
Enterprise Modelling and Information Systems Architectures

Vol. 8, No. 1, March 2013

62 Marco Kuhrmann, Georg Kalus, Alexander Knapp

Marco Kuhrmann, Georg Kalus, Alexander Knapp

Rapid Prototyping for Domain-specific Languages

From Stakeholder Analyses to Modelling Tools

Today, modelling is a widely acisecepted technique in Software Engineering (SE). Many problems can be

expressed using general-purpose modelling languages such as the UML. For more specific problems, the

definition of a specialised domain-specific language (DSL) may be required. The definition of a domain-

specific language is a time-consuming task that requires knowledge in (modelling) language design, deep

understanding of the domain and, to be useful and usable, user assistance and tool support. In this paper, we

present an approach to derive a domain-specific language from the description of instances of the domain

under consideration: Stakeholders describe model instances from which the metamodel (the DSL) and a

suitable modelling tool are derived automatically. We describe a tool that we used to experiment with this

approach, its current state and the future work.

1 Introduction

A ‘model’ has several advantages over free-from

sketches, as it has some degree of syntax and

semantics and that it can be used to generate

or derive other artefacts from it. However, de-

fining a modelling language and corresponding

modelling tools is laborious. If models are used

mainly to clarify a particular domain, i.e., while

analysing a customer’s domain or a project’s re-

quirements, defining an appropriate modelling

language is often not worth the effort. In addi-

tion, stakeholders not familiar with (or not inter-

ested in) modelling languages may not see the

immediate benefit of the investment. A state-

ment by a tool vendor highlights this problem:

‘Nobody wants to perform real modelling, but

only drawing pictures. . . ’ And in fact, tools such

as Microsoft Visio or Omni Group’s OmniGraffle,

and even PowerPoint can be regarded as some

of the most popular general-purpose ‘modelling’

tools.

On the other side of the spectrum, powerful

modelling tools were developed: The Unified

Modeling Language (UML) became a standard-

ised modelling language and notation, and vari-

ous UML dialects, such as SPEM (OMG 2008)

or BPMN (OMG 2010), were created. Also, for

certain domains specialised and comprehensive

modelling approaches (including formalisms, no-

tations, and tools) were developed, e.g., ARIS

(Davis, R. 2010) or Focus (Schätz, B. 2001). Such

dialects and specialised modelling approaches

are well suited for their particular domain.

A popular approach for creating precise, spe-

cialised and easy-to-understand modelling lan-

guages are domain-specific languages (DSL). A

domain-specific language facilitates (1) easy com-

munication by using well-known and accepted

domain objects in an appropriate notation, while

keeping the (2) precision that enables further

processing of the domain models, e.g., to gen-

erate code, data models, and so on. A domain-

specific language is usually designed according

to specific domain requirements and, therefore,

a concrete domain-specific language is difficult

to apply in other environments than the one it

was developed for. The development of a spe-

cialised domain-specific language that may be

used in just one project therefore may not be

economically feasible as long as rapid language

development — similar to rapid prototyping — is

not well supported for domain-specific language

development.



Enterprise Modelling and Information Systems Architectures

Vol. 8, No. 1, March 2013

Rapid Prototyping for Domain-specific Languages 63

1.1 Problem Statement

Providing stakeholders, i.e., analysts, designers,

and other project roles with appropriate model-

ling languages and tools beyond standard solu-

tions is a challenging and costly undertaking.

Domain-specific languages are a way to define

special-purpose modelling languages. Current

tools to develop DSLs, such as Eclipse EMF/GMF,

Meta-Case, or the Visual Studio DSL-Tools re-

quire deep understanding of the tool itself and

conceptual and technical knowledge. For speci-

fic problems, the effort necessary to develop a

suitable domain-specific language therefore often

seems too high compared to the potential benefit.

The benefits of domain-specific languages could,

however, be leveraged if there were means to

quickly and iteratively develop a domain-specific

language, similar to the rapid prototyping devel-

opment paradigm.

1.2 Contribution

At the ICSE 2011 workshop on ‘Flexible Mod-

eling Tools’ (Kuhrmann 2011) we discussed an

early idea about how to make the language de-

velopment process for domain-specific languages

easier. The core of this idea was to interactively

develop a domain-specific language by deriving it

from an exemplary instance, which was ‘drawn’

during a stakeholder workshop.

In the paper at hands we take this idea one step

further by reporting on an implementation of

a DSL-based platform which generates a con-

crete domain-specific language from an instance-

model scribbled on a ‘virtual white board’. The

instance modeler works in a drag-and-drop-style,

similar to free-form drawing tools such as Mi-

crosoft Visio. The result is more than just pic-

tures, but a concrete modelling language.

1.3 Outline

The remainder of the paper is organised as fol-

lows: In Sect. 2 we discuss related work, es-

pecially with regard to modelling of domain-

specific languages and corresponding tools. In

Sect. 3 we briefly describe the ‘traditional’ do-

main-specific language development process us-

ing our DSL-platform. In Sect. 4 we present our

understanding of instance modelling and its im-

pact to domain-specific language design. The

presented approach is applied to a small case

study in Sect. 5. Continuing with Sect. 6, we sum-

marise the extended domain-specific language de-

velopment method that facilitates rapid, instance-

based language design. We conclude the paper

in Sect. 7 and formulate the need for further re-

search tasks.

2 Related Work

The field of modelling and meta-modelling is too

wide to be covered exhaustively here. We there-

fore focus on basic concepts, current tools for

meta-modelling and domain-specific language

design, and new emerging ideas w.r.t. the ad-

vancement of meta-modelling.

Domain-specific Languages

We can roughly distinguish between the general-

purpose approach, such as the UML (OMG 2011b),

specific techniques for certain domains, e.g., Fo-

cus (Schätz, B. 2001), and the concept of domain-

specific languages somewhere in between (Fowler

and Parsons 2010; Kleppe, A. 2008). A domain-

specific language is, essentially, a metamodel,

which can be discussed from different perspect-

ives. With regards to language design, some good

definitions can be found in (Cook et al. 2007). We

understand a metamodel to be a formalism to

describe (domain-specific) languages, which can

be understood by a computer.

Standard Meta-modelling Tools

In Eclipse-based language modelling tools (Stein-

berg et al. 2008), metamodels are represented

by so-called Ecore models, which are based on

the OMGs Meta Object Facility (MOF) hierarchy

(OMG 2011a). The definition of a metamodel (a

domain-specific language) is done using a UML-

like notation subset. For instance, the Eclipse



Enterprise Modelling and Information Systems Architectures

Vol. 8, No. 1, March 2013

64 Marco Kuhrmann, Georg Kalus, Alexander Knapp

Modeling Framework (EMF) provides rich sup-

port for the definition of metamodels (Steinberg

et al. 2008), which is shown by many concrete

EMF-based languages (e.g., the OMME tools (Folz

and Jablonski 2010) and the considerable number

of concrete EMF-based tools). Another example

for such a tool is the Meta Case environment

(MetaCase: Company’s homepage and samples).

Such a comprehensive support is important for

language engineers to adjust all aspects of a mod-

elling language (structure and semantics). How-

ever, for quickly capturing a domain, many of

the powerful features are not required. The same

can be said about the Microsoft Visual Studio

DSL-Tools (Cook et al. 2007; Greenfield and Short

2004), which we used to develop PDE (Kuhrmann

et al. 2010b). The Visual Studio DSL-Tools are not

based on UML but also use a structured, XML-

based approach to define data models and offer

the possibility to add semantics and behaviour

using source code.

New Ideas in Meta-modelling

The development of modelling languages and

modelling environments is a widely discussed

topic. Kimelman and Herschman (2011), for in-

stance, discuss the need for ways to support

formal modelling tools in a flexible manner. Sim-

ilar to Cho et al. (2012), they argue the design

of a modelling language should not be regarded

as a Waterfall-like process, and highlight the ne-

cessity to dynamically move forth and back be-

tween informal (free) and formal models. Chal-

lenges resulting from this view are discussed

by Cho et al. (2011). They discuss an approach

that captures model instances by demonstration,

and note that most domain-specific modelling

is initially done using ‘creativity’ tools such as

word processors, drawing tools or presentation

tools. They conclude that the creation process

of a domain-specific language has to take into

account that (1) free form shapes have to be form-

alised, that (2) a metamodel needs to be formal-

ised from model instances, and that (3) captured

model instances have to be enriched by semantics.

We were facing similar challenges when design-

ing DSL-based meta-modelling tools (Kuhrmann

2011). In Cho et al. (2012) a first implementation

of the concept described in Cho et al. (2011) is

presented. This implementation results, however,

in a ‘drawing’ tool. Beyond sketches and ideas,

Volz et al. (2011) present a multi-layer model-

ling environment that not only supports meta-

modelling but also the connection of models at

different levels of abstraction. They motivate

their approach with the observation that users

often use different tools and that a solution for

bridging the gap could be to integrate all mod-

els using one modelling language and creating

connections among the models.

Discussion

The design of a domain-specific language needs

support in at least two areas: (1) to provide lan-

guage ‘end users’ with a modelling tool that sup-

ports them in creating and handling concrete

model instances and (2) to assist language engin-

eers during the definition of a domain-specific

language.

Almost all DSL tools address the first aspect.

Eclipse EMF/GMF for instance supports textual

as well as visual domain-specific languages and

provides corresponding Eclipse-integrated edit-

ors. With our work on PDE we followed an al-

ternative approach where an editor is generated

from the domain-specific language. The domain-

specific language is ‘baked into’ the resulting

editor. The end users are provided with a spe-

cific modelling tool (stand-alone or IDE-hosted)

according to their needs (Kuhrmann et al. 2010b).

Comprehensive support for language engineers

to define a domain-specific language is only par-

tially addressed. Eclipse, MetaEdit, and Visual

Studio provide comprehensive support for the

language engineers if the domain of action is

known and analysed. If the language engineer

should capture a domain and derive a domain-

specific language, no adequate support is given —

especially for scenarios such as a domain analysis

workshop, which is done with the stakeholders.



Enterprise Modelling and Information Systems Architectures

Vol. 8, No. 1, March 2013

Rapid Prototyping for Domain-specific Languages 65

3 PDE Language & Tool Development

A result of the research described here is the Pro-

cess Development Environment (PDE). The plat-

form is published as an Open Source project and

can be accessed at http://pde.codeplex.
com. PDE provides an infrastructure for the

design of domain-specific languages in general,

and process languages and process authoring

tools in particular. The core functionality is based

on the Microsoft Visual Studio DSL-Tools (Cook

et al. 2007). PDE adds several features, such as:

• Improved visual design

• Model visualisation

• Metamodel modularisation

• Hooks for validation functions

3.1 The PDE Platform

The PDE framework consists (Fig. 2) of two parts:

The first part is PDELanguage, which is an exten-

sion of the Visual Studio DSL-Tools. The second

part is PDE Framework that serves as the shell

for the editors that are generated from a domain-

specific language. The PDE Framework consists

of a ToolFramework and a concrete PDE-based

language that is an instance of the PDELanguage

(Fig. 1). Such a language consists of a ViewModel

and a DomainModel. The DomainModel is the

executable language in which functions, such

as validation or serialisation are configured. A

concrete PDE-based language might contain dif-

ferent view models, e.g., a tree view, a graph-

ical editing pane, or a property grid. The Tool-

Framework is a comprehensive Windows Present-

ation Foundation-based application frame, which

uses the .NET Framework. Using the MEF inter-

faces (Managed Extensibility Framework 2010)

the application frame is extendable, i.e., by new

views extending the ViewModel or additional

functionality provided by separate plug-ins.

A concrete language (a metamodel) is a domain-

specific language, which is based on the PDE ex-

tension of the Visual Studio DSL-Tools. The PDE

DomainType

super

DomainClass

DomainRole

DomainProperty

Domain
Relationship

properties
0..1

0..*

2..*

roles

type

type

1

1

Embedding
Relationship

Reference
Relationship

Figure 1: Concept meta model of PDE-based languages.

Language, which is itself a ‘meta-meta model1’

(Fig. 1), is the basis for the metamodel, which

is merged with the PDE Tool Framework into a

concrete modelling tool (stand-alone or hosted

in Microsoft Visual Studio) for language engin-

eers or modelers respectively. A comprehensive

description of PDE can be found in (Kuhrmann

et al. 2010a).

3.2 Creating a PDE-based Language

In the following we describe the typical language

development process using PDE. This process is

usually gone through only once per metamodel.

However, if the metamodel is updated, parts of

the process have to be repeated to incorporate

the changes. Figure 3 shows the (classic) lan-

guage development process consisting of up to

five steps.

Step 0 In the step ‘PDE Language Development’

the PDE Language itself can be manipulated or

extended. This step influences the behaviour

of the whole platform. It should not be done

without deep knowledge of the platform. For a

language engineer who just wants to define a

new domain-specific language for a customer,

this step is usually unnecessary.

1Note that the meaning of meta-meta model is aligned

with the definition provided by the MOF (OMG 2011a).



Enterprise Modelling and Information Systems Architectures

Vol. 8, No. 1, March 2013

66 Marco Kuhrmann, Georg Kalus, Alexander Knapp

PDE Framework

use

1..*

Visual Studio DSL 
Tools

DomainType

DomainClass

...

Tool
Framework

Concrete
PDELanguage ViewModel

DomainModel

Serialization

Validation
1..*

1

1..*

1..*PDELanguage

.NET Framework

use

Figure 2: Architecture of the PDE platform (simplified).

Step 1 The step ‘Implement a Metamodel’ in-

volves the implementation of the metamodel

(the domain-specific language) within the spec-

ification of the PDE Language. Elements and

relationships of the domain-specific language

are transformed into domain classes and do-

main relationships of the concrete metamodel.

Additionally, the domain-specific language can

be extended to provide multiple views (graph-

ical notations) to present different aspects of

the model.

Step 2 In the step ‘Transform’ the transforma-

tion process of the platform utilises T4 (Sych

2007) templates to generate the source code

representing the domain-specific language for

integration in the PDE Editor Framework.

Step 3 The third step covers two aspects: the ex-

tension (step ‘Extend’) and the customisation

(step ‘Customise’) of the transformed domain-

specific language. In this step the generated

code can be extended or customised for dif-

ferent purposes, i.e., serialisation methods can

be overridden to define a custom serialisation

format or new validation methods can be pro-

vided to check for specific constraints. New

views etc. can also be provided in this step, i.e.,

sophisticated views that combine certain as-

pects of the underlying model to ease the mod-

elling or to foster the discussion with stake-

holders.

Step 4 Step 4 is the last step in which the fi-

nal editor is created. Depending on the audi-

ence of the editor and the initial PDE-template,

either a stand-alone tool is created, or an ed-

itor, which is hosted in the Visual Studio envir-

onment.

The language development process is designed

to allow short development cycles if a domain-

specific language needs to be changed and eval-

uated (as discussed by Kuhrmann et al. (2010b)

and demanded by Cho et al. (2012)). Besides the

above listed steps there is a standard path for the

language development consisting of the steps 1,

2, and 4.

Step 3 can be skipped if the features that are

initially provided by the platform fit (almost) all

requirements. In this step additional components

can be introduced to the tool, i.e., specialised

visualisation components or additional logic.

Besides this static binding of additional compon-

ents, PDE also provides a MEF-based (Managed

Extensibility Framework 2010) plugin interface

to discover and load separately developed plu-

gins at runtime, e.g., additional logic for runtime

validation, or features that cannot or can only



Enterprise Modelling and Information Systems Architectures

Vol. 8, No. 1, March 2013

Rapid Prototyping for Domain-specific Languages 67

Language Development

Concrete DSL

Implement a 
Metamodel

Customize

Extend

Editor (Application) or
hosted Editor (Visual Studio)

Compile

Design & Model
Process

1

Transform

2

3

3

4

Result(s):
- metamodel/DSL

Result(s):
- executable language
- view model(s)

Input(s):
- metamodel/DSL
- tool framework

Result(s):
- model/instance
- PDE editor (stand-alone/hosted)

PDE Language Development

Implement the
PDE Language

0

Figure 3: The language development process for creating
a new domain-specific language using PDE.

hardly be expressed in the domain-specific lan-

guage itself.

4 Instance Modelling

The outcome of the aforementioned language de-

velopment process are the modelling language

(for the engineers/designers) itself and corres-

ponding modelling tools (for engineers and au-

thors), which are either a stand-alone or a Visual

Studio-hosted tool. The experiences with assist-

ants like the built-in one of Visual Studio showed

that the PDE-based process does make the lan-

guage definition easier, especially if a compre-

hensive editor for models based on the language

should be available.

However, as the PDE Language designer is integ-

rated with Visual Studio, its application requires

some technical understanding. The language de-

signer component is far away from being easy

to understand for non-expert stakeholders and

supports the definition of a domain-specific lan-

guage on a fairly technical level.

4.1 Instance Modelling — The Idea

In a cooperative and iterative modelling approach

creative and formal tasks overlap to a certain ex-

tent (Cho et al. 2012; Kuhrmann 2011) — espe-

cially if a new domain needs to be ‘explored’ in a

stakeholder workshop.

Therefore, the idea of instance modelling can be

described as follows: A stakeholder workshop to

understand and capture the domain is done ‘as

usual’ — but instead of using a classical white-

board, a digital ‘informal’ modelling pane is used.

This pane collects domain entities, which are rep-

resented visually, and simple associations. In the

workshop, entities can be collected, structured,

combined, and so on.

The goal is to express the domain using proto-

typical model instances as representatives for the

domain under consideration. Stakeholders are

able to describe the domain from their perspec-

tive and experience. Thus, instance modelling

currently aims at complementing the elaboration

of a new domain-specific modelling language in

cases where the domain still has to be explored.

Changes to existing domain-specific modelling

languages in the sense of model evolution have

not been considered.

4.2 The Approach

In an instance modelling workshop, a prototyp-

ical instance of the envisioned domain-specific

modelling language is drawn. A domain element,

like a role or an artefact, is captured by an ele-

ment class with some attribute slots filled; rela-

tionships between domain elements, like a role



Enterprise Modelling and Information Systems Architectures

Vol. 8, No. 1, March 2013

68 Marco Kuhrmann, Georg Kalus, Alexander Knapp

being responsible for an artefact, are either rep-

resented by a reference, expressing a directed

connection, or by an embedding, expressing a

whole-part relationship (cf. Fig. 4, step 1).

Behind the scenes, the language-modelling tool

captures the model prototype and translates into

(or derives) PDELanguage constructs to prepare

the definition of the target domain-specific lan-

guage. The domain-specific language is mostly

the result of the informal design and builds the

basis to rapidly create the new DSL.

PDE infers the language using the following map-

ping:

• Element class �→ DomainClass

• Reference �→ ReferenceRelationship

• Embedding �→ EmbeddingRelationship

Furthermore, attributes associated with elements

are mapped to DomainProperties; also a set of

similar properties can be mapped to one domain

property, e.g., a property ‘Name’. Primitive types,

e.g., Int or String, are directly mapped to pre-

defined domain types of PDE.

The modelling process is triggered by user inter-

actions that are caught by the ViewModel (Fig. 2).

The editor realises, e.g., drag and drop events and

the framework calls methods that, for instance,

create new domain entities. Figure 4 shows an ex-

ample: When dragging an image onto the model-

ling pane (step 2 of Fig. 4) the ViewModel catches

the assigned event and creates a new instance of

a DomainClass (Fig. 1). Having added the new

entity to the instance model, the language engin-

eer can edit the entity, e.g., editing name, adding

attributes, create relationships to other entities,

and so on.

The resulting domain-specific language can be

used to create or generate various tools, in partic-

ular, for modelling. Currently, only a PDE export

is implemented, but other meta-modelling tools,

such as EMF/GMF, could be targeted. Therefore,

an appropriate SerialisationFormatter has to be

added to extend the PDE Framework (Fig. 2).

The stakeholders use the resulting modelling tools.

The style of modelling, the notation and the se-

mantics comply with the drafts made during the

language creation workshops.

4.3 DSL Optimisation

So far, we only changed the ‘input channel’ for

the design of the domain (see language develop-

ment process in Fig. 3, step 1). One could say, this

is just another front end to the PDE Language

designer. However, we have to take into account

that we consider two different ways of creating

domain-specific languages:

1. The first option to create a domain-specific

language—creating a language based on solid

information gathered beforehand—works fine

if the language engineer has knowledge about

the domain. In consequence a frequent inter-

action with the stakeholders might be unne-

cessary, and the design of a domain-specific

language is close to, e.g., UML architecture

design.

2. The second way to create a domain-specific

language is a more ‘exploratory’ approach. It is

applied in settings, where language engineers

need to get initial information about the con-

sidered domain. At this point instance model-

ling replaces domain analysis workshops by an

interactive design of the domain, represented

by exemplary instances.

Figure 4 gives an idea of the second scenario

of designing a domain-specific language: A lan-

guage engineer asks a stakeholder for a domain

entity, i.e., a role, drags a picture that symbolises

this entity onto the modelling pane, and starts to

refine this entity (i.e., adding attributes) during

the interview with the stakeholder. From a tech-

nical point of view, this way is rather ‘pragmatic’

and does not result in an optimal domain-specific

language.

Therefore, optimisation is performed before final-

ising the language. PDE analyses those captured

domain entities, derives domain types, and ana-

lyses them for optimisation opportunities, e.g.,



Enterprise Modelling and Information Systems Architectures

Vol. 8, No. 1, March 2013

Rapid Prototyping for Domain-specific Languages 69

1 Create a new PDE language project

2
Choose a notation element, which

represents a domain entity, and
drag'n'drop it.

3

Edit the domain properties
(individually for each captured instance)

Make a domain type out
of an object...

Create new domain objects from the
type list...

Figure 4: Concept of instance design: A PDE-based Visual Studio-hosted editor pane is used to capture model instances.
A model explorer allows for the precise definition of types, domain properties, and, finally, for the derivation of a
concrete modelling language.

common attributes that can be extracted into a

base class. This approach is based on refactoring

(Fowler et al. 1999) and is applied on tentative

languages. Currently, the platform allows for

optimisations triggered by properties and rela-

tionships. Figure 5 shows two examples: In the

left part of the figure a first optimisation strategy

is shown. Starting with a number of designed

domain entities, PDE analyses those entities for

potentially ‘sharable’ attributes. The analysis

criteria are the name of an attribute as well as

its domain type. If there were any attributes

meeting those criteria, PDE asks, whether those

should be refactored using a shared base class for

the shared attribute. In the second optimisation

opportunity, PDE analyses the captured model

for similarities of relationships (Fig. 5, depicted

on the right). Reference relationships are deemed

similar if their roles are named equally and are of

the same type. If the platform finds candidates,

it asks, whether a shared base class should be

created that realises the extracted relationship.



Enterprise Modelling and Information Systems Architectures

Vol. 8, No. 1, March 2013

70 Marco Kuhrmann, Georg Kalus, Alexander Knapp

Type A

+ name: String

Type B

+ name: String

Type C

+ name: String

Type X

+ name: String

Type A Type B Type C

Type A

Type B

Type C
+myAttr: Type C

+myAttr: Type C

Type X

Type A Type B

Type C
+myAttr: Type C

extract a shared attribute
into a shared base class
using name and domain
type information

Optimisation: Find a base class for a shared attribute Optimisation: Find a base class for a shared relationship 

extract a shared relationship
into a shared base class
using name and domain
type information

Figure 5: Language optimisation: A captured instance is analysed and optimised in order to create a ‘real’ domain-
specific language. The platform proposes possible optimisations.

Figure 6: The classically designed DSL and the generated tool according to (Kuhrmann et al. 2010b).



Enterprise Modelling and Information Systems Architectures

Vol. 8, No. 1, March 2013

Rapid Prototyping for Domain-specific Languages 71

Figure 7: The modeled instance that derives the team modelling DSL (upper part) and the generated editor for the team
modelling DSL (lower part).



Enterprise Modelling and Information Systems Architectures

Vol. 8, No. 1, March 2013

72 Marco Kuhrmann, Georg Kalus, Alexander Knapp

5 Case Study

Since our research was exploratory, we opted

for a case that gave us a ‘reference point’: In

(Kuhrmann et al. 2010b) we discussed PDE using

a small domain-specific language for modelling

teams at different sites in a globally distributed

development project. For the realisation of the

instance modeler the primary requirement was

that the inferred domain-specific language (in-

cluding the resulting modelling tools) was at least

as powerful as the classically designed one.

Figure 6 shows the editor and an exemplary model

of the so-called team coordination language2, which

was developed using the ‘classic’ PDE DSL devel-

opment process (cf. Fig. 3). According to our key

requirement, a domain-specific language which

is created based on the instance modelling ap-

proach has to contain all the domain types, the

domain attributes, and so on. Furthermore, the

resulting editor should have the same appearance

as the ‘classic editor’. Consequently the new ed-

itor has to open and read concrete models that

were designed using the old editor.

Figure 7 shows in the upper part the Visual Studio-

hosted instance modeler and a captured instance

of a team model, including different sites, rela-

tionships, and different kinds of team members.

According to the aforementioned development

process (instance capturing, optimisation), the

instance modeler add-on to PDE infers a domain-

specific language from the instance. The inferred

language is the input (see Fig. 3) for the genera-

tion of an editor (lower part of Fig. 7). The selec-

ted simple case shows that the key requirement

was completely achieved. The domain-specific

language that was created using the instance

modelling approach was, finally, a ‘clone’ of the

originally designed one. Even the models, which

were created with the old editor, could be opened

with the new editor.

2Based on the keynote ‘Speculations on Coordination

Models’ by Len Bass at the International Conference on

Global Software Engineering in Princeton, 2010.

6 Extended Language Development
Based on instance modelling we re-define the

language development process. Figure 4 shows

a series of screenshots that illustrate the exten-

sion. Beside the ‘classic’ approach as described

in Sect. 3.2 a language engineer can open a new

PDE-DSL-Project (1). The editor pane is hosted

in a Visual Studio environment.

Language Development

Concrete DSL

Implement a 
Metamodel

WPF Editor (Application) or
Visual-Studio-hosted Editor

1'

Transform

2

Result(s):
- process metamodel

PDE Language Development

Input(s):
- stakeholder input
- images etc.

Design an
Instance

1''

Optimize a
Metamodel

1'''

Figure 8: Extended language development process w.r.t.
instance modelling.

To create a new graphical language element (do-

main type), the language engineer only needs to

drag and drop, e.g., an image onto the pane (2).

The picture immediately becomes a domain type

to which corresponding attributes can be ad-

ded (3). Furthermore, the domain type is also

placed in the design ribbon and can be used to

create new domain objects of the type. Having

drawn the instance of interest, the mechanism

described in Sect. 4 comes into play to (1) gener-

ate a PDE-based metamodel, and to (2) optimise

the inferred metamodel.



Enterprise Modelling and Information Systems Architectures

Vol. 8, No. 1, March 2013

Rapid Prototyping for Domain-specific Languages 73

Figure 8 shows the modification of the language

development process, which was described in

Fig. 3. Instead of simply modelling a domain-

specific language, another way to create a domain-

specific language is added. The first step is now

to directly Implement a Metamodel (step 1′) or to
Design an Instance (step 1′′), which is transferred

into a domain-specific language. Additionally,

step 1′′′ Optimise a Metamodel can be executed

to optimise a designed or a directly implemented

metamodel. The outcome of those steps is, itself,

input for the transformation step, which leads to

the classical language development process.

7 Conclusion & Future Work

We presented an extension to our PDE platform

for instance modelling to capture domain mod-

els and to transform them into a domain-specific

language. The user-centered part of domain mod-

elling is similar to approaches known from draw-

ing tools, such as Microsoft Visio and therefore

easier to learn and understand for non-techno-

phile stakeholders. The PDE platform creates

domain-specific languages from such drawn fig-

ures in the background and provides language

engineers with some refactoring-like optimisa-

tion capabilities.

Summarised, the instance modelling extension

allows users to draw a figure of the currently

considered domain, and creates a domain-specific

language from the drawing.

In (Kuhrmann 2011) we already discussed first

ideas, concepts, and prototypes. We also dis-

cussed some challenges — similar to Cho et al.

(2011) — e.g., semantics of pictures, language de-

rivation and respective mappings, or structuring

of complex languages. We furthermore discussed,

if ‘the modelling pane is just another domain-

specific language’ and ‘and to what extent a user-

defined domain-specific language can be derived

automatically?’

Currently, we have a first prototype that allows

to derive a domain-specific language from one

particular instance (Sect. 5). Also, we decided to

realise the PDE extension as a domain-specific

language, too. The mechanism behind the proto-

type is, therefore, a model transformation at the

PIM to PIM level (Kleppe et al. 2003).

Future Work

This paper outlined some (promising) steps to

support rapid language design. In ongoing re-

search we have first to improve the capabilities

of domain capturing and the language deriva-

tion techniques. Here, we need to extend our

prototype to be able to extract a domain-specific

language from different instances instead of only

one. Furthermore we have to improve the usabil-

ity. Although the user interface is already quite

simple and easy to understand, even for non-

technophile stakeholders, the working process

is, still, complex and requires expertise. Without

guidance of a PDE-trained language engineer ‘or-

dinary’ users are certainly not able to perform

domain capturing.

Finally, we validated our idea against only a few

key requirements and provided a proof of con-

cept. We need, however, to intensively evaluate

the feasibility and the economic impacts of our

ideas to answer the questions: Is the instance

modelling approach faster? Is the quality of

the generated (and optimised) domain-specific

languages comparable to those that are devel-

oped the classic way? How much money can

be saved using this approach? To this end, the

most recent release of the PDE platform, includ-

ing the instance modelling add-on, is available at

http://pde.codeplex.com to everybody

for testing and evaluation purposes.

Acknowledgments

We want to thank Eugen Wachtel and Manuel

Then for their essential support during the de-

velopment of PDE. We also thank Sebastian Eder

for reviewing this paper.



Enterprise Modelling and Information Systems Architectures

Vol. 8, No. 1, March 2013

74 Marco Kuhrmann, Georg Kalus, Alexander Knapp

References
Cho H., Gray J., Sun Y., White J. (2011) Key Chal-

lenges for Modeling Language Creation By

Demonstration. In: ICSE Wsh. Flexible Mod-

eling Tools

Cho H., Gray J., Syriani E. (2012) Creating Visual

Domain-Specific Modeling Languages from

End-User Demonstration. In: Int. Wsh. Mod-

elling in Software Engineering (MiSE)

Cook S., Jones G., Kent S., Wills A. C. (2007)

Domain-Specific Development with Visual

Studio DSL Tools. Addison-Wesley

Davis, R. (2010) ARIS Design Platform: Ad-

vanced Process Modeling and Administration.

Springer

Folz B., Jablonski S. (2010) OMME — A Flex-

ible Modeling Environment. In: SPLASHWsh.

Flexible Modeling Tools

Fowler M., Beck K., Brant J., Opdyke W., Roberts

D. (1999) Refactoring: Improving the Design

of Existing Code. Addison-Wesley

Fowler M., Parsons R. (2010) Domain-Specific

Languages. Addison Wesley

Greenfield J., Short K. (2004) Software Factories.

Wiley & Sons

Kimelman D., Herschman K. (2011) A Spectrum

of Flexibility – Lowering Barriers to Mod-

eling Tool Adoption. In: ICSE Wsh. Flexible

Modeling Tools

Kleppe, A. (2008) Software Language Engineer-

ing. Addison-Wesley

Kleppe A., Bast W., Warmer J. B. (2003) MDA

Explained: The Model Driven Architecture:

Practice and Promise. Addison-Wesley

Kuhrmann M., Kalus G., Then M., Wachtel E.

(2010a) From Design to Tools: Process Mod-

eling and Enactment with PDE and PET. In:

ASE Wsh. Academic Software Development

Tools and Techniques (WASDeTT-3)

Kuhrmann M., Kalus G., Wachtel E., Broy M.

(2010b) Visual Process Model Design using

Domain-specific Languages. In: SPLASHWsh.

Flexible Modeling Tools

Kuhrmann M. (2011) User Assistance during

Domain-specific Language Design. In: ICSE

Wsh. Flexible Modeling Tools

Managed Extensibility Framework. Online: http:

//mef.codeplex.com/

MetaCase: Company’s homepage and samples.

http://www.metacase.com

OMG (2008) Software & Systems Process Engi-

neering Metamodel Specification (SPEM) Ver-

sion 2.0. Specification. Object Management

Group

OMG (2010) Business Process Model and Nota-

tion (BPMN) Version 2.0. Specification. Ob-

ject Management Group

OMG (2011a) Meta Object Facility (MOF) Core

Specification Version 2.4.1. Specification. Ob-

ject Management Group

OMG (2011b) Unified Modeling Language

(UML): Superstructure Version 2.4.1. Speci-

fication. Object Management Group

Schätz, B. (2001) The ODL Operation Definition

Language and the Autofocus/Quest Appli-

cation Framework AQUA. Tech. Rep. TUM-

I0111. Technische Universität München

Steinberg D., Budinsky F., Paternostro M.,

Merks E. (2008) EMF: Eclipse Modeling

Framework, 2nd ed. Addison-Wesley

Sych O. (2007) T4: Text Template Transforma-

tion Toolkit. http://www.olegsych.com/2007/

12/text-template-transformation-toolkit/

Volz B., Zeising M., Jablonski S. (2011) The Open

Meta Modeling Environment. In: ICSE Wsh.

Flexible Modeling Tools

Marco Kuhrmann, Georg Kalus

Technische Universität München

Faculty of Informatics

Boltzmanntstr. 3

85748 Garching

{kuhrmann | kalus}@in.tum.de

Alexander Knapp

Universität Augsburg

Institute of Informatics

Universitätsstr. 6a

86159 Augsburg

knapp@informatik.uni-augsburg.de


