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Data-Driven Decisions in Service Engineering and
Management

Today, the frontier for using data to make business decisions has shifted, and high-performing service
companies are building their competitive strategies around data-driven insights that produce impressive
business results. In principle, the ever-growing amount of available data would allow for deriving increasingly
precise forecasts and optimised input for planning and decision models. However, the complexity resulting
from considering large volumes of high-dimensional, fine-grained, and noisy data in mathematical models
leads to the fact that dependencies and developments are not found, algorithms do not scale, and traditional
statistics as well as data-mining techniques collapse because of the well-known curse of dimensionality.
Hence, in order to make big data actionable, the intelligent reduction of vast amounts of data to problem-
relevant features is necessary and advances are required at the intersection of economic theories, service
management, dimensionality reduction, advanced analytics, robust prediction, and computational methods to
solve managerial decisions and planning problems.

1 Introduction

Increasingly automated data capturing, the ubi-
quity of sensors, the spread of smart phones, and
the penetration of life by social media leads to
enormous and ever growing amounts of data.
Novel technological advances in analytics and
scalable data management promise to facilitate
the capturing, storage, searching, sharing, analys-
ing, and visualisation of relationships and trends
hidden in large, high-dimensional data sets.

While, traditionally, scientists in areas such as
meteorology, genomics, physic simulations, or
environmental research were primarily faced with
the challenges of exploring large, very high-di-
mensional data sets, today such challenges also
affect areas like business informatics. In par-
ticular service design and management need to
process data in order to spot business trends, de-
termine and anticipate bottlenecks and quality of
service, or prevent customer churn by identify-
ing churn risk and triggering appropriate actions,
to name only a few tasks. In general, enterprises
that can use their data quickly and correctly can

gain efficiency through data-driven decisions, an-
ticipatory action and accelerated service support
and delivery processes. As an example, those
companies can utilise knowledge extracted from
past customer behaviours to better understand
customers in order to better convince them with
smart, individualised offers and services.

1.1 Service Management

Traditionally, the aim of service management
is to optimise service-intensive supply chains,
which are typically much more complex than the
supply chains of typical goods. Those require
tighter integration with field service and third
parties and must also accommodate inconsistent
and uncertain demand by establishing more in-
tegrated and more robust information flows. In
addition, most processes must be coordinated
across numerous service locations. Interestingly,
among typical manufacturers, after-sale services
(support, repair, maintenance, etc.) comprise less
than 20% of revenue. Among the most successful
companies, those same activities on average gen-
erate more than 50 percent of their total profits
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(Accenture 2006). This is one of many observa-
tions indicating that a profound understanding
of customers and business partners and establish-
ing high-quality service and information man-
agement is of crucial importance.

However, today enterprises provide an increas-
ing number of services in an automated or semi-
automated fashion by means of information tech-
nology (IT services), where customer behaviour
and experience can only be ‘observed’ by track-
ing what a customer is doing, in particular how
he uses one or more services over time. Providers
even of IT-only services can no longer afford to
focus on technology and their internal organisa-
tion, but need to consider the quality of the ser-
vices they provide and focus on the relationship
with customers. IT service management (ITSM)
refers to the implementation and management
of high quality IT services that meet the needs
of customers. ITSM is performed by IT service
providers through an appropriate mix of people,
process and information technology (Office of
Government Commerce (OGC) 2009).

Unfortunately, in particular with IT services, pro-
viders typically do not receive regular direct cus-
tomer feedback that is required for marketing,
further service improvements, and service innov-
ation. However, there is an ever-growing amount
of information how a customer uses a services
(e.g., sensors of a rental car, log files of a Web-
shop, browsing behaviour in on-line manuals,
etc.), and these datasets can be analysed to get
‘implicit’ feedback as described for example in
Choi and Ahn (2009).

1.2 Advanced Analytics

In fact, today’s service enterprises have more
data at hand about their markets, customers, and
rivals than ever before. Analysing those vast
amounts of historical and current data in an auto-
nomic or semi-autonomic fashion allows for pre-
dicting service demand and usage, customer be-
haviour, and market dynamics. In addition, it

allows for identifying novelty patterns in cus-
tomer behaviour and improving short and long-
term performance of enterprise business systems,
which is vital for running a competitive service
company.

In ‘Competing on Analytics: The New Science of
Winning’, Davenport and Harris (2006) argue that
the frontier for using data to make business de-
cisions has shifted. Many high-performing com-
panies are building their competitive strategies
around data-driven insights that generate im-
pressive business results. Those companies use
advanced analytical procedures, sophisticated
quantitative and statistical analysis and predict-
ive modelling. Examples of analytics are the us-
age of novel tools to determine the most profit-
able customers and offer them the right price, to
accelerate product innovation, to optimise and
integrate supply chains, and to identify the major
drivers of financial performance. Many examples
from organisations such as Amazon, Barclay’s,
Capital One, Harrah’s, and Procter & Gamble are
presented, showing how to leverage analytics to
drive business. However, various potential defin-
itions for advanced analytics exist. Typically, the
‘advanced’ indicates quantitative, predictive or
prescriptive models as described later in this pa-
per.

1.3 Big Data Analytics

Over the last two years, the term Big data is
propagated by major companies offering inform-
ation management software such as Intel1, SAP2,
or IBM3, and has become more and more a syn-
onym for data analysis and advanced analyt-
ics. For many SMEs and also for larger com-
panies, this is in some sense counter-productive
as nowadays enterprises collect massive amounts

1http://www.intel.de/content/www/de/de/big-data/
big-data-analytics-turning-big-data-into-intelligence.
html

2http://www54.sap.com/pc/tech/
in-memory-computing/hana/software/analytics/big-data.
html

3http://www-01.ibm.com/software/data/infosphere/
hadoop/what-is-big-data-analytics.html

http://www.intel.de/content/www/de/de/big-data/big-data-analytics-turning-big-data-into-intelligence.html
http://www.intel.de/content/www/de/de/big-data/big-data-analytics-turning-big-data-into-intelligence.html
http://www.intel.de/content/www/de/de/big-data/big-data-analytics-turning-big-data-into-intelligence.html
http://www54.sap.com/pc/tech/in-memory-computing/hana/software/analytics/big-data.html
http://www54.sap.com/pc/tech/in-memory-computing/hana/software/analytics/big-data.html
http://www54.sap.com/pc/tech/in-memory-computing/hana/software/analytics/big-data.html
http://www-01.ibm.com/software/data/infosphere/ hadoop/what-is-big-data-analytics.html
http://www-01.ibm.com/software/data/infosphere/ hadoop/what-is-big-data-analytics.html
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of various metrics, such as historical sensor, mon-
itoring, and customer usage data, hoping that
the data will turn out to be useful one day for
prediction and optimisation.

Accordingly, as Big data analytics is now a pop-
ular topic for management, many information
management companies offer tools and solutions
to extract and project relationships between a
vast amount of high-dimensional data vectors
(structured, semi-structured, or unstructured
ones), and to process, reduce, correlate and inter-
pret data in a much more flexible fashion com-
pared to traditional database management and
business intelligence systems.

Over the last years, enterprises such as Software
AG, Oracle, IBM, Microsoft, SAP, EMC, and HP
have spent more than $15 billion on software
firms only specialising in data management and
analytics. Since the last three years, this industry
was worth more than 100 billion US-dollars and
was growing at around 10 percent a year: about
twice as fast as the software business in general
(The Economist 2010).

1.4 The Curse of Dimensionality

While in principle the vast and ever-growing
sets of available data would allow for deriving
increasingly precise predictions and optimised
planning and decision models, the complexity
resulting from the consideration of large volumes
of multivariate, fine-grained, often noisy and in-
complete data leads to the fact that relationships
within the data are not found, algorithms do not
scale, and traditional statistics as well as data-
mining techniques collapse because of the well-
known curse of dimensionality (nowadays also
called the curse of big data) (Bellman 1961; Lee
and Verleysen 2007).

Despite these dimensionality-intrinsic problems,
biases in how data are collected, a lack of context,
gaps in what’s gathered, artefacts of how data are
processed and the overall cognitive biases that
lead even experienced researchers to determine
non-existing patterns (and vice versa) shows that

even if a company has Big Data, making use of
such data typically not only requires appropriate
tools but also data scientists with expertise and
know-how, hacking-skills, domain knowledge,
and deep mathematical and data management
skills; unfortunately, as of yet data scientists of
that sort are still a very scarce human resource
(Davenport and Patil 2012).

The result is that – in practice – data are often
collected and then ignored or aggregated in a
problem-agnostic fashion, and finally for most
problems rather simple and conservative solution
heuristics are applied by rules of thumb or using
coarsened data. The authors of this article are not
aware of many companies besides the financial
institutions and telecommunications companies
that make excessive use of their collected data;
however, most enterprises spend an increasing
amount of money and effort in monitoring sys-
tems and data collection. That is also the out-
come of numerous studies and expert interviews
conducted and summarised by Ross et al. (2013).

Interestingly, already today leading data scient-
ists are telling us that Big Data can and must be
reduced intelligently to small data, so that finally
for most decision problems one does not need
Big Data at all.4,5

1.5 Collecting the Right (Amount) of
Data

Large, global companies already recognise that
there is a need to stop collecting more data and
start a focused collection of the right data re-
quired to make decisions and to run a business
successfully (Nokia Siemens Networks 2013).

Suppose a company is gathering the right data:
attributes and dimensions really relevant for plan-
ning and decision-making. There is still the ques-
tion whether the return on adding more data

4Big Data: Maybe You Don’t Need It : http://www.
datacenterjournal.com/it/big-data-dont/

5Most data isn’t big, and businesses are wasting money
pretending it is:
http://qz.com/81661/most-data-isnt
-big-and-businesses-are-wasting-
money-pretending-it-is/

http://www.datacenterjournal.com/it/big-data-dont/
http://www.datacenterjournal.com/it/big-data-dont/
http://qz.com/81661/most-data-isnt-big-and-businesses-are-wasting-money-pretending-it-is/ 
http://qz.com/81661/most-data-isnt-big-and-businesses-are-wasting-money-pretending-it-is/ 
http://qz.com/81661/most-data-isnt-big-and-businesses-are-wasting-money-pretending-it-is/ 


Enterprise Modelling and Information Systems Architectures
Vol. 9, No. 1, June 2014
Data-Driven Decisions in Service Engineering and Management 109

points diminishes after passing a certain volume
of data collection, or certain data granularities
(such as monitoring intervals), and if – in a par-
ticular situation – gathering additional data will
cost more than it will actually yield.

Cleary, an answer to that question depends on
the concrete enterprise planning and decision
problem, the importance of the problem, the
scalability of engines/algorithms processing the
data, the tolerance of the algorithms regarding
artifacts and noise, the skills of the managers
processing and interpreting the data, and many
more factors.

However, independent of particular problems
and individual factors as aforementioned, the an-
swer also depends on purely statistical or math-
ematical criteria regarding redundancy and noise
within the datasets. That is because such criteria
can determine if another piece of data can bring
novel information at all, or whether it can be
fully or approximately derived from data already
available (for example by means of collaborative
mechanisms such as regression or causal reason-
ing).

Furthermore, for reasons of robustness and scalab-
ility it is disadvantageous to parametrise predic-
tion models and mathematical decision programs
with correlated or even collinear data vectors.
In fact, efficient decision mechanisms should be
rather elastic and adaptable to the anatomy and
the information contained in the input data, while
today typically the signatures and internal al-
gorithms of enterprise decision modules are of
rather static nature.

Consider a resource allocation mechanism for
enterprise services in a data centre. If demand
forecasts were expected to be highly precise for
certain indicators over a defined period of time,
a rather aggressive allocation mechanism oper-
ating with deterministic demand curves would
be appropriate. Once the demand prediction tool
downgrades its confidence levels and shrinks the
horizon of the look-ahead period considered as

reliable, more conservative allocation mechan-
isms might be appropriate.

If the forecasting horizon approaches zero time
intervals, conservative online mechanism should
be applied that allow for handling unexpected de-
mand phases immediately, as sophisticated offline-
planning would not beneficial in such situations:
plans would be invalid shortly after their compu-
tation.

This paper reviews theory and practice of data
reduction in service management with regard to
the various targets addressed with the different
data reduction techniques. First, we argue that
a really efficient and intelligent data reduction
requires the prior definition of business problems
and algorithms how to address these problems
with reduced data. Second, we argue that math-
ematical programs and algorithms for planning
and decision-making should not be applied in a
data-agnostic fashion. In contrast, programs and
algorithms should be sensitive and adjustable to
available data and the amount of dependencies,
reliability, and stochastics within data, which
typically vary over time, use-case, domain, and
planning horizon.

2 Data Understanding and Reduction

The first and most important step in analytics is
a proper understanding of the available data, the
involved variables and how these are measured.
Data quality, appropriate data cleaning and hand-
ling missing values as well as detecting outliers
and errors must be performed prior to any data
analysis. Knowing that data preprocessing is ar-
guable the most complex and time-consuming
step in analytics, for now we assume these tasks
have been already performed.

We will now characterise various techniques to
reduce data to relevant features, structures, and
developments. In order to separate approaches
aimed at descriptive, predictive, and prescript-
ive analytics, we will group the techniques ac-
cordingly. Descriptive analytics will be further
differentiated in simple aggregations (Sect. 2.1),
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and approaches that exploit statistical dependen-
cies in and between data objects and variables
(Sect. 2.2). In Sect. 2.3, we focus on data mining
approaches aimed at gaining knowledge from the
data to reduce uncertainty regarding the realisa-
tion of a particular variable (or label). A typical
task would be the determination of the probab-
ility of a positive response of a customer, and
the determination of data (features) necessary
to learn this probability. In Sect. 2.4 we then
summarise approaches to predict whole vectors
or time series. Finally, in Sect. 2.5, we focus on
prescriptive data reduction techniques that dif-
fer from prescriptive techniques as data selection
and reduction needs to be aligned with a particu-
lar, potentially combinatorial and computational
very complex mathematical optimisation prob-
lem. In the latter case, the goal is not only to
gain insights and reduce uncertainty of future
values of data, but to select and transform data
in a way that is beneficial for solving a particular
planning and decision problem

2.1 Data Aggregation for Descriptive
Service Analytics

The purpose of aggregating data for descriptive
service analytics is to summarise what happened
in the past. For example, in Web analytics met-
rics are considered such as number of page views,
conversion rates, check-ins, churns, etc. There
are literally thousands of such metrics, on their
own typically simple event counters. Other ag-
gregations for descriptive service analytics might
be the results of simple arithmetic operations,
such as share of voice, average throughput, aver-
age number of positive responds to a campaign,
etc. Most of what the industry called analytics
is nothing but applying filters on the data before
computing the descriptive statistics, sometimes
combined with a linear statistical forecast. For
example, by applying a geo-filter first, a company
can get metrics such as average revenue per week
from USA vs. average revenue per week from
Europe. Structuring aggregated data to reports

derives the well established and broadly used re-
porting functions based on information stored
in data warehouses. Management dashboards
usually provide the means of presenting such
aggregated data to managers to support their
business decisions.

2.2 Data Compression and
Approximation

The most generic way to reduce (and not just
aggregate) data is to exploit dependencies in and
between data vectors – in a problem-agnostic
way – by multivariate statistics and matrix ap-
proximation techniques, mostly based on linear
algebra. Examples are variance-preserving ap-
proximation techniques such as Empirical Ortho-
gonal Defactorisation derived by Eigen-approaches
such as Truncated Singular Value Decomposition
or compact Principal Component Analysis (PCA).
More and more, techniques such as Independ-
ent Component Analysis (ICA) are applied to de-
rive more meaningful features (in contrast to
solely reducing data). By exploiting communal-
ities, such techniques are very useful to reduce
data to the maximum amount of variation (as a
proxy for information) in the data sets and are
often shown to derive the best low-dimensional
approximation of data in very useful mathemat-
ical senses such as the L2 norm.

Other examples are topology-preserving tech-
niques such as Local-Linear-Embedding (LLE) (Ro-
weis and Saul 2000) or isoMap (Tenenbaum et al.
2000), where the objective of data reduction is
not to capture maximum variance of the data
sets with fewer dimensions, but to preserve the
topology of the data objects, i.e., their distance
relationships.

Likewise, multivariate techniques such as vector
quantisation and linear and non-linear regres-
sion techniques fall into this category of data
reduction according to pre-defined mathematical
objectives.
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2.3 Data Reduction by Information
Gain and other Criteria

Unlike the approaches described in Sect. 2.1 and
Sect. 2.2, the analysis step of discovering know-
ledge in databases is aimed at discovering pat-
terns in sets of data involving methods at the in-
tersection of artificial intelligence, machine learn-
ing, statistics, and database systems. The over-
all goal is to extract pattern in a data set and
transform it into structural dependencies for fur-
ther use. Aside from the raw analysis step, it
involves database and data management aspects,
inference considerations, interestingness metrics,
complexity considerations, post-processing of
identified structures, visualisation, and on-line
updating mechanisms.

Typical goals are the automatic or semi-automatic
analyses of large quantities of data to extract pre-
viously unknown patterns such as groups of data
records (segmentation analysis), unusual records
(anomaly detection) and dependencies via associ-
ation rules, decision trees, or other methods. For
instance, data mining techniques might identify
multiple groups in the data, which can then be
used to obtain more accurate prediction results
and more focused marketing campaigns by a de-
cision support system. Here, data is reduced to
gain information about the general structure of
the data (clustering), or the class prediction of
records with an unknown label due to similarit-
ies with other records where labels are already
known.

As discussed in Sect. 1.4, clustering and classifica-
tion do not perform well with high-dimensional
data because of the curse of dimensionality. Beyer
et al. (1999) and Aggarwal et al. (2001), amongst
others, have shown that standard measures for
proximity or distance that are used for stand-
ard k-means clustering, are becoming more and
more meaningless with growing dimensionality.
To circumvent this problem, approaches as pro-
posed in Aggarwal et al. (2001) introduce novel
distance calculations that are still meaningfull
even in high-dimensional data space of 15 dimen-
sions and more. Alternative streams of research

(see Tsymbal et al. 2002 as an example) propose
approaches that do not work (cluster) on original
data but on reduced data as a result of compres-
sion steps as described in Sect. 2.2.

2.4 Data Reduction for Predictive
Service Analytics

Predictive analytics is based on information ex-
tracted by the three previous data understanding
and reduction steps; it uses all of the gained in-
sights to make robust prediction of developments
of important indicators, metrics, and variables
(Stewart et al. 2012).

An intuitive way to understand predictive ana-
lytics is to apply it to the time domain. The most
familiar predictive analytic tool is a time series
model (or any temporal model) that summarises
past trajectories found in the data, and use either
auto- or (lagged) cross-correlations and regres-
sion to extrapolate time series to a future time
where data is not yet existing. This extrapolation
in the time domain is what scientists refer to as
forecasting or prediction.

Although predicting the future is a common use
case of predictive analytics, predictive models
are not limited to predictions in temporal dimen-
sions. Such models can theoretically predict any-
thing and, hence, predictive analytics are some-
what overlapping with data mining and know-
ledge extraction as described in Sect. 2.3. The
predictive power of a model needs to be prop-
erly validated by criteria addressing the robust-
ness of the prediction such as using pre-whitened
predictors, perpendicularity of predictors, by us-
ing information criteria such as BIC or AIC, and
finally out-of-sample testing using consecutive
samples. The essence of predictive analytics, in
general, is that we use existing data to build a
model. Then we use the model to predict data
that doesn’t (yet) exist.

However, only with concrete use cases in terms
of business problems in mind, one can decide
which pieces of information in the data set are
ultimately relevant for a company, and which
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pieces are not. This brings one directly to data
reduction for prescriptive analytics that will be
described in the next subsection.

2.5 Data Reduction for Prescriptive
Service Analytics

Prescriptive analytics not only predicts a possible
future, it predicts multiple futures based on the
decision maker’s actions. Therefore a prescript-
ive model is, by definition, also predictive and
significant effort must be undertaken to guaran-
tee internal and external model validity. As it is
seen today, a prescriptive model is actually a com-
bination of multiple predictive models running in
parallel, one for each possible input. Since a pre-
scriptive model is able to predict the possible con-
sequences based on different choices of action,
it can also recommend the best course of action
for any pre-specified outcome, given the data
set used to predict the future (together with its
confidence or uncertainty). The goal of most pre-
scriptive analytics is to guide the decision maker
towards decisions that will ultimately lead to an
(near) optimal and robust business outcome.

In prescriptive analytics, one also builds a pre-
dictive data model. However, the model must
have two more added components in order to
be prescriptive. A company not only needs a
rigorously validated predictive model, the model
must be actionable, i.e., managers must be able
to take actions supported by the model. In addi-
tion, the prescriptive model must have a feedback
system that collects feedback data for each type
of action, which will additionally increase data
volume by some orders of magnitude. There-
fore, prescriptive analytics is very challenging
even with scalable data infrastructures and the
talent/expertise to make sense of the feedback
data (e.g., sensitivity analysis, causal inference,
or risk models).

That makes prior data reduction even more im-
portant and requires a focus on the pieces of
input data really relevant for decision-making
and optimisation.

3 Information Gain versus
Optimisation Gain

Each department of a service provider has a set
of typical tasks to perform on an operational,
tactical, or strategic level. Taking for instance
the Customer Relationship Management (CRM)
department. CRM is aimed at the optimisation of
a company’s interactions with current and future
customers. Objectives of CRM are the reduction
of overall churn by adequate customer service
and support, or by identifying and rewarding
customers that have been loyal over a period of
time but now show certain behaviours that in-
crease churn probability (reduced call frequency,
churns of neighbor nodes in the telecommunic-
ation network, etc.) Another objective might
be the identification of customer segments for
particular campaigns such as cross-selling offers
based on score-values of customers. Scores are
derived by data analytics and reflect the probab-
ility of a certain customer to respond positively
depending on a customer’s profile and past be-
haviour. Such procedures are aimed at gaining
information from datasets regarding the prob-
ability of an unknown label in data records (for
instance, class predictions such as churn: yes/no,
upselling: yes/no, etc.) and are in the primary
focus of business intelligence solutions.

However, usually strict business rules exist that
complicate the selection of target customers. As
a simple example, consider the case where one
single customer is not allowed to be contacted
more than twice a year (a common rule-type in
telecommunications companies’ campaign man-
agement). This in fact leads to predictive and
finally to prescriptive analytics, as combinatorial
decision problems based on expected behavioural
developments of customers are required (bey-
ond the calculation of current scores). Besides a
customer’s score-value for a planned campaign,
knowledge of future campaigns are of import-
ance as well as on future developments of cus-
tomers in order to predict their responses. In
addition, it has been shown by Goel and Gold-
stein (2013), amongst others, that the structure
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of the communication or social network and the
prediction of future behaviour of a customer’s
neighbors play important roles, which brings a
decision maker to network models, multivariate
forecasting models and collaborative prediction.

While there is a huge body of knowledge of
broadly used methods and sophisticated tools
exist to perform individual tasks such as classific-
ation, time series prediction, or mathematical op-
timisation, the integration of these tasks to derive
efficient and robust overall solutions is still left
to the expertise and preferences of individual de-
cision makers, typically based on trial-and-error
procedures or rules of thumb.

For each task, different data reduction techniques
and feature-combination might be adequate,
while the interplay of these tasks might lead to
the fact that certain data considered as highly
relevant in one task might not or only slightly
impact the overall solution (and vice versa). For
instance, it might turn out that the prediction of
features relevant to compute current scores are
too difficult to predict for future campaigns and
the forecast cannot be considered as reliable. For-
mulating a stochastic optimisation model might
reveal that the solution is highly sensitive to even
small planning errors or rather insensible to lar-
ger ones, which makes the predictability of a
feature either less or more important. Hence,
each type of problem requires individual data
and model selection procedures if the goal is to
make optimal decisions.

This leads to a novel concept in prescriptive ana-
lytics that we will refer to as optimisation gain
of data. Optimisation gain differs from inform-
ation gain (or derivatives such as information
gain rations, GINI, etc.) or matrix approxima-
tion quality norms of a residual matrix. Those
metrics are aimed at quantifying the quality of
a data prediction or approximation without con-
textual knowledge on how information is used in
subsequent optimisation steps.

By optimisation gain we mean the dependency
of a solution (the solution quality) derived by a

mathematical model or algorithm to additional
data, which might be more fine-grained data,
more data in terms of a longer reliable planning
horizon, or simply an additional attribute or di-
mension under consideration.

Optimisation gain also differs from concepts such
as sensitivity, robustness, or stability of a solu-
tion. With optimisation gain we address the dif-
ferent and more general problem of quantifying,
if (and how much) the optimality or robustness
of a solution would benefit for example from the
consideration of a novel data feature in a partic-
ular planning or decision problem. Addressing
such questions is challenging as this typically
requires the re-formulation of the mathematical
program formulation for numerous input-data
combinations and transformations. The intuition
of optimisation gain is the quantification of the
solution quality expected with different input
data for a particular type of optimisation prob-
lem analytically, without expensive and time-
consuming (and potentially infeasible) trial-and-
error-procedures. The vision is a new generation
of criteria by integrating data and model selec-
tion and configuration.

Please notice that optimisation gain can become
negative as too many parameters can lead to an
explosion of the search spaces and increased com-
plexity, where optimal solutions are much harder
to find. For instance, node-sets of branch & cut
solvers might increase dramatically, and the qual-
ity of solutions that can be found in pre-defined
periods of time might decline sharply with the
number of features and constraints under consid-
eration. Furthermore, models operating with too
many data dimensions are more likely subject
to over-fitting as artefacts and collinear config-
urations of (stochastic) variables used as model-
input worsen the quality of decision-making.
From a business perspective, the marginal gain of
considering more data might further decline as
collecting and managing data comes at additional
costs for data scientists that need to analyse the
data, as well as costs for monitoring, IT infra-
structures, storage, and licenses.
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We argue that the role of optimisation gain of
data is a highly relevant concept in prescript-
ive analytics, and key to reducing Big Data ef-
ficiently to a manageable and actionable set of
features Also, INFORMS, the leading scientific
and professional organisation for OR profession-
als, decided to stake its claim on the analytics
movement. The organisation recognised that the
trend toward data-driven and analytical decision-
making presents tremendous opportunities and
challenges for OR professionals (Libertore and
Luo 2011). Since 2009, INFORMS organises an
own conference at the intersection of analytics
and OR named Business Analytics and Operations
Research, with a focus on how to apply data sci-
ence to ‘the art of’ business optimisation. It fea-
tures presentations on real-world applications
of analytic solutions, presented by industry and
university leaders.

Optimisation gain can provide a means of signi-
ficantly reduce the effort spent for monitoring,
collecting and managing data, as ideally only
data is collected that is indeed supposed to im-
prove decisions. Unnecessary frequent measure-
ments are also avoided as the collection of correl-
ated data that is (statistically) already captured
by other variables. These ideas are closely re-
lated to visions such as smart measurement and
collaborative monitoring systems, but with an
additional focus on the impact on the business
relevance of gathered data. We will further detail
on this in Sect. 4.

4 Feature-based Optimisation and
Model-Data-Integration

As aforementioned, certain units in enterprises
have specific tasks to perform, usually composed
by structured or at least semi-structures pro-
cesses. For instance, in IT service management,
the role of capacity management is to ensure
sufficient capacity to provide high-quality ser-
vices to customers efficiently, i.e., at reasonable
(low) costs to the business. In capacity manage-
ment, it is important to have a clear picture of

the expected service demand and the correspond-
ing resource demand that needs to be supplied
in future points of time. Considering the case
of private clouds, with the potential of hosting
services in virtual machines (VM) in a flexible
manner, e.g., by co-hosting VMs temporarily on
the same physical server, sharing and multiplex-
ing a servers capacity for resources such as CPU,
memory, or I/O. In such an environment, IT ser-
vice managers try to minimise the number of
servers by assigning enterprise services in vir-
tual machines efficiently to physical servers, but
at the same time provide sufficient computing re-
sources at each point in time. It is worthwhile to
notice that running servers are (independent of
their utilisation levels) the main energy drivers
in data centers, where energy costs already ac-
count for 50% or even more of total operational
costs (Filani et al. 2008).

Without going into too much detail, the result-
ing VM allocation problem can be reduced to a
stochastic multi-dimensional bin-packing prob-
lem, a well-known NP-hard problem. As it is the
case with every bin-packing problem, the goal
is to fill-up the available spaces (resource capa-
cities) of bins (servers) as much as possible, and,
hence, come out with fewer servers while not
exceeding the capacity of servers, as this would
result in overload and SLA violations.

Theoretically, historical workload data would al-
low for accurate workload demand forecasting
(for more than 80% of typical operational busi-
ness services) and optimal allocation of enter-
prise applications to servers. In various exper-
iments and studies with smaller VM sets it has
been shown that such approaches lead to a reduc-
tion of required server by around 30% (Speitkamp
and Bichler 2010). Unfortunately the volume of
data and the large number of resulting capacity
constraints in a mathematical problem formu-
lation renders this task impossible for any but
small instances and is of little use for IT service
providers with server parks of hundreds or thou-
sands of VMs to be consolidated.
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Looking at the core of each packing problem, in
particular at bin-packing problems, the challenge
is to find complementarity in objects to be packed
(in our case, the demand profiles of VMs for vari-
ous resources over time) to achieve high average
server utilisation levels. It makes sense to co-host
VMs with peak loads in the morning hours and
VM having their peak loads later during a day.
Similarly it makes sense to combine a VM with
high CPU and low memory demand with one
having lower CPU but high memory demand.

When we consider relevant features of workload
profiles for the packing problem as aforemen-
tioned, features describing the complementarit-
ies between VM profiles could be of great value,
besides features describing the absolute resource
demand curves of VMs.

Setzer and Bichler (2012) use techniques based on
singular value decomposition (SVD) to extract
significant features from a matrix of the expec-
ted (fine-grained) demand vectors of hundreds
of VMs and provide a new geometric interpret-
ation of these features as principal demand pat-
terns, complementary between these patterns,
and uncertainty. The extracted features allow
for formulating a much smaller allocation model
based on integer programming and allocating
large sets of applications efficiently to physical
servers. While SVD is typically applied for ana-
lytical purposes only such as time series decom-
position, noise filtering, or clustering, here fea-
tures are used to transform a high-dimensional
allocation problem in a low-dimensional integer
program with only the extracted features in a
much smaller constraint matrix. The approach
has been evaluated using workload data from a
large IT service provider and results show that it
leads to high solution quality. At the same time
it allows for solving considerably larger problem
instances than what would be possible without
prescriptive analytics, intelligent data reduction
and model transform. This work provides a first
example of a highly integrated data reduction
and optimisation approach.

The same authors argue that the overall approach
can also be applied to other large packing prob-
lems. For instance, in Setzer (2013), the authors
show that high-dimensional knapsack problems
can also be intelligently reduced to smaller and
computationally tractable ones, as long as there is
a significant amount of shared variance amongst
the dimensions to be considered. Please notice
that, according to recent studies, knapsack-prob-
lems are amongst the top four problems to be
solved in enterprises, although managers often
do not know that their particular problems could
be formulated as knapsack-problems.

Overall, we believe that there is a huge poten-
tial for solving particular decision problem with
Big Data made small. However, to exploit these
potentials, problems must be formalised before
integrated data reduction and optimisation mod-
els can be developed.

Reconsidering the example of capacity manage-
ment in private cloud infrastructures, we will
now detail on the need for a decision model fab-
ric that not only aligns the model to be used
to changing environments by considering novel
parameters. In contrast, completely different
solution techniques are required depending on
the (recent) structures and developments found
in the data. Again, we will use private clouds for
illustration.

Nowadays, live migration allows to move VMs
to other servers reliably even during runtime
and promises further efficiency gains (VMWare
ESX, amongst others) (Nelson et al. 2005). Some
platforms such as VMware or vSphere closely
monitor the server infrastructure in order to de-
tect resource bottlenecks by tracking threshold-
violations. If such a bottleneck is detected they
take actions to dissolve it by migrating VMs to
different servers. For instance, if the CPU utilisa-
tion exceeds 80%, a VM is migrated away from
that server to reduce total server load. On the
other hand, if a controller detects phases of low
overall workload, there is the possibility to con-
centrate workloads on fewer servers by vacating
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servers and shutting down these source servers
temporarily to further reduce energy consump-
tion. We will refer to such techniques as dynamic
resource allocation or dynamic control, as op-
posed to static VM allocation where allocations
are computed and kept fixed for a longer period
of time.

5 Towards Data-Elastic
Decision-Making

On the one hand, dynamic control strategies
are more flexible and should therefore lead to
lower energy costs. On the other hand, migra-
tions cause significant additional overheads and
response-time peak, which are avoided with static
allocation mechanisms. It has been shown that
with well-predictable workloads of business ap-
plications, dynamic resource allocation during
operational business hours does not lead to higher
energy efficiency compared to static allocation
even if future demand is known only to a certain
extend (Wolke et al. 2013). However, if demand
is completely unknown, dynamic control is the
only reasonable option to avoid both: massive
overprovisioning and service degradation. De-
pending on the share of stochastic developments
in workload demand curves, hybrid models might
be appropriate where basic allocations are com-
puted for a given planning horizon in a more
conservative fashion, considering the option of
potential migrations to cope with uncertainty.

In summary, dynamic, data-based model selec-
tion is required that differs from parameter align-
ment, which simply would mean that for instance
the alpha parameter in an exponential smoothing
model is adjusted from time to time (which then
leads to a different and hopefully better short
term prediction), but where the same mathemat-
ical model is used for prediction.

In the example above, depending on the predict-
ability of demand behaviour, which might be
well predictable throughout certain periods but
rather unpredictable in other periods of time,
completely different allocation mechanisms are
advised.

6 Conclusion and Vision

Analysing historical and current data in order to
make better predictions is vital for running a com-
petitive service company. Data-driven design
and management of services demand interdis-
ciplinary knowledge from the business domain,
processes, data analytics, and mathematical op-
timisation. While in principle the ever-growing
amounts of available data would allow for de-
riving increasingly precise forecasts and optim-
ised input for planning and decision models, the
complexity resulting from the consideration of
large volumes of ever-growing volumes of mul-
tivariate, fine-grained data leads to the fact that
dependencies and relationships within the data
are not found, algorithms do not scale, and tra-
ditional statistics as well as data-mining tech-
niques collapse because of the well-known curse
of dimensionality. Hence, in order to make Big
Data actionable, we are interested in the intelli-
gent reduction of vast amounts of data to small
sets of problem-relevant features. We argue that
mathematical optimisation and planning mod-
els need to be transformed to be able to operate
efficiently on highly reduced data. In addition,
the selection of adequate planning and decision
models must be adapted to (current) data and
the reliability of relations and predictions extrac-
ted from that data, which requires time-dynamic
and data-driven model selection and evaluation
techniques.
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