, we discuss how the conceptual integrity of
the ArchiMate standard and modeling experience could be enhanced using multi-level modeling principles.
In our discussions, we focus on a specific variant of multi-level modeling, called deep modeling, which is
based on the notions of orthogonal classification and deep instantiation.

Keywords. Enterprise Architecture Modeling • Multi-Level Modeling • Deep Visualization • ArchiMate

Communicated by Ulrich Frank. Received 2017-03-01. Accepted on 2019-09-08.

1 Introduction

Enterprise Architectures play a pivotal role in
enabling companies to align their processes with
their IT infrastructures. With the increasing trend
towards digitization and automation, companies
need effective enterprise architectures to remain
competitive and respond rapidly to change. Poorly
understood and/or aligned processes, information
systems and IT infrastructures significantly reduce
a company’s ability to respond agilely to change
and deliver services in a cost-effective way.

In general, the notion of “Enterprise Architec-
ture” (EA) encompasses all aspects of a company’s
assets, relationships, stakeholders and processes
over its entire lifetime, from inception and design
to operation and retirement. Approaches for En-
terprise Architecture Modeling (EAM) therefore

* Corresponding author.
E-mail. atkinson@informatik.uni-mannheim.de

need to have a broad scope and be able to por-
tray enterprise architectures in the large variety of
forms expected by their many different stakehold-
ers. In other words, they need to be multi-view
approaches which allow an enterprise architecture
and/or its parts to be described from multiple view-
points using a suite of different (sub)languages.
In addition, given the large number of different
kinds of stakeholders and tasks that EA models in
different companies need to support, it is impor-
tant that EAM frameworks allow new view types
and view-representation languages to be added by
users (Frank 2002). Defining a single language
framework to support all view languages needed
out-of-the-box is not a realistic proposition.

Several EAM approaches have become de
facto standards over recent years. Some, such
as TOGAF (The Open Group 2010) and Zach-
mann (Zachman 1987), do not prescribe the spe-
cific languages to be used to portray information in
different kinds of views (e. g., processes, data types

http://dx.doi.org/10.18417/emisa.15.2
atkinson@informatik.uni-mannheim.de

Enterprise Modelling and Information Systems Architectures
Vol. 15, No. 2 (2020). DOI:10.18417/emisa.15.2

2 Colin Atkinson, Thomas Kühne

etc.) while others, such as RM-ODP (ISO/IEC
1997) and ArchiMate (The Open Group 2017a),
define their own specialized languages to repre-
sent their specific view types. However, only one
of these, ArchiMate, explicitly encourages the
definition of new viewpoints and language vari-
ants by end users through a dedicated “extension”
mechanism.

Of the well-known EAM standards, therefore,
ArchiMate may be regarded as the most advanced
in terms of supporting viewpoint/language engi-
neering. However, like most modeling environ-
ments today, the ArchiMate approach to modeling
and language engineering is rooted in modeling
infrastructure principles that go back to the first
generation of modeling tools. In particular, its
definition and use is based on the traditional four
level hierarchy popularized by the UML infrastruc-
ture (Object Management Group 2007), where the
bottom level is considered to be the “real world”
and the top two levels are language definitions,
i. e., a language for defining modeling languages
(i. e., the meta-meta model) and a language for
defining EA models (i. e., the ArchiMate meta
model). This leaves only one level to accom-
modate all domain modeling content, including
instances, classes and potentially domain meta
classes.

Numerous authors have pointed out that multi-
level modeling environments generally offer a
better platform for flexible, domain-specific lan-
guage engineering than two-level modeling envi-
ronments (Atkinson and Kühne 2003). Frank, in
particular, has specifically made this case in the
context of EAM by clarifying the requirements
EAM languages should support and developing
a new prototype EAM modeling environment to
showcase the benefits of multi-level modeling in
this domain (Frank 2014).

The use of multi-level modeling holds the
promise of economic benefits (Frank 2016) due
to reducing accidental complexity (Atkinson and
Kühne 2007), which

• minimizes the effort involved in understanding
and changing models,

• promotes adaptability of models, and
• helps to protect the integrity of models.

In combination, the above aid the maintainability
of models and thus lower typical maintenance
costs, as mistakes that are often provoked by overly
complex models and may be costly to fix, can be
avoided in the first place.

In this article we specifically aim to reinforce
the arguments for multi-level modeling in the
domain of EAM by investigating how a multi-
level framework could better support the modeling
goals and principles outlined by the ArchiMate
standard (The Open Group 2017a) and its design-
ers (Lankhorst 2013; Lankhorst et al. 2010). As
part of this investigation we are interested in the
way the ArchiMate language is defined as well
as used. We focus on ArchiMate for this study
because (a) it includes one of the most compre-
hensive and well-defined languages and (b) it is
defined as a meta-model in a publicly available
standard.

The remainder of this article is organized as
follows. In the next section we provide an introduc-
tion to ArchiMate and summarize the language
designers’ explicitly stated goals in relation to
viewpoint language usage and definition. After
that we provide a general introduction to multi-
level modeling, followed by a description of the
specific variant we use in this article known as
deep modeling (Atkinson and Kühne 2003). The
following two sections then analyze the pros and
cons of deep modeling approaches in terms of the
requirements outlined in the ArchiMate standard
and by its designers. Sect. 4 does so in terms
of the underlying concepts involved in language
definition and use (i. e., the abstract syntax) while
Sect. 5 does so in terms of the presentation (or
visualization) of those concepts. Sect. 6 then
continues by considering how, in the context of
ArchiMate, deep modeling could provide support
for other desirable modeling features identified by
Frank and others, but not yet included as explicit
goals of ArchiMate. Sect. 7 concludes with final
remarks and observations for future work.

http://dx.doi.org/10.18417/emisa.15.2

Enterprise Modelling and Information Systems Architectures
Vol. 15, No. 2 (2020). DOI:10.18417/emisa.15.2
A Deep Perspective on the ArchiMate Modeling Language and Standard 3

2 ArchiMate Language Goals

ArchiMate is an EAM standard managed by the
Open Group, a vendor and technology-neutral in-
dustry consortium that manages a wide range of
open standards. The Open Group characterizes
ArchiMate as “. . . the standard visual language
for communicating and managing change and
complexity through architecture descriptions de-
velopment” (The Open Group 2017b). It is com-
plemented by the TOGAF standard (The Open
Group 2010) which provides a broader picture
of how to create, evolve and leverage enterprise
architectures in a disciplined way. This article
focuses on ArchiMate version 3.0 released in June
2016 (The Open Group 2017a).

The main value of ArchiMate is the set of
modeling concepts it provides for representing
different aspects of enterprise architectures from
multiple viewpoints. These modeling concepts
are organized in a two-dimensional “core frame-
work”, illustrated in Fig. 1. The rows of this figure,
referred to as layers, represent the different levels
of abstraction at which properties of the enterprise
are described (business, application and technology),
while the columns, referred to as aspects, repre-
sent the kinds of concepts used to represent that
information (passive structure, behavior and active
structure). These concepts, along with the rest
of ArchiMate are defined by a metamodel in an
analogous way to the UML.

ArchiMate also places a great deal of emphasis
on defining a “default iconography for describing,
analyzing, and communicating many concerns
of Enterprise Architectures as they change over
time”. Most other open EAM approaches such as
TOGAF and Zachman do not define any iconog-
raphy while others such as RM-ODP do so in a
limited way. ArchiMate is the only major EAM
standard that attempts to define a comprehensive
range of symbols specifically for modeling EAs
from multiple viewpoints using metamodel-based
language engineering techniques.

It is not the goal of this article to critique the
concrete EAM concepts defined in the ArchiMate
language which have been carefully refined over a

Business Layer

Application Layer

Technology Layer

Passive
Structure

Behvior Active
Structure

}} Layers

Aspects

Figure 1: ArchiMate Core Framework (The Open
Group 2017a)

period of years based on user experience and re-
search. Rather the goal of this article is to critique
the architecture of the language infrastructure and
discuss whether the goals of the language de-
signers could be better satisfied using multi-level
modeling. Thus, the focus is more on how the
language is defined and what overall properties
it exhibits rather than what it actually contains
in terms of abstract and concrete syntax. This
requires close scrutiny of the ArchiMate standard
which constitutes the official definition of the lan-
guage. In the following subsections we clarify
the main sets of goals outlined by the language
designers. The standard itself does not devote a lot
of space to explaining ArchiMate’s concrete goals,
instead it explicitly refers to other sources where a
full description of the ArchiMate language design
goals are described (Lankhorst 2013; Lankhorst
et al. 2010).

Overall, the language designer’s articulated
three main kinds of requirements. These are
discussed in the following subsections.

2.1 Conceptual Integrity
According to Lankhorst (2013) one of the core
goals of the ArchiMate language is to maximize
the conceptual integrity of EA models. Brooks
describes conceptual integrity as resulting from
“simplicity and straightforwardness” and from en-
suring “unity of design” in which “every part must
reflect the same philosophies and the same bal-
ancing of desiderata” (Brooks 1975). Lankhorst

http://dx.doi.org/10.18417/emisa.15.2

Enterprise Modelling and Information Systems Architectures
Vol. 15, No. 2 (2020). DOI:10.18417/emisa.15.2

4 Colin Atkinson, Thomas Kühne

(2013) characterize conceptual integrity as “the
degree to which a design can be understood by a
single human mind, despite its complexity” and
state that it has the following subordinate design
principles:

• orthogonality - do not link what is independent,
• generality - do not introduce multiple functions

that are slightly divergent,
• economy (aka parsimony) - do not introduce

what is irrelevant,
• propriety - do not restrict what is inherent.

The core idea of simplicity and making the
language as “compact as possible” (Lankhorst et
al. 2010) is explicitly highlighted in the standard
which states that: “the most important design
restriction on the language is that it has been
explicitly designed to be as small as possible,
but still usable for most Enterprise Architecture
modeling tasks” (The Open Group 2017a). These
authors also explain that “similar things should
be expressed in a similar way, using a simple
set of core concepts that are easy to learn and
understand” (Lankhorst 2013).

Another set of principles that aim to maximiz-
ing conceptual integrity by ensuring “economy
of communication” are Grice’s Maxims (Grice
1975):

• Maxim of Quantity

– make your model as informative as necessary.
– do not make your model more informative

than necessary.

• Maxim of Quality

– do not model what you believe to be false.
– do not model that for which you lack adequate

evidence.

• Maxim of Relevance

– be relevant (i. e., model things related to the
modeling goal).

• Maxim of Manner

– avoid obscurity of expression.

– avoid ambiguity.
– be brief (avoid unnecessary concepts and

relations).
– be orderly.

Of these, the fourth, “Maxim of Manner”, is the
most relevant to language design. As Lankhorst
et al. point out, in order to avoid ambiguity and
ensure concepts can be “mapped easily to and
from those used in the project level” a strong
relationship should exist between the modeling
concepts used at the project level and those used
in the enterprise architecture (Lankhorst et al.
2010). It is therefore important that the language
be “set up in such a way that project level model-
ing concepts be expressed easily in terms of the
more general concepts defined in the language
(e. g.„ by specialization or composition of general
concepts)” (Lankhorst et al. 2010).

2.2 Customizability
The designers of ArchiMate faced the same
dilemma as the designers of the UML when de-
ciding what to include in the language standard
since they both have huge numbers of users with
greatly diverging requirements. The ArchiMate
designers therefore took the same approach as
the OMG by defining a small core language (to
maximize conceptual integrity) accompanied by
extension mechanisms to allow users to customize
the language to their own domain-specific needs.
However, in contrast to the UML, which only
has one built-in extension mechanism (the profile
mechanism), ArchiMate defines two:

1. adding attributes to ArchiMate elements and
relationships, and

2. specialization of elements and relationships.

The first is seen as essential for supporting spe-
cial kinds of analyses on models and allowing
more information to be communicated about the
model elements. This can be done at modeling
time by a modeler (called user-defined customiza-
tion), or it can be done when a modeling tool is
first configured for use (called pre-defined cus-
tomization). The purpose of the second form of

http://dx.doi.org/10.18417/emisa.15.2

Enterprise Modelling and Information Systems Architectures
Vol. 15, No. 2 (2020). DOI:10.18417/emisa.15.2
A Deep Perspective on the ArchiMate Modeling Language and Standard 5

customization is “to define new elements or rela-
tionships based on the existing ones” by logically
defining subclasses of the model elements in the
predefined metamodel. The ArchiMate standard
states that “specialized elements inherit the prop-
erties of their generalized elements (including the
relationships that are allowed for the element),
but some of the relationships that apply to the
specialized element need not be allowed for the
generalized element”.

The ArchiMate standard envisages that both
forms of customization are defined using some
kind of “profiling” mechanism such as the tex-
tual profiling language described by Eertink et al.
(1999) or the UML profiling mechanism. How-
ever, the standard gives very little information
about the precise nature of the mechanisms, and
equivocates on whether, in the second case, the
mechanism is meant to be exactly the same as the
UML profile mechanism or just “similar”. For
example it states that “A specialized element or
relationship strongly resembles a stereotype as it
is used in UML” (The Open Group 2017a, p. 111).
Profiles are also described in extension packages
that can be loaded and unloaded at modeling time
as desired.

2.3 Visualization Flexibility
The extensions mechanisms discussed in the pre-
vious section are concerned with extensions of
the abstract syntax of the language (i. e., what
information the extensions capture). However,
the ArchiMate standard also envisages extensions
to the concrete syntax (i. e., how language con-
cepts are represented). For example, the standard
states that the aforementioned profile mechanism
is intended to make it possible to “define a spe-
cific notation to denote the specialization” (The
Open Group 2017a, p. 112). Moreover, it explains
that “new graphical notation could be introduced
for a specialized concept, but preferably with a
resemblance to the notation of the generalized
concept; e. g., by adding an icon or other graphi-
cal marker, or changing the existing icon.” This
means that end users should be able to extend
the iconography of the ArchiMate language, as

Figure 2: Business Layer Notation (Excerpt of tab. 6
from The Open Group (2017a))

well as the abstract syntax, but that they should
“ideally” do so in a way that specializes the ex-
isting notation. The standard also clarifies that
the “default is the guillemet notation of UML for
stereotypes (‘«specialization name»’)” and that
other “options include specific icons, colors, fonts,
or symbols.”

Fig. 2 shows a summary of the built-in nota-
tion used to represent the static structural and
behavioral elements of the behavioral layer (an ex-
cerpt of tab. 6 from the ArchiMate Standard (The
Open Group 2017a)). As can be seen from this
figure, model elements are either visualized by
(a) a single icon corresponding to the element’s
type (the icon notation) or (b) a rectangle with the
element’s type icon in the top right hand corner
(the box notation). This generic visual syntax,

http://dx.doi.org/10.18417/emisa.15.2

Enterprise Modelling and Information Systems Architectures
Vol. 15, No. 2 (2020). DOI:10.18417/emisa.15.2

6 Colin Atkinson, Thomas Kühne

however, is mainly intended for use by enterprise
architects. Various end users (i. e., stakeholders of
a system) are intended to use viewpoints offering
domain-specific visualizations.

Although no semantics are formally assigned
to colors, in practice they are frequently used in
the standard to distinguish between the layers of
the ArchiMate Core Framework as follows:

1. yellow for the Business Layer,
2. blue for the Application Layer,
3. green for the Technology Layer.

In addition to colors, other notational cues can
be used to distinguish between the layers. For
example, a letter such as ‘B’, ‘A’ or ‘T’ can be
placed in the top-left corner of an element to
denote a Business, Application or Technology
element, respectively. The standard notation also
uses a convention based on the corners of symbols
to distinguish element types. More specifically:

1. square corners indicate structure elements,
2. round corners indicate behavior elements,
3. slanted corners indicate motivation elements.

3 Deep Modeling

Deep modeling describes a family of modeling
approaches that support seamless, level-agnostic
modeling across an unlimited number of classifi-
cation levels. The approach uses a linear hierarchy
of models in which the elements at one level
are all instances of model elements at the next
level, organized according to the principles of
strict modeling (Atkinson and Gerbig 2016). As
a consequence, all classification levels are equally
accessible to modelers for viewing and modifica-
tion, and changes made to one classification level
are immediately available at all other classifica-
tion levels without the need for recompilation or
re-deployment steps.

This flexibility brings additional economic ben-
efits beyond those provided by reduced model
complexity and error proneness because it makes
EAM modeling environments much more open
and extensible. Tools based on two-level modeling

technologies usually hardwire their metamodels
into their code (such as contemporary ArchiMate
tools), and thus reduces opportunities for exchang-
ing, reusing and extending models. This in turn
tends to lock users into particular vendor solutions
leading to significantly higher costs and potential
platform migration changes in the future.

One way of realizing such a level-agnostic mod-
eling environment is through the Orthogonal Clas-
sification Architecture (OCA) shown in Fig. 3.
In such an architecture, all model elements are
typed by two types, their ontological type which
originates from the problem domain, and their lin-
guistic type which is defined in the deep modeling
language. Another key ingredient of deep model-
ing is the notion of “potency” which essentially
captures the “characterizing” power of concept
over multiple classification levels. There are sev-
eral deep modeling approaches offering slightly
differing forms of potency. However, these dif-
ferences are irrelevant to the arguments presented
in this article. For the purpose of presenting con-
crete examples in the rest of the article we used the
deep modeling variant developed by the authors
of this paper. It supports three distinct variants
of potency: clabject potency which establishes an
upper bound on the instantiation depth of a clab-
ject, attribute existence potency (aka “durability”)
which defines over how many instantiation levels
an attribute has to exist, and attribute value po-
tency (aka “mutability”) which specifies over how
many instantiation levels the value of an attribute
can be changed. Any instances created beyond
that level must retain the value set at the lowest
changeable level.

A schematic example of the use of the OCA is
displayed in Fig. 3 where linguistic classification
is indicated by dotted arrows and ontological clas-
sification is indicated by dashed arrows. Manager
in the middle level, O1, has Clabject as its linguistic
type and ActorType as its ontological type. Note
that Manager is not only an instance of ActorType
but also a type for Ann. This type/instance duality
of model elements residing in the middle levels
motivates the term “clabject” - a portmanteau of
the terms “class” and “object”.

http://dx.doi.org/10.18417/emisa.15.2

Enterprise Modelling and Information Systems Architectures
Vol. 15, No. 2 (2020). DOI:10.18417/emisa.15.2
A Deep Perspective on the ArchiMate Modeling Language and Standard 7

ActorType2

O2 O1 O0

L1

L0

W

Figure 3: Example of a Deep Model in an Orthogonal
Classification Architecture

The potency of a clabject can be displayed
next to its name as a superscript. ActorType has a
potency of two allowing it to have (deep) instances
two ontological levels below it, in this case Ann.
The potency of an instance of a type must be
lower than the potency of the type, but cannot be
negative, so the clabject Ann, with potency zero,
cannot have instances itself.

Attribute and value potencies (i. e., mutabili-
ties) are displayed as superscripts next to attribute
names and values respectively. In the case of Ac-
torType, the name attribute has an attribute potency
of two and a mutability of two. Hence, instances
of ActorType instances (i. e., two levels down from
ActorType) have to have name values and these
name values may differ. To minimize the amount
of information displayed in a deep model, deep
modeling tools may apply elision rules for all
forms of potency. For example, one approach is
to display attribute potency (i. e., durability) only
when it is not equal to the potency of the clabject
containing the attribute and to display mutability
only when it is not equal to the durability.

4 Conceptual Integrity in ArchiMate
In the next three sections we consider how well
ArchiMate’s core language and architecture satis-
fies the requirements discussed in section 2 and
investigate whether multi-level modeling could

lead to improvements. In this section we start with
the goal of conceptual integrity.

As explained in the introduction, the definition
and use of the ArchiMate core language essentially
takes place in the context of a traditional two-level
modeling platform or infrastructure. This is illus-
trated schematically in Fig. 4. The left hand side
of this figure depicts a traditional modeling stack
such as the MOF/UML as usually presented by
the OMG (e. g., the UML Infrastructure specifi-
cation (Object Management Group 2006, 2007)).
The two levels explicitly supported by ArchiMate
are the two non-shaded levels in Fig. 4. The up-
per of these two levels, labeled “Metamodel” is
the place where the abstract syntax of the core
language is modeled using a language akin to
the MOF. It is called a “metamodel” because its
instances are parts of a model. The lower of these
two levels, labeled “Model”, is the level where end
users of an ArchiMate modeling tool add their do-
main content. Note that, in general, ArchiMate’s
model level is used to represent both domain types
and domain instances.

The meta-meta model is not part of the Archi-
Mate language per se, it is the language used to
describe (i. e., model) the abstract syntax of the
ArchiMate language. Nevertheless, since it is
explicitly used in the standard to model the Archi-
Mate language, it conceptually constitutes the top
of the stack of languages depicted on Fig. 4, just
as the MOF constitutes the top level of the OMG’s
four level modeling infrastructure. The role of the
meta-metamodel used in the ArchiMate standard
is therefore exactly the same as the role of the MOF
in the UML specification, even though it is not ex-
plicitly represented in the ArchiMate standard or
documentation. In fact, the ArchiMate meta-meta
model appears to be a simplified version of the
MOF.

Level contents at both the model and metamodel
levels of the ArchiMate modeling infrastructure
are represented using concepts which originate
from the same underlying object-oriented model-
ing principles that underpin the UML, and thus
also the MOF - namely, the concepts of classes

http://dx.doi.org/10.18417/emisa.15.2

Enterprise Modelling and Information Systems Architectures
Vol. 15, No. 2 (2020). DOI:10.18417/emisa.15.2

8 Colin Atkinson, Thomas Kühne

Figure 4: ArchiMate Modeling Infrastructure

(whose “standard” presentation is roughly a rect-
angle), specialization/generalization (whose “stan-
dard” presentation is an arrow with a triangle
head), and associations of various kinds (whose
“standard” presentation is a line annotated with
certain symbols to provide particular meanings).
We can therefore observe that the ArchiMate meta-
modeling language and modeling language are
based on the same foundation.

4.1 Language Duplication
Although the ArchiMate standard makes no refer-
ence to the language used to define the metamodel,
the fact that the metamodel is explicitly modeled
in the standard using an object-oriented model-
ing language means that, conceptually at least,
there is an additional level above the ArchiMate
metamodel describing the language used to define
it. In Fig. 4 this is referred to as the meta-meta
model. Although the ArchiMate standard only
refers to, and only intends tools to support, the
middle two levels, ArchiMate users must at least
conceptually be aware of all four levels when

working with ArchiMate. This leads to the first,
language duplication issue:

The ArchiMate language (i. e., metamodel) is
defined using a language (i. e., meta-metamodel)
which appears to have “very similar” core features
to the language itself (i. e., classes, associations,
inheritance etc.). However, the meta-metamodel is
not explicitly defined in the ArchiMate standard or
literature. The ArchiMate standard therefore faces
a situation similar to that which existed between
the MOF and UML before the OMG’s initiative
to align them in the 2.0 versions of the languages.
In the worst case, features in the meta-metamodel
may only be “similar” to, but not exactly the same
as, corresponding features in the metamodel (e. g.,
specialization) leading to confusion and errors.

Ideally, the semantics of corresponding features
should therefore be “aligned”, as with the UML
core and MOF since UML 2.0, but there is cur-
rently no indication that this is intended to be the
case in the ArchiMate standard. Either way, the
conceptual integrity of the standard is compro-
mised. At the very least, when there is alignment,

http://dx.doi.org/10.18417/emisa.15.2

Enterprise Modelling and Information Systems Architectures
Vol. 15, No. 2 (2020). DOI:10.18417/emisa.15.2
A Deep Perspective on the ArchiMate Modeling Language and Standard 9

the infrastructure fails to live up to the spirit of
minimality and unity of design that underpins con-
cept integrity, and in the worst case, when there
is no alignment, two of the aspects of the Maxim
of Manner - avoiding “ambiguity” and avoiding
“unnecessary concepts and relationships” - are
directly contradicted. One of the four subordinate
principles of conceptual integrity identified by
Lankhorst et al. (2010) explicitly warns against
introducing “multiple functions that are slightly
divergent”.

The deep modeling approach naturally ad-
dresses this issue because the OCA can be used
to unify the definition of these common concepts
and make them available at both the metamodel
and model levels, as shown in Fig. 5. In this fig-
ure, instead of a meta-meta model which defines
the MOF-like modeling feature just for the meta-
model level, a level-spanning linguistic model (or
“metamodel”) exists which defines the concepts
for use in both the metamodel and model levels.
This not only avoids redundancy, it ensures, and
explicitly declares, that a given linguistic concept
has the same meaning at both levels. Thus, the
two left-hand levels in Fig. 5 are guaranteed to
have the same semantics for the common elements
they share (i. e., classes/object, inheritance, asso-
ciations/links, attributes/slots) because they are
defined in the single, overarching linguistic model.
Moreover, there is no need for a meta-meta model
at the top of Fig. 4 because this role is performed
by the linguistic model.

4.2 Type/Instance Ambiguity
Sect. 3.6 of the ArchiMate standard states that
“The ArchiMate language intentionally does not
support a difference between types and instances.
At the Enterprise Architecture abstraction level,
it is more common to model types and/or exem-
plars rather than instances. Similarly, a business
process in the ArchiMate language does not de-
scribe an individual instance (i. e., one execution
of that process). In most cases, a business object is
therefore used to model an object type (cf. a UML
class), of which several instances may exist within
the organization. For instance, each execution of

an insurance application process may result in a
specific instance of the insurance policy business
object, but that is not modeled in the Enterprise
Architecture”.

An analysis of the examples in the standard
shows that, across all levels, behavior and pas-
sive structure views indeed typically show types.
However, active structure views typically show
instances and there are many examples of models
that contain a mixture of types and instances. In
general, ArchiMate is rather relaxed about the dif-
ference between instances and types and how they
may be mixed in a domain model. The standard
even explicitly states (sect. 8.2.1) that “Business
actors may be specific individuals or organiza-
tions; e. g., ‘John Smith’ or ‘ABC Corporation’,
or they may be generic; e. g., ‘Customer’ or ‘Sup-
plier’”. An example model illustrating this is
shown in Fig. 6 (Example 22 from the standard).
Here Travel Insurance Claims Analyst, Home In-
surance Product Specialist and Customer Service
Representative are clearly types since they all in-
herit from Specialist, while Greg, Joan and Larry
are individuals. Although the latter are clearly
instances of the former the assignment relation-
ships used to connect them in the model does not
convey classification, but rather the assignment
of responsibilities. Finally, all the structural el-
ements in the model (both types and instances)
are regarded as instances of the same metamodel
element - Active Structure Element. ArchiMate
therefore has a type/instance ambiguity issue:

It is not, in general, clear whether a model
element in an ArchiMate model (i. e., at the model
level in the infrastructure) represents an instance
or a type in the domain. Moreover, types and
instances can be mixed and interrelated in uncon-
trolled ways. This lack of discrimination directly
conflicts with the Maxim of Manner (avoid ambigu-
ity) and the propriety subprinciple of conceptual
integrity which warns against restricting “what is
inherent”. In Fig. 6 the most natural (i. e., inher-
ent) relationship between the types and instances
is “instance of” but there is no way of representing
such “ontological” instance of relationships in
ArchiMate.

http://dx.doi.org/10.18417/emisa.15.2

Enterprise Modelling and Information Systems Architectures
Vol. 15, No. 2 (2020). DOI:10.18417/emisa.15.2

10 Colin Atkinson, Thomas Kühne

Figure 5: OCA Core Language Definition (Atkinson and Kühne 2003)

Figure 6: Example Business Active Structure Ele-
ments (The Open Group 2017a, Example 22)

Mixing instances and types in the same level is
not a problem per se as long as the types of the
instances do not appear together (i. e., as long as a
type in a level has no instances in that level) (Atkin-
son and Kühne 2002). However, when types and
instances can be arbitrarily mixed within levels,
without any notational support for discrimination,
modellers can easily become confused and fail to
adhere to basic modeling principles. The lack of

distinction between types and instances also means
that modeling well-formedness constraints may
not apply as intended. For example, sect. 5.4.1 of
the specification states “A specialization relation-
ship is always allowed between two instances of
the same element”, where “element” here refers
to a metamodel element such as Business Actor.
However, since instances of Business Actor can
also be individuals (i. e., uninstaniatable objects)
in the domain of discourse (e. g., Greg, Joan and
Larry in Fig. 6) this rule unintentionally enables
specialization relationships between individuals.

Note that while most two-level approaches,
such as the UML, strictly separate instances (as
modeled by objects) from types (as modeled by
classes), they fail to properly distinguish between
types and metatypes (Atkinson and Kühne 2007).
ArchiMate’s single-level approach to accommodat-
ing both types and instances therefore essentially
transposes all issues arising from the conflation of
levels to a lower part of the modeling stack than
is typically the case.

http://dx.doi.org/10.18417/emisa.15.2

Enterprise Modelling and Information Systems Architectures
Vol. 15, No. 2 (2020). DOI:10.18417/emisa.15.2
A Deep Perspective on the ArchiMate Modeling Language and Standard 11

Figure 7: Business Active Structure Elements with
Potency

Deep modeling can be used to address issues
caused by an insufficient separation of elements
at different classification levels by introducing a
notation to explicitly indicate whether a model
element represents a type that classifies multiple
instances in the modeled subject domain or rep-
resents an instance that does not. In other words,
deep modeling can be used to explicitly show the
location of model elements in the ontological clas-
sification hierarchy, since the location is implied
by the ontological classification relationships in
the subject domain.

This can be seen in Fig. 7 which shows the
same model as Fig. 6 but using potencies to show
whether elements represents types or instances.
The names of model elements representing types
have a potency value “1” appearing as a super-
script after their name, while model elements
representing instances have “0”as a superscript.
Note that the inheritance relationships exist only
between types. The explicit presentation of type-
/instance properties in this way makes it easier for
tools to ensure that specialization relationships do
not erroneously exist between model element that
represent instances, such as Greg, Joan or Larry.
Fig. 8 goes one step further and shows the model
content from 6 separated into distinct ontologi-
cal levels with the natural ontological instanceOf
relationship between them. This multi-level ver-
sion also avoids the problem of domain instances
and types being instances of the same metamodel
element.

Figure 8: Domains Types and Instance related by
Ontological Classification

5 Customizability in ArchiMate

As explained in Sect. 2, ArchiMate identifies two
customization mechanisms, one designed to ex-
tend the predefined core modeling concepts with
attributes and the other designed to extend the core
language with specializations of the predefined
core concepts using nominal (i. e., attribute-free)
typing. Apart from calling them both “profile”
mechanisms, the standard provides little detail
about how they would work and what detailed
features they provide. The standard only hints at
what they might be like by, in the first case refer-
encing the textual profiling mechanism proposed
by Eertink et al. (1999) and, in the second case
referencing the graphical/textual profiling mecha-
nism of the UML. There are however many forms
a “lightweight” extension mechanism could take
that does not require full metamodel editability.
For example Brunelière et al. (2015) describe a
lightweight approach based on the use of a textual
DSL for metamodel extension that has been used
in the EAM domain. Like the UML extension
mechanism, this is a form of non-invasive model
decoration approach which avoids making direct
changes to the underlying metamodel because it
is often hardwired in a propriety tool (Kolovos
et al. 2010). Although these approaches differ
in terms of the exact set of operations they offer,

http://dx.doi.org/10.18417/emisa.15.2

Enterprise Modelling and Information Systems Architectures
Vol. 15, No. 2 (2020). DOI:10.18417/emisa.15.2

12 Colin Atkinson, Thomas Kühne

their strengths and weaknesses relative to an ap-
proach that allows full access and changeability of
the metamodel are basically the same. Therefore,
without loss of generality, in the remainder of the
this article we will assume the UML extension
mechanism when discussing the pros and cons of
deep modeling. The UML extension mechanism
is the most well-known, and subsumes Eertink
et al.’s approach (since it is able to add attributes
to base types).

5.1 Superfluous Languages
The main problem with the ArchiMate approach to
customization is that it requires users to essentially
learn an additional language in order to understand
and define an extension - namely the profile mod-
eling features (Atkinson et al. 2013). Thus, the
meta-metamodel depicted in Fig. 4 actually has to
contain two language definitions, the core “meta-
modeling” language used to define the standard
metamodels and the profile language used to define
profiles.1 This lowers conceptual integrity because
the core language already contains a simpler and
more fundamental mechanism for extending mod-
els and metamodels - the specialization (i. e., inher-
itance) mechanism. As mentioned before, just to
understand the metamodel, ArchiMate users have
to learn the meaning of the specialization relation-
ship that exist between the metamodel elements
anyway. However, this relationship is exactly the
mechanism used in the second extension mecha-
nism. Thus, if the core language were extended
to support attributes, which most object-oriented
modeling languages do, no additional mechanism
beyond specialization would be needed to support
extensions.

The reason why direct specialization of the
metamodel is not available in existing tools such
as ArchiMate is their reliance on two-level model-
ing platforms in which the metamodel is hardwired.
Specialization can only be used for language ex-
tension if the language is truly represented as
changeable data (i. e., a metamodel) so that any

1 This resembles the top-level UML Infrastructure library,
used to define the concepts shared between the UML and the
MOF (i. e., a core modeling package and a profile packages).

changes are automatically recognized by the tool.
The ArchiMate standard’s implicit adoption of
two-level modeling, and its lack of support for di-
rect, user-defined specialization of the metamodel,
therefore leads to a superfluous language issue:

Because direct, user-defined specialization of
the metamodel is not supported or envisioned by
the ArchiMate standard - despite the fact that
specialization is used in the definition of the meta-
models - an additional set of modeling concepts,
the profile definition and application concepts,
have to be provided to users and implemented
by tools. This directly contravenes the goal of
brevity in the Maxim of Manner and thus lowers
the conceptual integrity of the language.

For metamodels to be directly extensible using
the regular specialization mechanisms they cannot
be hardwired into tools, as is the common prac-
tice today (Atkinson et al. 2013). They must be
represented as “soft” model content that can be
changed just like the normal “models” at the level
below. This, in turn, means that the metamodel
elements need to be explicit instances of a “high-
level model”, such as the metamodel in Fig. 4 or
the level-spanning linguistic model shown in the
schematic representation of the deep modeling
approach in Fig. 5.

For the reasons explained above, a level-
spanning approach is to be preferred since it avoids
the language duplication problem discussed earlier.
With such an architecture, extensions can be easily
defined by explicitly extending the metamodel us-
ing specialization as shown in Fig. 9. This shows
how the business layer metamodel as described
in the ArchiMate specification (The Open Group
2017a) can be extended to support the business
layer specialization example shown in sect. 15.2.1
of the ArchiMate standard. The top package
contains the generic business layer metamodel
consisting of BusinessInternalActiveStructureElement
(that represent the static structure of an organiza-
tion), BusinessInterface (that expose functionality
to other roles or actors), BusinessInternalBehviorEle-
ment (that represent the behavior of active structure
elements), BusinessEvent (that trigger or interrupt
behavior), BusinessService (that expose business

http://dx.doi.org/10.18417/emisa.15.2

Enterprise Modelling and Information Systems Architectures
Vol. 15, No. 2 (2020). DOI:10.18417/emisa.15.2
A Deep Perspective on the ArchiMate Modeling Language and Standard 13

BusinessInternalActiveStructureElement0

BusinessInterface1BusinessService1

BusinessInternalBehaviorElement0

BusinessPassiveStructureElement0

BusinessEvent1

assignedTo1

serves1composes1

serves1

assignedTo1

serves1realizes1

accesses1

triggers_followsTo1triggers_followsTo1

accesses1 assignedTo1

triggers_followsTo1

triggers_followsTo1

BusinessActor1

BusinessRole1

BusinessCollaboration1

aggregates1

assignedTo1

Archimate Business Layer
@http://example.org/archimate/business

Archimate Business Layer Extension
@http://example.org/archimate/extensions/business

Individual1

OrganizationalUnit1

Organization1

Figure 9: Excerpt of the Business Layer Metamodel and suggested Extensions.

behavior), BusinessPassiveStructureElement (that
represent business objects which are manipulated
by behavior). BusinessInternalActiveStructureEle-
ments are further divided into BusinessActor (that
represent entities capable of performing behavior),
BusinessRole (that represent entities responsible
for performing specifically assigned behavior) and
BuinsessCollaboration (two or more active structure
elements that perform a behavior). BusinessPas-
siveStructureElement, BusinessInternalBehaviorEle-
ment and BusinessInternalActiveStructureElement are
abstract, indicated by their potencies of zero, so
only their subclasses can be instantiated.

Although the ArchiMate standard conceptu-
ally envisages the specialization of metamodel
elements, in common with prevailing “two-level
modeling” practice it does not view the actual
use of specialization relationships as a practical
mechanism for achieving this. This necessitates
the inclusion of extra extension mechanisms. In
contrast, since all classification levels are soft in a
deep modeling framework (i. e., not hard-coded
into tools) metamodel customizations can be per-

formed out-of-the-box without the need for special
profile mechanisms.

In the example shown in Fig. 9, a package called
ArchiMate Business Layer Extension is added to the
model. This package contains the extensions for
BusinessActor suggested by the ArchiMate standard
(sect. 15.2.1), that is -

• Individual - a natural person capable of perform-
ing behavior.

• OrganizationalUnit - a subdivision (e. g., depart-
ment) of an organization.

• Organization - an institution, corporation or as-
sociation that has a collective goal linked to an
external environment.

Both packages, the ArchiMate Business Layer
Package and ArchiMate Business Layer Extension,
display a URL beneath their package name. They
can therefore be stored on the internet and im-
ported when needed as described in (Atkinson
et al. 2015).

Note that the extensions shown in Fig. 9 show
another example of ArchiMate’s lack of distinc-
tion between, and clear treatments of, types and

http://dx.doi.org/10.18417/emisa.15.2

Enterprise Modelling and Information Systems Architectures
Vol. 15, No. 2 (2020). DOI:10.18417/emisa.15.2

14 Colin Atkinson, Thomas Kühne

instances. The existence of Individual in the meta-
model suggests that its instances at the level below
are individuals. However, OrganizationalUnit is
a concept that would often be instantiated to a
type at the level below (e. g.,“Marketing Depart-
ment”) which in turn would have instances at the
level below that. For example, large international
companies will usually have several marketing
departments (i. e., instances) in each of the coun-
tries where it operates. This situation can not be
handled cleanly in ArchiMate.

5.2 Deep Characterization

An important notion in EAM is the notion of
“integrity”, i. e., the fact that certain principles
can be relied on with respect to both the static
structure and the dynamic behavior (Lankhorst
2013). Thus, in the previous example revolving
around business actors, while specific business
actors may vary, there are common principles
which ought to hold in all cases. For example, a
common principle is that all business actors are
assigned a business role, regardless of what type of
business actor they are. Although these properties
ultimately materialize at the instance level they
have to be defined for all kinds of business actor
types.

The top package in Fig. 9 shows an excerpt of
the ArchiMate metamodel that deals with business
roles and business actors. This includes a rela-
tionship assignedTo that requires business roles
be assigned to business actors. However, this
constraint applies generically regardless of what
kind of business role or business actor is involved.
Most enterprises, however, require that business
roles only be assigned to business actors that are
qualified to perform them. Thus, in the example
in 6, one would hope that Larry has been assigned
the customer service representative role because
he is a customer service expert. However, this is
not guaranteed.

This gives rise to the shallow characterization
issue:

A simple profiling mechanism that merely sup-
ports specialization is incapable of concisely defin-
ing constraints that guarantee the presence of fea-
tures (e. g., attributes, associations, etc.) two or
more levels down.

A straightforward way to achieve the afore-
mentioned requirement in a deep modeling ap-
proach is to use so-called “deep characteriza-
tion”. The latter can be achieved through po-
tency values higher than one and/or using variants
of the powertype pattern as popularized by the
UML. As Gonzalez-Perez and Henderson-Sellers
have pointed out (Gonzalez-Perez and Henderson-
Sellers 2007), the application of the powertype
pattern is a form of multi-level modeling, at least
conceptually. Powertypes are essentially domain
metatypes whose instances are subtypes of prede-
fined metamodel elements such as BusinessActor.

Business
Actor1

Organizational
Unit1

Organization1Threat
Agent1

Business
ActorType2

Business
RoleType2

assignedTo2

1..* 2

instanceOf

«powertype»

Figure 10: BusinessActor Powertype

An example of the use of the deep model-
ing approach to achieve deep characterization is
shown in Fig. 10. This shows the BusinessAc-
tor metamodel element along with three of the
specializations suggested in sect. 15.2.1 of the
standard. As can be seen from this figure, an
additional domain-specific level has been added in
which BusinessActorType2 and BusinessRoleType2

have been defined, where the former is the power-
type of BusinessActor. This means that any instance
of BusinessActorType2 must specialize supertype
BusinessActor. Supertype BusinessActor may thus
prescribe certain attributes that all its subtypes
automatically inherit, i. e., force them to have
mandatory relationships with other types such as
BusinessRole. Fig. 10 shows an alternative way of

http://dx.doi.org/10.18417/emisa.15.2

Enterprise Modelling and Information Systems Architectures
Vol. 15, No. 2 (2020). DOI:10.18417/emisa.15.2
A Deep Perspective on the ArchiMate Modeling Language and Standard 15

achieving the aforementioned mandatory associ-
ation to BusinessRole by a deep association and
deep multiplicity constraint (Kühne et al. 2015).

Either way, all specializations of BusinessAc-
tor are thus required to have regular (potency-
one) assignedTo associations to instances of
BusinessActorType2. Carvalho and Almeida (2016)
show that by extending standard multi-level mod-
eling with some additional kinds of cross-level
relationships, it is possible to provide even richer
controls over the nature of the extensions that can
be made to metamodels.

6 Visualization Flexibility in ArchiMate

The previous section discussed potential enhance-
ments that multi-level modeling can offer to the
ArchiMate language and standard in terms of ab-
stract syntax (i. e., supported modeling concepts).
In this section we consider what benefits multi-
level modeling can offer the ArchiMate language
and standard when applied to the visualization
mechanism (i. e., concrete syntax).

As the notation summary in Fig. 2 shows, the
ArchiMate core language envisages two ways of
visualizing most of the element types that are used
to construct ArchiMate models. One uses a stan-
dard rectangle-based shape (e. g., round cornered
rectangle = behavioral element) to identify the
basic nature of the element, colors to denote the
layer in which element appears (e. g., business =
yellow) and small icons to identify the particular
type of element (e. g., event, process etc.). The
other approach uses just the icons together with
the color conventions to present the particular
element types. We refer to the former as the “rect-
angular” form and the latter as the “iconographic”
form. Fig. 2 shows only a part of the business
layer notation, but the principles are the same for
all other levels.

6.1 Notation Interaction
ArchiMate intends that both forms be arbitrarily
mixeable within the same model. For example,
Fig. 11, which is Example 23 from the ArchiMate
standard, shows both notational forms in use at

Figure 11: Business Behavioral Elements Exam-
ple (The Open Group 2017a, Example 23)

the same time. In this figure, the Claims Processing
business service and the Claim Filed business event
are presented in the iconographic form and the
other elements are presented in the rectangular
form.

Supporting the arbitrary, on-demand switching
between notational forms is not as trivial as it may
at first appear, especially in a tool that aims to
allow users to define new notations themselves.
For example, the UML only defines one standard
notation for each model element type defined in
the metamodel, and requires all other notation
forms to be defined using the profiling mechanism.
However, profiles usually can only be applied
in their totality to a diagram. Either the whole
diagram is shown in the standard form or the
whole diagram is shown in the profile notation.
This leads to the notation interaction issue:

The ArchiMate language supports two different
notations for model elements out-of-the-box, but
lacks a systematic way of managing them.

Deep modeling infrastructures have a natural
and simple way of separating “standard” and
“domain-specific” visualizations of model ele-
ments thanks to the fundamental separation of
linguistic and ontological concerns embodied by
the OCA. As a consequence of this separation
model elements inherently have two direct types
- a linguistic one and an ontological one. By
exploiting both of the dimensions to assign visual-
ization symbols to model elements, a distinction
between the fundamental linguistic notation and
the domain-oriented ontological notation is nat-
urally available. Moreover, since both forms of
classification are always present, they naturally

http://dx.doi.org/10.18417/emisa.15.2

Enterprise Modelling and Information Systems Architectures
Vol. 15, No. 2 (2020). DOI:10.18417/emisa.15.2

16 Colin Atkinson, Thomas Kühne

S
tru

c
tru

ra
l

B
e

h
a

v
io

r

Figure 12: OCA Based Visualization Definition

allow the arbitrary interchange and mixing of no-
tations. This is true regardless of what concrete
mechanisms are used to assign domain-specific
visualizations (e. g., icons) to model elements in
the ontological dimensions and how many nota-
tions are assigned. It is also true regardless of how
many ontological classification levels exist.

A visualization management approach that ex-
ploits linguistic and ontological classification is
shown schematically in Fig. 12. Here the basic
“rectangular” forms of structural and behavior ele-
ments (i. e., square cornered and round cornered
rectangles respectively) are defined via the lin-
guistic metamodel, while the icon forms of the
different types of elements are defined via the
ontological metamodel.

In the depicted scenario, two visualizations
(i. e., notations) are available for all elements in
the user-defined model at the bottom left of the
figure which can be switched at will - a generic one
originating from the linguistic dimension, and an
ontological one originating from the ontological

dimensions. This inherent ability of deep model-
ing environments to support switching between
ontologically defined visualizations and linguisti-
cally defined visualization is sometimes referred
to as “language symbiosis” (Atkinson et al. 2012).

Although it is theoretically possible to allow
end users to change the linguistic visualization
symbols, in practice these are usually hardwired
into tools along with the rest of the linguistic
model. The use of the cloud notation in Fig. 12
to represent visualizer assignment in both the lin-
guistic and ontological level should not therefore
be taken to mean that the mechanisms are the
same, or are equally flexible from the user point
of view. In Melanee, the only tool which currently
allows the visualization of model elements to be
controlled both by linguistic and ontological clas-
sification (Atkinson and Gerbig 2016), an arbitrary
number of domain-specific visualization symbols
can be defined for visualizing model elements.

http://dx.doi.org/10.18417/emisa.15.2

Enterprise Modelling and Information Systems Architectures
Vol. 15, No. 2 (2020). DOI:10.18417/emisa.15.2
A Deep Perspective on the ArchiMate Modeling Language and Standard 17

6.2 Language Customization
As mentioned previously, in terms of extension
mechanisms sect. 5.2 of the ArchiMate standard
states that “new graphical notation could be in-
troduced for a specialized concept, but preferably
with a resemblance to the notation of the gener-
alized concept; e. g.„ by adding an icon or other
graphical marker, or changing the existing icon.”.
This means that end users should not only be
able to extend the iconography of the ArchiMate
language, like the abstract syntax, they should be
able to do so in a way that specializes the existing
notation. Sect. 5.2 goes on to say “The profile
may also define a specific notation to denote the
specialization. The default is the guillemet no-
tation of UML for stereotypes (“«specialization
name»”). Other options include specific icons,
colors, fonts, or symbols.”

The clear intent of the standard is that the
iconography of specific model element types
should be derived from the iconography of the
more general model element types they are de-
rived from. In other words, the visualizations of
model elements, as well as the semantics of model
elements, should adhere to the principle of spe-
cialization. However, this is more easily said than
done. Although the visualization mechanisms of
many of today’s modeling tools recognize special-
ization hierarchies in the sense that they are able
to find and apply more general symbols to special-
ized classes, none currently provides systematic
support for building new icons from pre-existing
icon fragments. Unfortunately, the ArchiMate
standard provides no details about the features of
its envisaged profile mechanism, but no profile
mechanism available at the present time allows
the specialization of visualization symbols. This
leads to a visualization specialization issue:

The ArchiMate language explicitly calls for
users to be able to add new visualizations to the
ArchiMate language in a way that specializes the
existing notation (i. e., concrete syntax). How-
ever, such a mechanism is not supported by any
existing profiling mechanism, nor indeed by any
contemporary modeling tool.

The key requirements supporting a flexible ap-
proach to visualization specialization is decou-
pling the definitions of concrete syntax from ab-
stract syntax (Espinazo-Pagán et al. 2008), and
allowing the former to be attached to the latter in a
simple and changeable way. This, in turn, requires
unfettered access to the abstract syntax (i. e., meta-
model) of the language which is a fundamental
strength of multi-level modeling approaches (de
Lara et al. 2015) where languages definitions can
be created and edited as easily as normal model
content.

In order to support the specialization of vi-
sualization (i. e., concrete syntax) an additional
ingredient is needed to allow new icons to be
adapted from existing one - namely, an aspect-
oriented mechanism for notation definition (Ger-
big 2017). Such an approach allows a notation
to be customized by replacing parts declared as
join points. Fig. 13 shows the aspect-oriented
syntax customization applied to the example of
BusinessInternalActiveStructureElement.

In this example, a generic diagrammatic nota-
tion is defined for BusinessInternalActiveStructureEle-
ment via a visualizer shown as a cloud. This no-
tation, realizing the ArchiMate box notation, is
named box. It consists of a box which displays the
name attribute of BusinessInternalActiveStructureEle-
ments in its center. Two join points are placed in
the shape for further customization. One, named
J𝐴, in the upper left of the figure and one, named
J𝐵, in the upper right of the figure.

The subtype BusinessActor contributes to the
diagrammatic visualization through the definition
of aspects. A stick man is defined for placement in
join point J𝐵 in the visualizer for the box notation.
The icon notation is additionally defined on Busi-
nessActor via a visualizer displaying icon in the
upper right. This notation shows only a stick man
for visualization and defines a join point in the
visualization’s upper right for further customiza-
tion. The subtype’s of BusinessActor further refine
the icon and box notation by providing aspects to
join point J𝐴. Individual contributes an I to the vi-
sualization whereas OrganizationalUnit contributes
a “U” and Organization an “O”.

http://dx.doi.org/10.18417/emisa.15.2

Enterprise Modelling and Information Systems Architectures
Vol. 15, No. 2 (2020). DOI:10.18417/emisa.15.2

18 Colin Atkinson, Thomas Kühne

BusinessActor1

BusinessRole1

BusinessCollaboration1

aggregates1

assignedTo1

Archimate Business Layer
@http://example.org/archimate/business

Archimate Business Layer Extension
@http://example.org/archimate/extensions/business

Individual1

OrganizationalUnit1

Organization1 2)

1)
O0

O1

3)

BusinessInternalActiveStructureElement0

name1

JBJA

Larry
I

4)

box

JA
[name]

icon

J <around> =B
box

IJ <around> =A
icon,box

UJ <around> =A
icon,box

OJ <around> =A
icon,box

Larry0:Individual
name0=Larry

IJ <around> =A
icon,box

IJ <around> =A
icon,box

J <around> =B
box

Larry

I

[name]

Figure 13: Aspect-oriented Notation Definition for
BusinessActor.

When visualizing a model element, the visual-
ization search algorithm first searches the model
element to be visualized and then its inheritance
hierarchy for a visualizer. If no visualizer is found
the search algorithm continues at the level of the
type of the model element to be visualized. As-
pects are collected during the visualization search
and merged into a full visualizer.

The search conducted by the visualization algo-
rithm when applied to Larry in the bottom center
part of the diagram is indicated by the dashed
arrows in Fig. 13. The algorithm first searches for
a visualizer starting at Larry. As no such visualizer
is attached to Larry, the latter’s type - Individual - is
searched for a visualizer. Since Individual provides
an aspect for J𝐴, the search algorithm collects
this aspect and continues by visiting the super-
types of Individual. As BusinessActor defines an
aspect for J𝐵, the search algorithm also collects
this aspect and continues the search at BusinessIn-
ternalActiveStructureElement, the supertype of Busi-
nessActor. BusinessInternalActiveStructureElement
has a visualizer attached which defines the join
points J𝐴 and J𝐵. The aspects are merged into this
visualizer resulting in the box displaying Larry in

the bottom center of the diagram with an“I” in
the upper left corner and a stick man in the upper
right corner. In addition to this box notation in the
bottom center of the diagram, the icon visualizer
is shown on the right and the predefined notation
is shown on the left.

The visualization of each model element can
be toggled between all user-defined notations and
the predefined notation while modeling. The visu-
alizer concept also supports visualizations in the
form of tables, forms, text and diagrammatic for-
mats (cf. Fig. 15). It also enables dynamic choices
because a modeler can decide which format and
notation a part of the model should be displayed
in, allowing the format and notation to be used
that best fits the current task at hand.

Although this visualization approach cannot en-
tirely prevent counter-intuitive overriding of base
visualizations, its aspect-oriented features encour-
age conservative notation extensions, i. e., exten-
sions that retain base visualizations by adding
features to them at defined extension points,
rather than indiscriminately overriding them. The
deep visualization approach therefore supports
the monotonic visualization extension approach
foreseen by the ArchiMate designers.

7 Further Potential Benefits of Deep
Modeling

The previous two sections focused on describing
the advantages of deep modeling from the per-
spective of the requirements and vision explicitly
outlined by the ArchiMate designers. The goal of
the discussion in those sections was not to question
the assumptions and decisions made in defining
the modeling experience ArchiMate offers to end
users, but to show that the intended user experi-
ence could be supported in a simpler and more
intuitive way. In this section, however, we go
beyond the explicit vision laid out in the Archi-
Mate standard and show how the users’ modeling
experience could be further enhanced by deep
modeling in ways not envisaged by the authors of
the ArchiMate standard (The Open Group 2017a).

http://dx.doi.org/10.18417/emisa.15.2

Enterprise Modelling and Information Systems Architectures
Vol. 15, No. 2 (2020). DOI:10.18417/emisa.15.2
A Deep Perspective on the ArchiMate Modeling Language and Standard 19

7.1 Explicitly Modeling Ontological
Classification

The ArchiMate standard states that “The Archi-
Mate language intentionally does not support a
difference between types and instances”. In other
words, since it sees no reason to distinguish be-
tween types and instances ArchiMate sees no
need to represent ontological classification in user-
defined models. While this may appear justifiable
in terms of keeping the language simple, it ex-
plicitly goes against some of the subprinciples
of conceptual integrity such as the principle of
propriety (do not restrict what is inherent) and
the Maxim of Manner (avoid ambiguity). Not
only do many papers on multi-level modeling
present examples from the enterprise modeling
domain (Atkinson and Kühne 2001; de Lara and
Guerra 2010; Jordan et al. 2014), a comprehen-
sive study by de Lara et al. (2014) on the use of
the type-instance pattern2 in modeling reposito-
ries shows that one of the applications where this
pattern is most commonly used is the business
process/enterprise modeling area.

In (Frank 2002), Frank lays out a fundamental
set of requirements that EAM modeling environ-
ments should ideally fulfill based on a careful
consideration of needs and practices in EAM
projects. Two of his so-called technical “Require-
ments for Modeling Environments” essentially
call for multi-level modeling and the ability to
support the editing of all ingredients of a deep
modeling language. Quoting from (Frank 2002):

• Requirement TR1: A tool environment for en-
terprise modeling should include a metamodel
editor for specifying and modifying metamod-
els.

• Requirement TR2: A metamodel editor should
efficiently support the creation of a model editor
from a metamodel. This includes the implemen-
tation of the abstract syntax and semantics as
well as the additional definition of the concrete
syntax.

2 The type-instance pattern is a workaround technique for
representing ontological classification in two-level modeling
frameworks.

In (Frank 2014) and (Frank 2016), Frank fur-
thermore proposes a prototype multi-level meta
modeling language - Flexible Executable Multi-
level Modelling Language (FMMLx) - to support
the explicit and level-agnostic representation of
ontological classification in enterprise architec-
ture models. FMMLx was implemented by ex-
tending the XCore metamodel of the Xmodeler
tool (Clark and Willans 2014). As discussed
in Sect. 2, Frank’s requirements reinforce the
argument for an explicit and specially designed
ontological meta-metamodel ensuring the meta-
models describing the languages for the different
viewpoints are “soft” and can be created/edited
by users. When new view types, and thus view
languages, are needed they can be added by simply
defining new metamodels.

Some of the extra capabilities that explicit sup-
port for modeling ontological classification would
offer ArchiMate modelers are shown in Fig. 14. It
shows what a deep version of the “ArchiSurance
Contact Center” model from Fig. 7 could look like.
The left hand side of the diagram (a) shows the
traditional “two-level” version from Fig. 7 while
the right hand side (b) shows an alternative deep
version which displays potency values and uses
the well-known UML colon-notation to show the
type of a model element.

The top part of Fig. 14 (b) shows the type
information from the original version while the
bottom part shows the instance information. The
essential difference is that the “fulfills role” is
now represented by the ontological classification
relationship and a new Contact Center class has
been added, of which the ArchiSurance Contact
Center is defined to be an instance.

At first sight, the deep version might appear to
offer few advantages over the single-level version
and may even appear even a bit more verbose (i. e.,
requiring more modeling elements). However, the
enhanced conceptual integrity more than justifies
the addition of a single new modeling element.

First, the deep model leaves much less room for
misunderstanding than the single-level version be-
cause the types and instances are clearly separated

http://dx.doi.org/10.18417/emisa.15.2

Enterprise Modelling and Information Systems Architectures
Vol. 15, No. 2 (2020). DOI:10.18417/emisa.15.2

20 Colin Atkinson, Thomas Kühne

(a) Flat Model (b) Deep Model

1

1 1 1

1

1

0

0 0 0

Figure 14: Flat versus Deep Contact Center Models

and labeled explicitly as types or instances (a clar-
ity benefit). While “Greg” may unambiguously
refer to an instance, it is much less clear whether
the potential alternative “Manager” refers to “Man-
ager” the type, or to a single “Manager”, i. e.,
an individual performing the role of a manager.
Arguably, if the latter meaning is intended the use
of “a Manager” (rather than “Manager”) would
be more appropriate, but it is understandable that
ArchiMate did not chose this option.

Second, Contact Center in the top ontological
level in Fig. 14 (b) captures the notion of a type
abstraction whereas ArchiSurance Contact Center at
the bottom level captures the notation of a specific
incarnation of this abstraction. Clearly, Greg,
Joan and Larry are associated with such a specific
incarnation, not with its Platonic idea (as suggested
by Fig. 14 (b)) (a separation of concerns benefit).
In general, it is highly useful to separate common
information and constraints that are applicable
to all instances (which may be a large number
over the lifetime of the system and can be applied

to them without duplication or change), from
specific scenarios in order to promote reuse and
avoid the confounding of particular circumstances
with universal rules.

Third, type-level descriptions of the constraints
and properties that all business roles in the dia-
gram should have, together with the separation
of concerns provided by the explicit levels for
instances and types, reduces the scope for mod-
elers to introduce errors. This benefit would be
even greater if ArchiMate supported attributes and
multiplicities, but even with the current model-
ing features, the ability to define allowed patterns
at the type level reduces the error proneness of
modelers using ArchiMate (a quality benefit).

Frank views the lack of this kind of support
as one of the greatest weaknesses of ArchiMate.
In (Frank 2016), he states that:

Apart from the unusual conceptualization, the
downside of this kind of flexibility is obvious:
ArchiMate allows for creating models that are
wrong in the sense that they are counter-factual,

http://dx.doi.org/10.18417/emisa.15.2

Enterprise Modelling and Information Systems Architectures
Vol. 15, No. 2 (2020). DOI:10.18417/emisa.15.2
A Deep Perspective on the ArchiMate Modeling Language and Standard 21

O2

O1

BusinessInternalActiveStructureElementType0

name2

BusinessActorType2

BusinessRoleType2

BusinessCollaboration2

aggregates2

assignedTo2
Count allDeepInstances(_)->size()

General Information

Avg. Salary allDeepInstances(_).salary->sum / ...

Total Salary allDeepInstances(_).salary->sum
salary2

Count 4

General Information

Avg. Salary 44.75

Total Salary 179

Name Salary
Ann 72
Bob 36
Bree 48
Jim 23

[Name] [Salary]

Bree
48€

Ann
72€

Jim
23€

Bob
36€

JBJA
[name]

JC

box
J <around> =B

box

J <around> =C [salary]€

O0

Manager

Figure 15: Multi-format and Notation Views of Model Content

e. g., an ERP system could be modeled as being
part of a DBMS, or that do not make any sense,
because properties were added that are meaning-
less.

7.2 Multi Format, Multi Notation,
Projective Editing

With the possible exception of the profile mecha-
nism which may introduce additional visualization
types, ArchiMate only supports a graph-based con-
crete syntax. However, the ArchiMate standard
itself points out that “it should be possible to vi-
sualize the same model in different ways, tailored
towards specific stakeholders with specific infor-
mation requirements”. Since many stakeholders
in enterprise architecture are business users with-
out experience of formal languages, text-based,
table-based and form-based visualizations should
also be supported (Gerbig 2017).

Fig. 15 shows how a deep modeling tool - in
this case the Melanee tool (Atkinson and Gerbig
2016) - can be naturally extended to support multi-
format modeling (Gerbig 2017) such that form-
and table-based presentations of model content

can be displayed next to a graph-based model.
The metamodel at O2 is extended by adding one
deep attribute, salary2, to BusinessActorType2 for
demonstration purposes. An additional join point
is added to the diagrammatic box notation defini-
tion of BusinessInternalActiveStructureElementType0

to display such additional information as salary
figures. The visualizer of BusinessActorType2 pro-
vides two aspects to this visualizer, one for dis-
playing the stick man in the upper right and one
for displaying the salary below the name attribute.

In addition to the diagrammatic visualizer
a form and table visualizer are defined on
BusinessActorType2 to enable so-called dashboards.
The form visualizer shows the total number of all
business actors (Count), the average salary of all
business actors (Avg. Salary) and the total salary of
all business actors (Total Salary) calculated through
OCL expressions. The table visualization gives
a condensed overview of all business actor in-
stances, providing information about their names
and salaries.

The demonstrated capabilities provide the basis
for supporting the notion of dashboards described

http://dx.doi.org/10.18417/emisa.15.2

Enterprise Modelling and Information Systems Architectures
Vol. 15, No. 2 (2020). DOI:10.18417/emisa.15.2

22 Colin Atkinson, Thomas Kühne

by Frank (2016) as the ultimate goal of EAM
approaches - namely, the notion of concise, inte-
grated, information summaries, providing stake-
holders (primarily managers) with information
across all abstraction and classification levels in
their preferred format and notation.

Deep modeling environments such as Melanee
and (FMMLx) essentially achieve their flexibil-
ity by making what the users sees and interacts
with as malleable as possible rather than hard-
coded. This principle of modeling rather than
hard-coding choices and behavior can be extended
to all elements that a user sees when interacting
with a modeling tool, including ultimately the
whole environment in which models exist and are
edited, including menus, toolbars, views, nota-
tions, formats, model elements, modeling layout
environment view and editor arrangement, the
modeling palette available to the user and the
property sheet. AtomPM (Syriani et al. 2013) is
another example from the domain of metacase
tools that has taken the “modeling over coding”
principle to heart as almost all its components
are entirely modeled and can thus be compara-
tively easily adapted to different requirements. By
making as many features as possible “soft” and
configurable, the whole EAM environment used
by stakeholders can be configured on a view-by-
view basis, thereby supporting the overall vision
of viewpoint engineering promoted by ArchiMate
and other EAM approaches.

8 Conclusion

In recent years there has been increasing interest
in the potential benefits of multi-level modeling
in a variety of domains, and the technology has
been used successfully in industry for a number
of tasks (Aschauer et al. 2009; Igamberdiev et al.
2018). However, deep modeling concepts are
still not being applied in earnest in the enterprise
architecture modeling industry, despite the fact
that existing EA models exhibits some of the
most frequent uses of the type-instance pattern
(de Lara et al. 2014), an approach that is used as a
workaround for deep modeling in environments

where there is no explicit support for ontological
classification. This is a lamentable situation since
the need to use workarounds directly conflicts with
the goal of maximizing conceptual integrity. As
explained in this article, this need could easily be
reduced by employing fully-fledged, multi-level
modeling features.

One of the reasons for the lack of adoption of
deep modeling in the EAM domain may be that
current literature arguing the case for deep model-
ing in EAM does not present the benefits in the
context of existing EAM standards. This article
has thus aimed to demonstrate the benefits that
deep modeling can bring to a concrete and widely
used EAM standard, the ArchiMate approach. We
fully embrace the notion of conceptual integrity
identified by Lankhorst (2013) and Lankhorst et al.
(2010) as the underlying language design princi-
ple for ArchiMate and support the view that any
introduction of further features must be justified
by benefits. The designers of any language must
therefore make a fundamental trade-off between
the expressiveness of a language in terms of what
users can model and the complexity of a language
in terms of how complicated it is to learn and
apply.

Our contribution is therefore twofold: First, we
investigated how the modeling experience explic-
itly described and envisaged by the ArchiMate
standard (The Open Group 2017a) could be better
supported and described. To this end, we deliber-
ately restricted ourselves to using deep modeling
techniques to support this experience, without
enhancing it. Second, in Sect. 7, we outlined
additional potential benefits of deep modeling that
go beyond the features and capabilities explicitly
envisioned by the designers of ArchiMate. As a
result, we believe we have presented cogent argu-
ments as to why ArchiMate’s current realization
of its targeted feature set could be improved by
using deep modeling techniques.

We have shown that deep modeling can both –

• reducing the complexity involved in understand-
ing and using the ArchiMate language as cur-
rently defined in the standard.

http://dx.doi.org/10.18417/emisa.15.2

Enterprise Modelling and Information Systems Architectures
Vol. 15, No. 2 (2020). DOI:10.18417/emisa.15.2
A Deep Perspective on the ArchiMate Modeling Language and Standard 23

• enhance the expressiveness of the language with
minimal additional complexity.

We therefore hope that this article will be help-
ful not only to the ArchiMate designers in terms
of suggesting potential concrete enhancements for
future versions, but also to the EAM community
in general by helping to reinforce the message
that deep modeling approaches and tools can offer
benefits in EAM projects.

References
Aschauer T., Dauenhauer G., Pree W. (2009) Multi-
level Modeling for Industrial Automation Systems.
In: Proceedings of EUROMICRO 2009: 35th EU-
ROMICRO Conference on Software Engineering
and Advanced Applications. IEEE, pp. 490–496

Atkinson C., Gerbig R. (2016) Flexible Deep
Modeling with Melanee. In: Modellierung 2016
- Workshopband Vol. 255. Gesellschaft für Infor-
matik e.V., pp. 117–122

Atkinson C., Gerbig R., Fritzsche M. (2013) Mod-
eling Language Extension in the Enterprise Sys-
tems Domain. In: 2013 17th IEEE International
Enterprise Distributed Object Computing Confer-
ence. IEEE, pp. 49–58

Atkinson C., Gerbig R., Fritzsche M. (2015) A
multi-level approach to modeling language ex-
tension in the Enterprise Systems Domain. In:
Information Systems 54, pp. 289–307

Atkinson C., Gerbig R., Kennel B. (2012) Sym-
biotic general-purpose and domain-specific lan-
guages. In: ICSE ’12: Proceedings of the 34th
International Conference on Software Engineer-
ing, pp. 1269–1272

Atkinson C., Kühne T. (2001) Processes and Prod-
ucts in a Multi-Level Metamodeling Architecture.
In: International Journal of Software Engineering
and Knowledge Engineering 11(6), pp. 761–783

Atkinson C., Kühne T. (2002) Rearchitecting
the UML infrastructure. In: ACM Transactions
on Modeling and Computer Simulation 12(4),
pp. 290–321

Atkinson C., Kühne T. (2003) Model-Driven De-
velopment: A Metamodeling Foundation. In: IEEE
Software 20(5), pp. 36–41

Atkinson C., Kühne T. (2007) Reducing Acciden-
tal Complexity in Domain Models. In: Software
and System Modeling 7(3), pp. 345–359

Brooks Jr. F. P. (1975) The Mythical Man-month:
Essays on Software Engineering. Addison-Wesley

Brunelière H., García J., Desfray P., Khelladi
D., Hebig R., Bendraou R., Cabot J. (2015) On
Lightweight Metamodel Extension to Support
Modeling Tools Agility. In: Modelling Founda-
tions and Applications. ECMFA 2015. Lecture
Notes in Computer Science Vol. 9153. Springer,
pp. 62–74

Carvalho V., Almeida J. (2016) Toward a well-
founded theory for multi-level conceptual model-
ing. In: Software & Systems Modeling 17, pp. 205–
231

Clark T., Willans J. (2014) Software Language
Engineering with XMF and XModeler In: Com-
putational Linguistics: Concepts, Methodologies,
Tools, and Applications IGI, pp. 866–896

de Lara J., Guerra E. (2010) Deep Meta-modelling
with MetaDepth. In: Objects, Models, Compo-
nents, Patterns. TOOLS 2010. Lecture Notes in
Computer Science Vol. 6141. Springer, pp. 1–20

de Lara J., Guerra E., Cuadrado J. S. (2014)
When and How to Use Multilevel Modelling. In:
ACM Transactions on Software Engineering and
Methodology 24(2), pp. 1–46

de Lara J., Guerra E., Cuadrado J. S. (2015) Model-
driven engineering with domain-specific meta-
modelling languages. In: Software & Systems
Modeling 14(1), pp. 429–459

Eertink H., Janssen W., Luttighuis P. O., Teeuw W.,
Vissers C. (1999) A Business Process Design Lan-
guage. In: FM’99 — Formal Methods. FM 1999.
Lecture Notes in Computer Science Vol. 1708.
Springer, pp. 76–95

http://dx.doi.org/10.18417/emisa.15.2

Enterprise Modelling and Information Systems Architectures
Vol. 15, No. 2 (2020). DOI:10.18417/emisa.15.2

24 Colin Atkinson, Thomas Kühne

Espinazo-Pagán J., Menárguez M., García-Molina
J. (2008) Metamodel syntactic sheets: An ap-
proach for defining textual concrete syntaxes. In:
Model Driven Architecture – Foundations and
Applications. ECMDA-FA 2008. Lecture Notes in
Computer Science Vol. 5095. Springer, pp. 185–
199

Frank U. (2002) Multi-perspective enterprise mod-
eling (MEMO) conceptual framework and model-
ing languages. In: Proceedings of the 35 Annual
Hawaii International Conference on System Sci-
ences. IEEE, pp. 1258–1267

Frank U. (2014) Multilevel Modeling. Toward
a New Paradigm of Conceptual Modeling and
Information Systems Design. In: Business & In-
formation Systems Engineering 6, pp. 319–337

Frank U. (2016) Designing Models and Systems
to Support IT Management: A Case for Multi-
level Modeling. In: MULTI 2016 – Multi-Level
Modelling. Proceedings of the Workshop in Saint-
Malo. Atkinson, Grossmann, and Clark, pp. 3–
24

Gerbig R. (2017) Deep, Seamless, Multi-format,
Multi-notation Definition and Use of Domain-
specific Languages. Dr. Hut Verlag

Gonzalez-Perez C., Henderson-Sellers B. (2007)
Modelling software development methodologies:
A conceptual foundation. In: Journal of Systems
and Software 80(11), pp. 1778–1796

Grice H. P. (1975) Logic and conversation. In:
Syntax and semantics 3: Speech arts, pp. 41–58

Igamberdiev M., Grossmann G., Selway M.,
Stumptner M. (2018) An integrated multi-level
modeling approach for industrial-scale data inter-
operability. In: Software and Systems Modeling
17(1), pp. 269–294

ISO/IEC (1997) RM-ODP. Reference Model for
Open Distributed Processing. In: ISO/IEC 10746,
ITU-T Rec. X.901-X.904

Jordan A., Selway M., Grossmann G., Mayer W.,
Stumptner M. (2014) Re-engineering the ISO
15926 Data Model: A Multi-Level Metamodel
Perspective. In: Service-Oriented Computing –
ICSOC 2013 Workshops. ICSOC 2013. Lecture
Notes in Computer Science Vol. 8377. Springer,
pp. 248–255

Kolovos D. S., Rose L. M., Matragkas N. D.,
Paige R. F., Polack F. A., Fernandes K. J. (2010)
Constructing and navigating non-invasive model
decorations. In: Theory and Practice of Model
Transformations. ICMT 2010. Lecture Notes in
Computer Science Vol. 6142. Springer, pp. 138–
152

Kühne T., Atkinson C., Gerbig R. (2015) A Uni-
fying Approach to Connections for Multi-Level
Modeling. In: 2015 ACM/IEEE 18th International
Conference on Model Driven Engineering Lan-
guages and Systems. IEEE, pp. 216–225

Lankhorst M. M. (2013) Enterprise Architecture
at Work: Modeling, Communication, and Analysis.
Springer

Lankhorst M. M., Proper H. A., Jonkers H. (2010)
The anatomy of the archimate language. In: Inter-
national Journal of Information System Modeling
and Design 1(1), pp. 1–32

Object Management Group (2006) Meta Object
Facility (MOF) 2.0 Core Specification

Object Management Group (2007) Unified Mod-
eling Language Infrastructure, Version 2.1.2

Syriani E., Vangheluwe H., Mannadiar R., Hansen
C., Van Mierlo S., Ergin H. (2013) AToMPM: A
Web-based Modeling Environment. In: CEUR
Workshop Proceedings Vol. 1115. Liu et al.,
pp. 21–25

The Open Group (2017a) ArchiMate 3.0 Speci-
fication http://pubs.opengroup.org/architecture/
archimate3-doc/toc.html Last Access: 2017-02-24

The Open Group (2017b) ArchiMate 3.0 Specifi-
cation Launch http://www.opengroup.org/news/
press/The-Open-Group-Launches-ArchiMate-3
Last Access: 2017-02-24

http://dx.doi.org/10.18417/emisa.15.2
http://pubs.opengroup.org/architecture/archimate3-doc/toc.html
http://pubs.opengroup.org/architecture/archimate3-doc/toc.html
http://www.opengroup.org/news/press/The-Open-Group-Launches-ArchiMate-3
http://www.opengroup.org/news/press/The-Open-Group-Launches-ArchiMate-3

Enterprise Modelling and Information Systems Architectures
Vol. 15, No. 2 (2020). DOI:10.18417/emisa.15.2
A Deep Perspective on the ArchiMate Modeling Language and Standard 25

The Open Group (2010) TOGAF 9 - The Open
Group Architecture Framework Version 9 http:
//www.bibsonomy.org/bibtex/24bc77b548cf18e9
b08955140208cf2a1/amitgoel Last Access: 2010-
02-26

Zachman A. (1987) A framework for information
systems architecture. In: IBM Systems journal
26(3), pp. 276–292

http://dx.doi.org/10.18417/emisa.15.2
http://www.bibsonomy.org/bibtex/24bc77b548cf18e9b08955140208cf2a1/amitgoel
http://www.bibsonomy.org/bibtex/24bc77b548cf18e9b08955140208cf2a1/amitgoel
http://www.bibsonomy.org/bibtex/24bc77b548cf18e9b08955140208cf2a1/amitgoel

