
Enterprise Modelling and Information Systems Architectures
Vol. 12, No. 1 (2017). DOI:10.18417/emisa.12.1
The Process Checklist 1

The Process Checklist
Paper-based Enactment of Human-driven Processes

Michaela Baumann*,a, Michael Heinrich Baumannb, Stefan Schöniga, Stefan
Jablonskia
a Institute for Computer Science, University of Bayreuth, Germany
b Institute for Mathematics, University of Bayreuth, Germany

Abstract. When enterprises are determined to introduce process management, they usually aim at IT system
supported execution of processes by Workflow Management Systems (WfMSs) or Process-aware Information
Systems. In constrast to this common tendency of process technology, we introduce a paper-based scheme to
enact and execute human-driven processes in the work at hand. Our approach is motivated by insights
into problems of firms that tried to establish process technology and failed with conventional methods.
One of the design objectives for our scheme was to provide a straightforward, quickly viable alternative
to WfMS-based process execution at a reasonable effort. The paper-based scheme we introduce follows
classical checklist concepts and builds upon the checklist idea in order to reach the same objectives as
WfMSs: task coordination, execution guidance, traceability. In this article, we describe how to transform
Business Process Model and Notation (BPMN) process models into Process Checklists. We also present
extensive evaluations of this approach both in the academic and in the business domain.

Keywords. Process Modelling • Process Checklists • Paper-based Process Execution

Communicated by S. Strecker. Received 2015-09-03. Accepted after 3 revisions on 2017-02-07.

1 Introduction

For approximately 20 years, process management
has been regarded as an important operational
task responsible both for the description of com-
plex applications and for supporting their execu-
tion (Jablonski 2010). In traditional approaches,
business processes are executed by Workflow-
Management Systems (WfMSs) (Zairi 1997), also

* Corresponding author.
E-mail. michaela.baumann@uni-bayreuth.de
The authors gratefully acknowledge the superb collaboration
with Sparkasse Bamberg. Especially, the authors would
like to thank Stephan Kirchner, board member and CEO of
Sparkasse Bamberg. In addition, the authors thank all review-
ers and editors, especially Stefan Strecker, for their valuable
comments and Jonathan Owens and Lars Ackermann for their
support. The work of Michael Heinrich Baumann is sup-
ported by a scholarship of Hanns-Seidel-Stiftung e.V. (HSS),
funded by Bundesministerium für Bildung und Forschung
(BMBF).

called Process-aware Information Systems or Pro-
cess Engines. The key benefits of the application
of WfMSs are task coordination, step-by-step guid-
ance through process execution and traceability
supporting compliance issues (Reichert and Weber
2012). Nevertheless, it also has to be taken into
account that the introduction of a WfMS is a time
consuming and cost intensive task requiring pro-
found technical skills. In particular, this research
is motivated by practical problems that arose from
a project with several small and medium-sized
enterprises (SMEs) and the local Chamber of In-
dustry and Commerce, IHK Oberfranken. The
project C2P2 revealed that despite the wish to
introduce business process management (BPM)
technology, the fear of not being able to cope
with the new IT system technology inhibits their
introduction (C2P2 2015). We identified several

http://dx.doi.org/10.18417/emisa.12.1
michaela.baumann@uni-bayreuth.de

Enterprise Modelling and Information Systems Architectures
Vol. 12, No. 1 (2017). DOI:10.18417/emisa.12.1

2 Michaela Baumann, Michael Heinrich Baumann, Stefan Schönig, Stefan Jablonski

reasons why organisations refrain from introdu-
cing WfMSs. A first one is that they consider
the introduction of a WfMS as a non-affordable
knowledge- and cost-intensive IT project (Mel-
enovsky 2005). This is especially applicable for
SMEs. For instance, Chong (2014) mentions lack
of financial resources and lack of time as the two
most inhibiting factors for IT-driven BPM tech-
nology in SMEs. Also the GPM Netzwerk, an
association that promotes the introduction of busi-
ness process technology in Germany, identified
cost and lack of time but also lack of expertise as
factors that prevent the introduction of IT-driven
BPM technology in SMEs (GPM Netzwerk 2015).
These findings conform to our experiences within
the C2P2-project.

Thus, we raise the question: Is there an al-
ternative way to leverage on process management
technology that avoids the previously named ef-
forts but still maintains the key benefits of WfMSs?
Of course, this alternative might yield the need
for a different implementation of these benefits.

In addition to the constraint to certain organ-
isations introducing WfMSs noted above, we also
came across other reasons not to rely on IT-based
BPM technology. One was the missing flexibil-
ity of such systems (Montali 2009; Zeising et al.
2014). For business processes that frequently de-
pend on dynamic human decisions, conventional
WfMSs turned out to be too restrictive (Swenson
2010; van der Aalst et al. 2005). In particular,
these systems do not appropriately deal with ex-
ceptions, which regularly occur in human-driven
workflows. Often, the only way to deal with an ex-
ception is to bypass the system. This observation
yields the general discussion about ‘the computer
won’t let them’, i.e. that a computer does not allow
doing things users like to do (Condon 1993).

Besides, we can follow Luff’s argument that if
(original) paper documents are needed for process
executing, in many cases a paper-based execution
tool is also preferred (Luff et al. 1992). However,
there already exist decent approaches that cope
with such situations. Nevertheless and all in all,
despite the pervasiveness of enterprises by IT
technologies, especially in the BPM area, the

additional introduction of ‘another IT-system’ has
to be regarded as critical.

As an alternative way of supporting the execu-
tion of processes independent of IT-based process
management systems, we propose a paper-based
scheme. This new and unconventional way of
process execution support is especially suitable
for human-driven processes, i.e. for such pro-
cesses that cover, according to Harrison-Broninski
(2010), rather high-level, especially management
work, knowledge work with a certain degree of
autonomy of the involved agents or critical human
actions such as the health care sector. Further, the
paper-based scheme is particularly appropriate for
well-structured processes with a relatively small
degree of creativity but with a high degree of flex-
ibility in the sense of dynamic human decisions as
well as fast and uncomplicated reacting to external
circumstances as, for example, is usually required
in clinical processes. Thus, for those shunning
the introduction of WfMSs or for those in need
of a certain type of flexibility within their rigid
processes, we introduce the so-called ‘Process
Checklist’. By this approach, we want to reduce
the necessity of IT systems for BPM to a certain
extent. The starting point of the approach is the
modelling of a business process model, obtained,
for example, through the use of an IT-based pro-
cess modelling system. This is justified since a
process modelling system is—from a technical
view—much simpler to run than a process execu-
tion system. In addition, often a process modelling
system can be obtained free of charge (see, for
example, AXONiVY 2016). In contrast, a pro-
cess execution system often requires a complex
installation and typically is not free.

Based on this business process model, we de-
scribe a transformation algorithm to obtain the
Process Checklist for which we define the general
structure and the enactment, i.e. how to execute
a process with the help of the Process Check-
list. This means, we replace an IT-based process
execution system by a paper-based step-by-step
instruction manual. The Process Checklist is
physically handed over from process participant
to process participant during process execution.

http://dx.doi.org/10.18417/emisa.12.1

Enterprise Modelling and Information Systems Architectures
Vol. 12, No. 1 (2017). DOI:10.18417/emisa.12.1
The Process Checklist 3

Thus, the implementation of such a process execu-
tion system is virtually nonexistent; IT skills and
knowledge are not needed.

Despite being entirely paper-based, a Process
Checklist still supports key benefits of IT-based
WfMSs. The checklist is handed over to respon-
sible agents (task coordination), process tasks are
serialised and marked by a unique identifier (step-
by-step guidance) and the checklist itself as well
as the corresponding signatures ensure traceable
process execution that can be archived at the end
without the need for a special support.

The work at hand introduces the general struc-
ture of Process Checklists as well as an elabor-
ate transformation algorithm of basic Business
Process Model and Notation (BPMN) diagrams
Object Management Group Inc. 2011 to Process
Checklists by giving transformation instructions
for the particular process model elements. The
results were basically achieved through a design-
oriented research see Hevner and Chatterjee 2010,
characterised through seven guidelines for design
science like problem relevance and design as a
search process, as we first faced the problem of
finding a fast and easy process execution support
tool meeting all the requirements of a proper pro-
cess model. After investigating existing methods,
we developed the Process Checklist on the basis of
the available checklist designs and supplemented
them with the necessary process model elements.
After that, we validated the prototype checklist
with requirement comparisons and use cases. The
design-oriented research approach suited our goal
as we started form the practical problem that we
wanted to solve. Note that this work is based on
Baumann et al. (2014). In addition to various
improvements and further concepts, the work at
hand extends by a description of how it is actual
enacted (Sect. 6) as well as by a detailed evaluation
and case studies (Sect. 7).

2 Structure of the Process Checklist

According to Jablonski and Bussler (1996), each
process model should cover at least five perspect-
ives. Accordingly a Process Checklist should

therefore support the following to serve as a soph-
isticated support tool for process execution: There
are

• the functional perspective (i.e. the task descrip-
tion),

• the organisational perspective (i.e. the assign-
ment of agents to tasks),

• the data perspective (i.e. the description of data
flow, including data generation and consump-
tion),

• the operational perspective (i.e. the assignment
of systems and services to tasks) and

• the control flow perspective (i.e. the order of
tasks to follow in an execution).

The Process Checklist presented in this work is
designed in compliance with these perspectives.
All of them are present in the Process Checklist
in Fig. 1.

In principle, we distinguish two kinds of check-
list steps, also termed checklist points. There are
operating points, which describe the activities of
a process, and control points, which decide about
the execution order of the activities. The different
points are indicated through different colours in
the example of Fig. 1. Operating points are light
coloured and control points are dark coloured (in
Fig. 1, Steps No. 2 and 8). The two different kinds
of checklist points are explained in the following.

A schematical representation of an operating
point is given in Fig. 2. An operating point has
five fields that possibly need to be filled in with
information about a certain activity. Field i on
the left-hand side assigns a unique number, i.e.
unique for one single checklist, to the point that
is needed to address this point from within other
checklist points. Field ACi in the middle contains
the description of the activity (AC) that has to
be fulfilled, possibly also containing information
about the system or service that has to be used
when fulfilling the task. Field IDi on the left of
the activity description contains a list of incoming
data (ID), i.e. consumed data and documents that
are needed to perform the activity, and field ODi

on the right of the activity description contains a

http://dx.doi.org/10.18417/emisa.12.1

Enterprise Modelling and Information Systems Architectures
Vol. 12, No. 1 (2017). DOI:10.18417/emisa.12.1

4 Michaela Baumann, Michael Heinrich Baumann, Stefan Schönig, Stefan Jablonski

1 determine
exam subject

student

(name)

(date, signature)

2 XOR
exam type?

□ written: 3

□ oral: 9

student

(name)

(date, signature)

3
system

notification
(written exam)

room written exam,
date written exam

student

(name)

(date, signature)

4 room written exam,
date written exam

perform
written exam exam unmarked

student

(name)

(date, signature)

5 exam unmarked perform
exam correction exam marked

auditor

(name)

(date, signature)

6 exam marked
register

exam marks
in system

exam marked

sec of chair

(name)

(date, signature)

7 exam marked
send exam to
examination

office

sec of chair

(name)

(date, signature)

8 XOR end go to 15
student

(name)

(date, signature)

Figure 1: First part of the Process Checklist for the process ‘Administering an exam’.

i IDi ACi ODi
AGi

date, signature

Figure 2: Schematical representation of an operating point.

http://dx.doi.org/10.18417/emisa.12.1

Enterprise Modelling and Information Systems Architectures
Vol. 12, No. 1 (2017). DOI:10.18417/emisa.12.1
The Process Checklist 5

j ANj CO j GTj
AG j

date, signature

Figure 3: Schematical representation of a control point.

list of outgoing data (OD), i.e. data and documents
that are produced during the activity. It is also
allowed to list documents in IDi and ODi that are
only passed through and not needed for fulfilling
task ACi . Field AGi assigns a human agent (AG),
or in general a role, to the activity. Altogether,
an operating point contains information about the
functional (field ACi), organisational (field AGi),
operational (potentially mentioned in field ACi)
and data-flow perspective (fields IDi and ODi).
The numbers on the left of each point serve as
identifiers but do not basically impose an execution
order of the points. This is mainly done by the
second kind of checklist points, the control points.
A schematical representation of a control point is
given in Fig. 3.

A control point consists of five fields, too.
Again, on the left-hand side, there is a unique
number j assigned to the point. The uniqueness
of the point numbers applies jointly for operat-
ing and control points, so if there is an operating
point with number k, there is no control point
with number k and vice versa. Field CO j in the
middle contains advices for splitting and joining
the control flow and, when splitting with respect
to several alternatives, also contains the condi-
tion (CO) or question under which one or more
alternatives has or have to be chosen. Field ANj

is reserved for annotations (AN) that can contain
instructions for documents when needed to check
the condition in CO j or a recommended execution
order of independent alternatives.

In field GTj , the go-to instructions for the dif-
ferent alternatives are listed. A refinement of field
GTj is shown in Fig. 4. Attributes a j, · represent
the answers (a) to the question in field CO j or con-
crete forms of the condition that has to be checked.
If field CO j indicates subprocesses that may be
executed independently, then attributes a j, · are

simply replaced by the phrase "go to". Also, the
names of subchecklists, which will be explained
later, may be listed there. Attributes gj, · refer to
the numbers of other checklist points, where the
checklist has to be passed on in the corresponding
cases. These points can either be operating or
control points. In the sample checklist in Fig. 1,
an exam type has to be chosen exclusively in
control point No. 2. In control point No. 8, one
subprocess of an exclusive split is finished. The
variable assignment in control point No. 2 for
field GT2 is as follows: a2,1 = written, g2,1 = 3,
a2,2 = oral, g2,2 = 9. The confirmation lines
(date, sign.) behind every (a, g)-pair as shown in
Fig. 4 are not visible here because the exclusive
control point is performed only once. Whether
the confirmation line is shown or not is apparent
through a Boolean attribute c, which is c2 = 0 in
the case of Fig. 1. Why this confirmation line, the
last (a, g)-pair a j,k, gj,k without box □, that may
also be not visible if a j,k = "" and gj,k = "", and
all other components are needed, will be further
explained in Sect. 4. In short, field GT contains
information about how to navigate through the
checklist when processing exclusive or inclusive
choices or parallelism. Parallelism means that
certain independent subprocesses not influencing
each other may be executed at the same time. If
this is not possible, i.e. if the subprocesses have to
be executed by the same agent where concurrency
is a physical problem, their order of execution is
not prescribed.

To conclude this section, a fully formalised rep-
resentation of the Process Checklist, making use
of the field names introduced above, is available
in Definition 1. Every checklist is depicted by a
vector of operating points po and control points
pc.

http://dx.doi.org/10.18417/emisa.12.1

Enterprise Modelling and Information Systems Architectures
Vol. 12, No. 1 (2017). DOI:10.18417/emisa.12.1

6 Michaela Baumann, Michael Heinrich Baumann, Stefan Schönig, Stefan Jablonski

□ a j,1 gj,1 date, sign.

□ a j,2 gj,2 date, sign.

: : :
□ a j,k j−1 gj,k j−1 date, sign.

a j,k j gj,k j

Figure 4: Schematical representation of field GTj of
control point No. j.

Definition 1 (Checklist Vector) A checklist is a
vector C = (pt1, p

t
2, . . . , p

t
n), n ∈ N, t ∈ {o, c} with

two different kinds of components:

poi = (IDi, ACi,ODi, AGi) (operating point)

with IDi, ACi,ODi, AGi being strings and

pcj = (ANj,CO j,GTj, AG j) (control point)

with ANj,CO j, AG j being strings and GTj being
a vector of the form

GTj = (cj, a j,1, gj,1, a j,2, gj,2, . . . , a j,k j , gj,k j)

with k j ∈ N, strings a j,l, integers gj,l ∈

{1, . . . , n} ∪ {""}, l = 1, . . . , k j and cj ∈ {0, 1}.

The checklist vector representation of the
sample process ‘Administering an exam’ of Fig. 1
is given in Fig. 5. The first eight rows (No. 1
to No. 8) correspond to the graphical checklist
of Fig. 1. In the following section, the Process
Checklist design and structure shall be compared
to already established checklist types.

3 Background and Related Work
Despite an extensive literature search, we were not
able to find an accurate and universal definition of
checklists. However, in a common understanding,
a checklist is a list of required items, things to
be done or points to be considered, usually used
as a reminder (Wolff et al. 2004). Checklists
are generally seen both as a helpful tool in daily
life, e.g. when talking about shopping lists or
packing slips, and as a suitable means for error
management and performance improvement in
highly complex scenarios like clinical workflows

(Hales and Pronovost 2006), aircraft preparation
(Degani and Wiener 1991; Hartel and Chou 1995)
or project management (Boehm 1991), to mention
only a few examples. Usually, in all of these fields
checklists are rather an unsorted list of application
specific items that have to be checked for validity.
Routing slips or dockets are an exception in this
context and are addressed, too. In the following a
short introduction to the use of checklists in the
above listed application fields shall be given to get
a better idea of this topic.

3.1 Clinical (Symptom) Checklists
In the field of clinical healthcare, checklists, most-
ly paper checklists fixed on clipboards, are used
for detecting or determining diseases (e.g. Briere
et al. 2001; Derogatis et al. 1974). Roughly
summarised, symptoms are manually recorded
according to a list of possible symptoms and then,
analysing the checkmarks, a possible illness is
ascertained. In this case, the checklist is a means
that helps physicians to detect a patient’s disease
but it does not provide information about the
process of analysing the patient’s health condition
itself. Faerber et al. (2007) propose the use of
checklists to compactly map small process steps
that can be executed in arbitrary order within a
process model. This implies that this is a very
simplified application of our approach as there is
no ordering given for the process steps, no support
of data flow and of organisational issues.

The idea of clinical checklists is further de-
veloped by the WHO (2009). There, a checklist
is suggested to improve save surgery, i.e. to guide
and monitor a whole operation team through a
surgery process. This kind of checklist application
is close to a Process Checklist we aim at, but there
are two main points that make it unsuitable for
our purpose. The first one, also mentioned by the
WHO (2009), is that only one person is responsible
for the checklist, i.e. the checklist can only be gone
through and filled in by a single person. Further-
more, control flow including exclusive, inclusive
or parallel execution orders, which are essential
for business applications, are not available.

http://dx.doi.org/10.18417/emisa.12.1

Enterprise Modelling and Information Systems Architectures
Vol. 12, No. 1 (2017). DOI:10.18417/emisa.12.1
The Process Checklist 7

No. type ID/AN AC/CO OD/GT AG
1 o determine exam subject student
2 c XOR

exam type?
c2 = 0
a2,1 = written g2,1 = 3
a2,2 = oral g2,2 = 9
a2,3 = "" g2,3 = ""

student

3 o system notification
(written exam)

room written exam, date written
exam

student

4 o room written exam,
date written exam

perform written exam exam unmarked student

5 o exam unmarked perform exam correc-
tion

exam marked auditor

6 o exam marked register exam marks in
system

exam marked secretariat of
chair

7 o exam marked send exam to examina-
tion office

secretariat of
chair

8 c XOR end c8 = 0
a8,1 = go to g8,1 = 15

student

9 o system notification
(oral exam)

student

10 o determine and assign
examination date

examination date secretariat of
chair

11 o examination date perform oral exam minutes of examination (un-
signed)

auditor

12 o minutes of examina-
tion (unsigned)

sign minutes of examin-
ation

minutes of examination (signed) assessor

13 o minutes of examina-
tion (unsigned)

sign minutes of examin-
ation

minutes of examination (signed) auditor

14 o minutes of examina-
tion (signed)

send exam mark and
protocol to examination
office

secretariat of
chair

15 o exam notification and
performance finished

secretariat of
chair

Figure 5: Checklist vector for the process ‘Administering an exam’ containing all elements according to Definition 1
needed for the graphical checklist.

http://dx.doi.org/10.18417/emisa.12.1

Enterprise Modelling and Information Systems Architectures
Vol. 12, No. 1 (2017). DOI:10.18417/emisa.12.1

8 Michaela Baumann, Michael Heinrich Baumann, Stefan Schönig, Stefan Jablonski

3.2 Aircraft Crew Checklists
Checklists in the field of air traffic mainly serve as
a reminder to obtain a proper configuration of the
plane and full quality and security in every flight
(Degani and Wiener 1991; Hartel and Chou 1995).
They are important especially for enhancing the
coordination during high workload and stressful
conditions, but also to reduce variability between
pilots. Throughout the years, they have trans-
formed from a simple memory-aid to a task by
themselves. The most common type of checklist
is a paper checklist as it is a very simple device
that may be held by the pilot, clipped to the yoke
or glued to instruments. As Degani and Wiener
(1991) mention, there are also several disadvant-
ages to paper checklists. The main one is the lack
of a pointer to distinguish between accomplished
and non-accomplished items, but also the lack of
a distinction between unaccomplished items that
are not yet done and that will not be done, the need
to hold checklists in one hand, meaning one hand
is occupied by the checklist, or the difficulty to
read them at night. This is why several other types
of checklists are common in the field of air traffic.
However, all types of checklists that are mentioned
in this context lack some of the process perspect-
ives listed at the beginning of Sect. 2. Apart from
the functional perspective, no other perspectives
are fully visible on aircraft paper checklists. By
Degani and Wiener (1991) also some guidelines
for designing and using flight-deck checklists are
listed, like the consideration of the workload of hu-
man agents when assigning the different tasks and
the ordering of checklist items either according to
certain dependencies or arbitrarily. As far as pos-
sible, we set up our checklist approach with a view
to these guidelines. However, the psychological
aspect and mental factors that are mostly related
to the strong responsibility a pilot has, were not of
great importance to us as to Degani and Wiener
(1991).

3.3 Project Management Checklists
Checklists in the field of project management can
either help organising the project team members
or serve as identifiers, e.g. risk identifiers (Boehm
1991). These identifier checklists are similar to

medical checklists, which means that they do not
provide information about a procedure itself but
operate more like a decision support (Kerzner
2013). Checklists helping organising the team are
task lists that allow assigning team members to the
task and distinguishing between mandatory and
optional items (Kerzner 2013). These task lists are
however customised to each project, rarely cover
whole processes and do not follow any standard-
isation. They also do not contain information
about the five process perspectives except for the
functional one. But they serve as a good starting
point, together with the other presented types of
checklists, for the Process Checklist representa-
tion and its features formulated in the work at hand.

3.4 Routing Slips/Dockets
Routing slips are already a more sophisticated
type of checklist used in the context of BPM
and process execution. They provide informa-
tion not only about the task itself but also about
participating agents, interfaces, process branch-
ing as well as processing, transport, layover and
throughput time (Organisationshandbuch 2015).
The Organisationshandbuch (2015) describes the
way of how to use a paper-based routing slip
whereas Kumar and Zhao (2002) explain an elec-
tronic one. Basically, a routing slip records the
several steps within a process with start and end
time and signatures of the executing agents. One
great disadvantage of routing slips is that they
are always attached to a physical or electronic
document. Therefore, they only monitor the
course of a specific document and cannot be used
across documents. Our checklist approach ex-
tends the concept of routing slips not only in this
document-bounded context but also allows for a
number of elaborate process patterns not repres-
entable on common routing slips, like parallel
subprocesses, iterations or role assignment. In the
Organisationshandbuch (2015), routing slips are
recommended as a means for identifying, not ex-
ecuting, processes and process variants during the
modelling phase. One use case for analysing pro-
cesses with routing slips in the healthcare sector
is described by Kellerhoff (2012).

http://dx.doi.org/10.18417/emisa.12.1

Enterprise Modelling and Information Systems Architectures
Vol. 12, No. 1 (2017). DOI:10.18417/emisa.12.1
The Process Checklist 9

3.5 Contribution and Delimitation to
Related Work

In this paper, we try to bring the widely used un-
structured checklists, that usually do not provide
any information about execution order and other
execution modalities like parallelism or exclusive-
ness, as well as the concept of routing slips into
a more structured and generally applicable form
to receive a structured process execution tool, but
also to maintain the uncomplicated usage of paper-
based checklists. By Jablonski (2010) and Seitz
et al. (2014), this kind of checklist is suggested
but not elaborated on. The disadvantages listed in
Sect. 3.2 are either not essential when it comes to
Business Process Checklists (like one hand being
busy) or are dissolved by special checklist features,
e.g. the problem of a missing pointer is resolved by
the signing field AG. The structure of a Process
Checklist as proposed in the work at hand still
reveals similarities to the traditional checklists
briefly presented above, especially to routing slips,
but also gives room to the process part of the de-
sired process execution tool. The traditional task
lists (e.g. the pilots’ aircraft configuration check-
lists) are somehow represented by the operating
points where their execution can be confirmed
by signing them. Of course, every agent has its
unique identifier to guarantee traceability of every
process execution. Simple checkmarks are not
enough to achieve this issue. In the following, the
execution of a Process Checklist consisting of the
elements presented in Sect. 2 is explained. Linked
to the execution of a checklist is the generation of
a checklist. Of course, a checklist has to be gener-
ated first before it can be executed, but generating
a Process Checklist also requires knowledge about
its execution. At some points, a certain execution
method of the checklist requires a certain design
of the checklist, which has to be considered at
generation time.

Theoretic approaches of structuring workflows,
excluding business process models that emphasise
control-flow, can be found in the field of structured
programming. There, structograms, like the Nassi-
Shneiderman diagram (Nassi and Shneiderman

1973) or the Jackson structured programming
(Jackson 1975), are used to graphically outline a
programme’s structure. However, they are more
similar to graphical business process models but
lack the possibility of expressing parallel execution
without conditions and arbitrary backward jumps,
as well as assigned agents and a separate data flow.
Also, the presentation did not seem appropriate to
us to serve as a support tool that is swift and easy
to understand. This is why we did not examine
structograms any further.

The main differences that distinguish the Pro-
cess Checklist from the related approaches are the
following:

• The basis for the Process Checklist is a com-
monly agreed process model.

• It is clearly defined which elements are needed
to generate a checklist applicable as process
execution support.

• The Process Checklist is able to fully reflect the
original flow of the process, including exclusive,
inclusive and parallel subprocesses and other
relevant process patterns.

• The Process Checklist involves multiple users
and coordinates their activities according to the
underlying process model.

These differences constitute the novelty of the
Process Checklist.

4 Enactment of the Graphical Checklist
The checklist method describes a valuable form
of process usage and widens its spectrum towards
non-computer based and flexible process execu-
tion where traceability is still maintained. How-
ever, before turning towards the execution of the
single Process Checklist elements, an additional
component besides the graphical checklist itself is
required, a so-called ‘cover sheet’. A cover sheet
identifies a process instance. The cover sheet
contains a timestamp, a text field for important
information about the process, the name of the
process owner, i.e. usually the person that started
the process instance and that serves as contact per-
son for this process instance, and a table showing

http://dx.doi.org/10.18417/emisa.12.1

Enterprise Modelling and Information Systems Architectures
Vol. 12, No. 1 (2017). DOI:10.18417/emisa.12.1

10 Michaela Baumann, Michael Heinrich Baumann, Stefan Schönig, Stefan Jablonski

the current state of the process. Depending on
the process, other information may be provided,
too. The state indicator is just a list of already
accomplished checklist points addressed by their
numbers and one point that is being processed at
the moment. When the process contains loops, the
number of the current checklist is noted directly
before the numbers of the checklist points. This
list of points serving as state indicator induces a
pointer, which is listed as one of the missing check-
list elements by Degani and Wiener (1991). The
cover sheet and the graphical checklist together
form the basis of the Process Checklist bundle,
which is, in this form, ready for execution.

4.1 Traceability of Checklist Executions
Successfully accomplished tasks are recorded on
the Process Checklist via signatures of correspond-
ing human agents. One of the most important fea-
tures is that at the end of the process all required
signatures must be gathered on the checklist. If
needed, certain parts of a checklist can even be
deleted, changed or added during the execution
by simply using a pen. To achieve traceability
in the normal and in the modification case, not
only the signatures but also another prerequisite
is required: proper processing. Human agents
have to be honest and conscientious to support this
principle. That means, among other things, that
each modification of a process template is signed
by the corresponding agent. When modifying
the Process Checklist, maintaining consistency
becomes a critical duty. It can be addressed by
incorporating milestones into the checklist where
the process owner has the chance to review the
Process Checklist. This solution is insufficient
from a global IT point of view but for practical
use it is enough. Additionally, reviewing by the
process owner has deterrent effects since the ex-
ecuting agents consider deviations carefully. In
our three sample scenarios presented in Sect. 7,
it was no issue to enforce this regulation. The
handling of exceptions is also briefly discussed in
Sect. 4.3.

In some cases, there also may be more than one
checklists attached to the checklist bundle as it

checklist name
process owner name
timestamp

1-1
1-2
1-3
1-6
1-7
2-2

2-3
2-6
2-7
2-10

2

Figure 6: Cover sheet (left-hand side) with name of
the checklist/process, name of process owner and a list
of already executed steps and one point to be executed
next; checklist (right-hand side) with current number
in the upper right corner and several operating/control
points. Note that in this fictional checklist with serial
No. 1, a gateway caused a jump into the past (from
point No. 7 to point No. 2), apparent on the cover sheet.

is possible that some points need to be executed
more than once. This is the case when iterations
are necessary. Iterations are implemented by
so-called backward jumps where the checklist
is printed again and attached to the bundle. To
distinguish between the several checklists, each
of them gets a consecutive number starting with
No. 1. This checklist number is not necessary
if there is no backward jump possible during the
process. An example for a checklist with backward
jump is given in Fig. 6.

As one can see on the cover sheet on the left-
hand side of Fig. 6, the enactment of the checklist
started with point No. 1 (actually point No. 1 of
checklist No. 1, indicated through 1–1), then 2,
3, 6 and 7 followed (1–2, 1–3, 1–6 and 1–7 as
it is still the first checklist). After point No. 7, a
backward jump was performed and the checklist
number increased from 1 to 2. That means the
checklist was printed a second time. Then, point
No. 2 was executed a second time (2–2), as well
as points 3, 6 and 7 (2–3, 2–6 and 2–7). The point
to be performed next is 2–10, i.e. point No. 10
of the second checklist at the back of the Process
Checklist bundle.

Actually, the cover sheet does not contain ad-
ditional information except for the process owner,
but it helps to quickly reproduce the process and

http://dx.doi.org/10.18417/emisa.12.1

Enterprise Modelling and Information Systems Architectures
Vol. 12, No. 1 (2017). DOI:10.18417/emisa.12.1
The Process Checklist 11

find the current point (the last one in the list of
all points). What may be part of the checklist
bundle, too, are the data objects handed over with
the checklist. Also, the bundle can be extended by
a list of data objects so that they can be checked
for completeness and a receipt book so that the
transmission of the checklist can be validated.
The receipts filled out remain at the corresponding
agents.

4.2 Execution Overview
When starting a process with checklists, the pro-
cess owner, i.e. the person starting the execution
of the process, has to print the checklist with cover
sheet and data object list. Then he assigns the
checklist its current No. 1. Input data, which
means all input paper documents, have to be ad-
ded and written in the respective list. On the
cover sheet "1–1" is noted, meaning the current
status of execution is ‘checklist No. 1’ and ‘point
No. 1’. In addition, he has to write his name on
the cover sheet so that the checklist can be handed
over to him after finishing the process. Additional
information, like starting time of the instance, can
be noted, too. The Process Checklist bundle has to
be passed to the agent named in point No. 1, who
has to check for completeness, most importantly
to ensure that all listed documents are handed
over, and quit the delivery. The process owner
has to archive the signed receipt for later recon-
struction if necessary. We assume here that the
addresses of the participating agents are known or
can be looked up in an address list. In SMEs this
should, however, be no problem. The employees
are mostly in the same building or the checklist
can be sent via interoffice mail. If it is sent via
mail, then the postman has to sign the receipt (if
available).

When an agent gets the graphical checklist, he
has to run through this acknowledgement process
(check the documents for completeness, sign a
receipt) and then check for the current point of the
checklist on the cover sheet. When the last entry is
2–10 (as in Fig. 6) the operator has to look at point
10 of the current checklist, which has number 2,
and execute this point if all necessary documents

are available and possible conditions are fulfilled.
Of course, the agent named in this point should
be correct (otherwise the checklist has not been
handed over properly). The corresponding agents
can be found on the right-hand side of every point.
A concrete name can be filled in by hand either
by the executor of the last recent point, by the
process owner at the beginning or, for example, by
a department secretary that distributes incoming
mail. After execution of the current point, the
agent has to look which agent is next. If it is
himself he executes the next point and writes it
down on the cover sheet. Otherwise he updates the
document list, writes the next point on the cover
sheet, hands the checklist over and archives the
received receipt. If one agent sends a document
directly to another person, this document has to be
deleted from the data object list and maybe listed
again later on by the other agent.

4.3 Exceptions during Execution
Although this paper does not focus on an elabor-
ated concept of exception handling for the Pro-
cess Checklist, we will briefly discuss how this
approach can well cope with exceptions during
process execution. According to Reichert and
Weber (2012), exceptions are traced back to sourc-
es like external events, activity failures, deadline
expiration, resource unavailability and constraint
violation. We are concentrating on unexpected ex-
ception events and assume that expected exception
events are already covered by the process model.

The occurrence of an exception often results
in one of the following situations, to name a few
typical examples: a certain process step must be
skipped, a new process step must be included
or a process must be quit. All these scenarios
have in common that the execution thread is in-
terrupted and process execution continues in an
unexpected way. We recommend the following
exception handling policy for Process Checklist
users. Firstly, the source of and the effect for an
exception must be noted on the Process Check-
list. Secondly, the current agent has to consult
with the process owner about how to proceed in
order to avoid arbitrariness. All decisions and

http://dx.doi.org/10.18417/emisa.12.1

Enterprise Modelling and Information Systems Architectures
Vol. 12, No. 1 (2017). DOI:10.18417/emisa.12.1

12 Michaela Baumann, Michael Heinrich Baumann, Stefan Schönig, Stefan Jablonski

changes are recorded on the Process Checklist.
In principle, the current agent and the process
owner together can decide any kind of process
continuation possible. In case the process owner
becomes a bottleneck, since too many exceptions
are occurring, another escalation strategy must be
selected. Without detailing this discussion in this
paper, we merely want to postulate that whatever
strategy will be chosen, it must be guaranteed that
exceptions cannot be taken haphazardly.

At first sight, the above described proceeding
seems to be dissatisfactory and unstructured. How-
ever, it brings a couple of benefits. Firstly, there
is always a way of continuation since the cur-
rent agent and the process owner can define one.
Secondly, the recorded information about the ex-
ception can be fed back to the process modeller to
improve the current version of the process. In total,
the Process Checklist is reasonably robust against
exceptions whereby a comprehensive policy for
exception handling still has to be elaborated.

4.4 Execution of Operating Points
Operating points are executed straightaway as de-
scribed above, performing the task as given in AC.
If documents are produced, they must correspond
to the ones listed in the outgoing documents OD.
After performing the task, the responsible agent
signs the operating point to make clear he has
finished this point. Operating points usually do
not have go-to numbers, so the next point in the
checklist is executed next.

4.5 Execution of Control Points
Control points can have different characteristics as
they represent, for example, exclusive, inclusive
or parallel splits. These three terms, which are
presented in the following, describe the three
ways that cover the common possible procedures
appearing in business processes besides sequence
flows: alternatives, loops and pure independent
execution of several subprocesses. Apart from the
control flow steering function, control points also
serve as redirection advices that are necessary
when certain points have to be skipped or for
joining the distribution of multiple subchecklists.

4.5.1 Execution of Exclusive Splits
If a control point marked with the word XOR,
which indicates a choice to be made where exactly
one answer/condition is true, has to be processed,
the agent has to check for the condition or question
in field CO. He marks his answer in GT in the
box □ in front of the corresponding answer, e.g.
the l-th answer a ·,l. If there are any documents
helping him to decide, they are listed in AN . After
marking, he gets the number of the next point, g·,l .
Two possible scenarios may occur. In the first, if
g·,l is greater than the current point number, then
everything can go on as before, meaning g·,l is
the next point to be executed. In the second, if
g·,l is smaller than the current point number, then
there is a problem, as that point with number g·,l
or other points may have been processed already
in the past and therefore are signed already. If
such a backward jump occurs, than the agent of
the control point has to print a new checklist (just
the checklist itself) and assign it the number i + 1
if the number of the current checklist was i. On
the cover sheet, he writes for the next point to be
executed (i + 1)–(g·,l). After doing this, he signs
in field AG and passes the new checklist (together
with the old one for reconstruction opportunity) to
the agent of point g·,l . This agent has to recognise
that the consecutive number of the checklist has
changed, which is obvious on the cover sheet.
Note, only with exclusive splits backward jumps
are reasonable. Concerning other types of control
points presented in the following, backward jumps
would cause inconsistencies both in the model and
the real world as, for example, a livelock would
occur. When there are no backward jumps over the
whole checklist, the consecutive checklist number
is not needed.

4.5.2 Execution of Parallel Splits
If a control point marked with the word AND,
which indicates a potentially parallel execution
of at least two subprocesses, has to be executed,
there are three possibilities to do so. (1) One
method where only one checklist is needed is the
dynamic sequential execution, which allows for

http://dx.doi.org/10.18417/emisa.12.1

Enterprise Modelling and Information Systems Architectures
Vol. 12, No. 1 (2017). DOI:10.18417/emisa.12.1
The Process Checklist 13

choosing a suitable order of the subprocesses. Par-
allelism, however, is dropped in this case. (2) The
postbox method retains parallelism but relaxes the
typical checklist properties. (3) Parallel execution
also keeps parallelism but requires separate check-
lists for all subprocesses. The three methods are
explained in more detail in the following.

Dynamic Sequential Execution
When coming to an AND control point that has
listed the numbers of the starting points of sev-
eral subprocesses in field GT , the agent of that
point can decide about the execution order of the
different branches during the processing of the
checklist. He can take into account the current
circumstances like availability of the agents in the
different branches or anything else. An example
for such a control point is shown in Fig. 7. Note
that the last go-to number in field GT refers to the
checklist point that has to be executed after all the
subprocesses have been executed successfully.

When the agent chooses one branch, he marks
his decision in the corresponding box □, notes
it on the cover sheet and passes the graphical
checklist over to the agent of the respective point.
The branch is processed and at the end of this
branch there is a control point that refers back to
the control point where the decision for the branch
was made. The order deciding agent therefore gets
the checklist back (with checking for all documents
and quitting again) and confirms the chosen and
now successfully executed branch in GT (that one
with the marked box that has not been confirmed
yet). Then he chooses the next branch to be
processed the same way as before. If all branches
have been marked and confirmed in field GT , then
he signs the whole control point in field AG and
passes the checklist over to the agent of that point
listed after "finally go to" in GT . The whole
procedure can be reconstructed with the notes on
the cover sheet.

Regarding the control point in Fig. 7, the fol-
lowing statements about the subbranches can be
made: The first subprocess starts with point No. 10
and ends with a control point (unknown number;
probably it is No. 11) referring back to the order

decision point No. 9. The second subprocess starts
at point No. 12 and again ends with a control point
(unknown number; probably it is No. 17) referring
back to point No. 9. After both subprocesses
have been successfully executed, the branches are
joined in point No. 18, which has to be executed
no matter which order was chosen in point No. 9.
Note that the control points referring back to the or-
der decision control point do not induce backward
jumps like such ones mentioned in the previous
section about exclusive splits (Sect. 4.5.1). No
operating point has to be executed more than once
and the order decision control point is designed for
being able to be executed more than once through
the additional confirmation lines. Here, attribute
c of the checklist vector definition is set to 1, i.e.
the additional confirmation lines are visible.

Postbox Method Execution
The postbox method execution requires parallel
splits designed in the same way as for the dy-
namic sequential execution. The difference is in
the processing of the checklist, as the postbox
method allows for parallel execution of the dif-
ferent branches, and the task assignment regime.
When the processing of a checklist reaches a par-
allel split control node, the checklist is posted like
an announcement in one place together with all
documents (that can be stored in a postbox) and
all agents can look for the next points that have
to be executed on the cover sheet, where all first
points of the different branches have to be noted
in a parallel way, which could lead to a confusing
cover sheet. Thus, the postbox method’s control
is pull-based by the operators of each subpro-
cess, whereas the dynamic sequential execution
is a push-based assignment by the operator of
the control point. With the postbox method, the
documents do not have to be handed over from
one point to another but communication between
the different agents, particularly of that ones in-
volved in the same subprocess, is necessary to
not waste time if two consecutive tasks have to be
performed by different agents. After finishing all
branches, the agent of the control node that started
the postbox method collects the checklist and all

http://dx.doi.org/10.18417/emisa.12.1

Enterprise Modelling and Information Systems Architectures
Vol. 12, No. 1 (2017). DOI:10.18417/emisa.12.1

14 Michaela Baumann, Michael Heinrich Baumann, Stefan Schönig, Stefan Jablonski

9 AND

□ go to 10
(date, sign.)

□ go to 12
(date, sign.)

finally go to 18

applicant

(name)

(date, signature)

Figure 7: A control point suitable for dynamic sequential execution

documents now being in the postbox, checks for
completeness, signs in AG if everything is okay
and continues as before. This method may be-
come confusing if too many agents are involved
in the subprocesses and it needs coordination, ini-
tiative and especially individual responsibility of
all agents. Although it provides a possibility of
considering the parallelism aspect of the several
subbranches, we generally do not recommend it
as it is very difficult to realise. Responsibilit-
ies are not clearly assigned and consistency of
the documents is even more difficult to maintain.
The postbox method might be applied in a process
with two participants where the checklist alternates
between the two agents, e.g. during application
procedures where the checklist is passed between
the applicant and his superior (both located in the
same building).
Parallel Execution
The parallel execution method enables the simul-
taneous execution of parallel branches. It requires
a control node similar to that one of the dynamic
sequential execution. But instead of referring to
the initial points of the subprocesses in field GT
in the same checklist, it is referred to the first
points of separate subchecklists, one for every
subprocess. The agent of the control point prints
all required subchecklists, marks the boxes □ in
GT if handed over together with needed docu-
ments to the respective agents of the first points
in the subchecklists and confirms every returning
subchecklist in GT . So again, variable c = 1. If
all subchecklists have returned, he signs in AG
and the execution of the control node is finished.
The subchecklists are distributed in the same way
as the main checklist: on foot or by (interoffice)
mail. A finally-go-to number passes on to the next
point of the main checklist. (This instruction is
not necessarily needed, as the next point in the

main checklist is executed either way if no separate
jump instruction was given.) For this execution
method of parallel splits, only one control point is
needed in the main checklist, so the main checklist
is probably less confusing than for the dynamic
sequential execution. But as one can imagine, this
method is more expensive as multiple checklists
have to be generated. Nevertheless, it provides
parallelism, i.e. a potentially faster execution of
the checklist, and a good overview over the process
in contrast to the postbox method. We recommend
this method if the subbranches are relatively long,
so that the effort of generating more than one
checklist is somehow justified.

The mentioned execution methods and the cor-
responding checklist designs are only some sugges-
tions; clearly many other versions are imaginable
and of course different versions can be mixed,
as we would probably suggest in the situation of
Fig. 8, visualised with pseudo-BPMN modelling
tools. Here, the two long subprocesses l1 and
l2 can be executed with two separate checklists
whereas the short subprocess is included into the
checklist in a (dynamic) sequential way, i.e. it
would be performed before or after the two long
subprocesses. For only one comparatively longer
subprocess, a separate Process Checklist for this
subprocess is probably not needed as timesaving
effects are not that significant. However, this
depends on the respective process.

4.5.3 Execution of Inclusive Splits
It is also possible that several subprocesses can
be executed in parallel, but at modelling time it is
not clear how many of them need to be executed.
Unlike for exclusive splits, certain conditions, that
is more than one, may be fulfilled and there may
be more than one subprocess executed. If this is
the case, a control point marked with the word

http://dx.doi.org/10.18417/emisa.12.1

Enterprise Modelling and Information Systems Architectures
Vol. 12, No. 1 (2017). DOI:10.18417/emisa.12.1
The Process Checklist 15

OR and the condition/question in field CO is in-
cluded in the checklist. Possible answers and a
finally-go-to number are listed in field GT . So,
the resulting control point has elements of control
points resulting from both exclusive and parallel
splits. The inclusive split, sometimes also called
multi-choice split, may be included in the checklist
like the dynamic sequential execution of parallel
splits, i.e. the go-to numbers after each answer in
field GT refer to other checklist points (without
backward jumps!) or it may be included in the
checklist like the parallel execution method, i.e.
the go-to numbers in GT refer to subchecklists.
Depending on the modelling method, additional
control nodes referring back to the inclusive de-
cision control node, as is the case for the sequential
dynamic method, are needed. All subprocesses
to be executed have to be marked in the box □
in field GT, at least one box up to all boxes. For
the marked boxes and the corresponding subpro-
cesses, it is executed like for parallel splits. Again,
variable c is set to c = 1 as the inclusive decision
control point may be processed more than once.
Of course, inclusive splits may also be executed
with the postbox method, taking over the checklist
design of the dynamic sequential method, but in
contrast to parallel splits, the number of executed
subprocesses may vary from process instance to
process instance and the involved agents have to
pay even more attention to which activities need
to be executed and which not.

When using parallel or inclusive operating
points with the postbox or the multiple-checklist
method, special attention has to be paid to the
documents so that one document is not needed in
two subprocesses at the same time (if there is no
copy available). For the postbox method, this does
not necessarily lead to deadlocks, but it increases
processing time if agents want to proceed a task
but not all needed documents are available at this
point of time. The postbox method fails when a
receipt system is established, as the checklist and
particularly the documents are not handed over but
are deposited more or less anonymously in a box.
The checklist designer, for example the modelling
expert and/or an executing agent who is familiar

short long
sub-
pro-
cess
l1

long
sub-
pro-
cess
l2

Figure 8: Schematic part of a process model with one
short and two comparatively long parallel subprocesses
(i.e. consisting of a lot of tasks) that can be executed
as a composition of presented methods.

with the process (see Sect. 6 for the tasks of the
designer), has to weigh which execution method
is best for each parallel or inclusive split situation.

5 Transformation of Process Model
Elements through Serialisation

This section focuses on generating a checklist out
of an existing BPMN process model. This means
in general that a multi-path structure is translated
into a sequential structure, which is induced by
the Process Checklist through the checklist point
numbers. The reason for this transformation is
the following: (Graphical) Process modelling lan-
guages are well-known and can be checked for
consistency whereas modelling directly with the
Process Checklist is not so easy. Issues like dead-
locks or requiring the same document at the same
time at two different places have to be avoided.
Thus, a proper (graphical) process model, which
also may be discussed among the participants and
modelling experts, can be derived first and after-
wards the Process Checklist is generated out of
the model. This transformation process does not
take a long time, in contrast to the modelling time
itself, and the additional expenditure is therefore
small. The graphical process model can later

http://dx.doi.org/10.18417/emisa.12.1

Enterprise Modelling and Information Systems Architectures
Vol. 12, No. 1 (2017). DOI:10.18417/emisa.12.1

16 Michaela Baumann, Michael Heinrich Baumann, Stefan Schönig, Stefan Jablonski

on also be used as basis for the implementation
of an IT-based WfMS. In this context, the Pro-
cess Checklist can also serve as an instrument
for checking the content correctness of the mod-
elled process without the need to implement this
process in an IT-based WfMS. Corrections and
discrepancies can be recorded on the checklist
immediately during the execution. It may also be
the case that process models are already available,
e.g. for documentation purposes, and so the trans-
formation is the only thing that has to be done to
get a feasible support tool. BPMN should thereby
just be seen as an illustrative example for graphical
process model languages.

In the following, it is explained in which way the
single elements of the (BPMN) process model are
transformed into either operating points or control
points, i.e. are serialised. Instead of transforming a
BPMN process model directly into a form suitable
for a WfMS, the model is converted to a checklist
vector, which is the basis for the Process Checklist.
This transformation process is indicated in Fig. 9
with the double-lined arrow.

The problem of transforming a model drawn
in one business process modelling notation into
another notation has been examined in different
papers, e.g. by Hauser et al. (2006) and Koehler
et al. (2008). However, to the best of the authors’
knowledge, the transformation of process models
to a checklist representation has not been discussed
so far, except for in Baumann et al. (2014), which
is the basis for the work at hand.

The transformation steps are performed in an
algorithmic way, except for parallel and inclusive
gateways. There, the modeller has to decide which
of the execution methods presented in Sect. 4.5
is best in each situation. But first of all, before
specifying the transformation of process models
into checklists, we have to determine how suitable
process models should look. These specifications
are necessary to give concrete mapping rules. For
process models, only basic elements of BPMN are
allowed. As zur Muehlen and Recker (2008) show,
this is enough in most cases. Also, the paper at
hand has to be seen as a first step in this topic.

IT-based

paper-
based

model

BPMN

checklist
vector

execution

WfMS

graphical
Process

Checklist

Figure 9: Schematic approach to differentiate paper-
based from IT-based process management systems.

A process model for which we want to demon-
strate the transformation into a Process Checklist
is defined according to BPMN 2.0 (see, e.g. Object
Management Group Inc. 2011) allowing for the
following basic elements:

• flow objects: activities, events (i.a. start and
end event), gateways (AND, XOR, OR)

• sequence flows
• data (input/output) objects
• participants: one pool, possibly separated into

different lanes

One requirement that we impose and that is only a
representational one is that each split gateway has
a corresponding join gateway. This requirement
simplifies the following explanations a lot. The
process model should be sound in a sense that it
can be successfully executed without containing
deadlocks (a situation where two or more sub-
processes are blocking each other), livelocks (a
situation where an endless repetition of one or
more activities happens) or dead activities (activ-
ities that can never be reached). If the model is
sound, then the checklist derived from the model is
sound as well because the model and the checklist
exhibit the same behaviour, i.e. we can always
transform a sound process model to a Process
Checklist. More precisely, it depends on the mod-
eller whether all behaviour of the process model
is reproducable with the checklist. The other
way round it is always true: The complete check-
list behaviour can be reproduced by the original
process model. With same behaviour we mean
that the same execution paths are possible when

http://dx.doi.org/10.18417/emisa.12.1

Enterprise Modelling and Information Systems Architectures
Vol. 12, No. 1 (2017). DOI:10.18417/emisa.12.1
The Process Checklist 17

identifying the activities in the model with their
corresponding operating points in the checklist.
Nevertheless, exceptions may occur during the
execution of a Process Checklist based on a sound
process model (which might end in an unscheduled
or non-successful execution), see Sect. 4.3.

As we consider the application of checklists ap-
propriate only within one company, there should
not occur processes with more than one pool.
Therefore, we do not have to take message flows
into account. Although it is possible to map mes-
sage flows to a Process Checklist as done in one
case study shown in Sect. 7.2 and Fig. 24, we
simply have not specified a standardised repres-
entation of message flows yet. At the moment,
message flows can only be mapped in a generic way
through operating points containing instructions
like "Wait for an answer". Furthermore, message
flows are not part of all process languages and
also not one of the basic elements of BPMN (zur
Muehlen and Recker 2008).

Further on, this section has to be seen as an
example of how to transform graphical model
elements. Extensions surpassing the presented
mapping instructions can easily be included at any
time. Which specific forms of activities, events
and gateways can be covered with the transforma-
tion rules for these kinds of models will become
apparent when it comes to the concrete transform-
ation of process models into checklists.

5.1 Transformation of Activities
Activities are transformed straight into operating
points po. Their descriptions are mapped on the
field AC whereas all directly incoming data and
directly outgoing data are mapped on the field
ID and OD respectively. The participant of the
corresponding lane or hierarchy of lanes, which
may be a single person or a role specification,
is mapped onto the field AG. Concrete agent
names may be filled in during the execution of
the checklist. An example of an activity with
documents and participants is given in Fig. 10 and
the corresponding checklist point, an operating
point, in Fig. 11. We should mention that AGi is

a dummy for the agent/role of point i and not a
certain agent’s identifier.

Figures 10 and 11 show an excerpt from an
abstract process model with labels according to an
operating point poi . It is set IDi = (IDO1, IDO2,

IDO3) and ODi = (ODO1,ODO2) where IDOk

and ODOl, k = 1, 2, 3, l = 1, 2 are identifiers for
single data objects.

5.2 Transformation of Subprocesses
Occurring subprocesses, marked with a symbol
as seen in Fig. 12, may be taken into a checklist
in different ways:

1. Include the complete subprocess. This leads
to a comparatively long but easy to understand
checklist.

2. Generate a new checklist for each subprocess.
One control point j has to be inserted into
the original checklist with work instructions
for printing and passing on the new checklist
(a j,1 ="print and pass new checklist named
SCL to agent/role Y , go to SCL:", gj,1 = 1
(of the subchecklist)), which has to be con-
firmed due to cj = 1, and with instructions
for waiting for this checklist to come back com-
pletely processed. Agent/role Y is the agent/role
description of the first point in the subcheck-
list. Parameter a j,2 is set to "finally go to" and
gj,2 = j + 1 (of the main checklist). (This is
not needed here when simply regarding the se-
quence flow.) This is according to the multiple
checklist method for parallel splits presented in
Sect. 4.5.2, Paragraph Parallel Execution. An
example for a control point resulting from this
method of transforming subprocesses is shown
in Fig. 13.

A selection between those two methods could
be effected considering the length of the subpro-
cess behind the BPMN subprocess task. Short
subprocesses may be directly included into the
main checklist whereas long subprocesses should
be put into a subchecklist to maintain better clarity.

Subchecklists are recommended especially
in cases where subprocesses contain backward

http://dx.doi.org/10.18417/emisa.12.1

Enterprise Modelling and Information Systems Architectures
Vol. 12, No. 1 (2017). DOI:10.18417/emisa.12.1

18 Michaela Baumann, Michael Heinrich Baumann, Stefan Schönig, Stefan Jablonski

IDO1
IDO2

IDO3

ACi

i

ODO1
ODO2

AG
i

Figure 10: Abstract BPMN representation of an activity with ingoing and outcoming documents.

i
IDO1
IDO2
IDO3

ACi
ODO1
ODO2

AGi

(name)

(date, signature)

Figure 11: Representation of the activity of Fig. 10 as an operating point of a checklist.

jumps, i.e. the loop is completely within one sub-
branch. When the loop is executed, the whole
main checklist does not have to be reprinted, only
the subchecklist of the subprocess, which is pre-
sumably shorter.

subprocess
⊞

j

Figure 12: Symbol for a subprocess in BPMN 2.0.

5.3 Transformation of Gateways
As already the design and execution of splits and
joins of a directly generated checklist imposes
several possibilities, so does the transformation of
BPMN gateways to checklist elements. Most of
the methods described in the following correspond
to one execution method presented in Sect. 4.

5.3.1 Transformation of Exclusive
Gateways

An exclusive split gateway (see Fig. 14) has to
be transformed into a control point in which the
decision question (CO j) and the possible answers
(a j,1, a j,2 and a j,3 in Fig. 14) with the respective
go-to numbers (gj,1 = j1, gj,2 = j2 and gj,3 = j3
in Fig. 14) are mentioned. Parameter c is set to

cj = 0 as the decision has not to be confirmed in
field GTj . Also, it is set a j,4 = "" and gj,4 = ""
because no line without □ box is needed. The
control point is executed only once.

For the further transformation, two cases have
to be considered: Does the split gateway induce
a backward jump (loop) or are all alternative
subbranches pointing into the future? If there
is an exclusive join gateway (Fig. 15) after the
split gateway, that means two or more branches
point into the future, a jump instruction to the next
point in the checklist after the join gateway (j4 in
Fig. 15) must be inserted at the end of each branch
in the checklist, see Sect. 4.5.1. Only the branch
listed last in the checklist does not need this jump
instruction as the point after the exclusive join is
performed next in any case. Jump instructions
also do not need a □ box line in GT .

When arrows coming out from exclusive split
gateways point back into the past, then consecutive
checklist numbers need to be introduced and the
checklist point numbers on the cover sheet have
to consider the checklist numbers, too (see Fig. 6).
A join gateway (exclusive join) catching the back-
ward jump does not need to be considered in the
transformation, i.e. it is not represented separately.
When there is a jump out of a parallel or inclu-
sive subprocess, which is not the soundest way of

http://dx.doi.org/10.18417/emisa.12.1

Enterprise Modelling and Information Systems Architectures
Vol. 12, No. 1 (2017). DOI:10.18417/emisa.12.1
The Process Checklist 19

j
print

subchecklist
SCL;

wait for return

□ pass SCL to agent/role Y ,
go to SCL: 1

(date, sign.)

finally go to: j + 1

AG j

(name)

(date, signature)

Figure 13: Representation of the subprocess task of Fig. 12 according to the second method (distributing a subchecklist)
as a control point of a checklist.

modelling, then an operating point to inform the
agent responsible for synchronising the parallel
or inclusive subprocesses about the interruption
of the parallel or inclusive subprocesses has to be
included into the checklist. That means, legwork
by hand is necessary in such a case. Otherwise
this agent would wait for all subprocesses to be
finished, which will not happen. An exemplary
control point for an exclusive split without a back-
ward jump and one jump instruction (performed
by agent AG j+n, which is usually the same as
agent AG j+n−1, i.e. the agent of the last task in the
subbranch) is given in Fig. 16.

j CO j

j1
a j,1

j2
a j,2

j3
a j,3

AG
j

Figure 14: Exclusive split gateway without a backward
jump.

j4

AG
j 4
−

1

Figure 15: Exclusive join gateway (without back-
ward jump) that does not have to exist if the outgoing
branches of the exclusive split gateway end with ter-
minal events.

5.3.2 Transformation of Parallel Gateways
The transformation methods of parallel gateways
correspond to the ones already listed in Sect. 4.5.2

about the execution of parallel splits, except for
the one named static sequential transformation,
which is explained in the following. Advantages
and disadvantages of the different possibilities
were already mentioned in Sect. 4. Of course,
a mixture of several transformation methods is
possible, too (see, e.g. Fig. 8 and its explanation).

Static Sequential Transformation
This type of transforming a parallel gateway takes
the several branches of the process model that are
between the split and join gateway and brings them
into an arbitrary order or an order that seems to be
reasonable at transformation time. The resulting
checklist part is purely sequential. The gateway
itself is not mapped to the checklist. This trans-
formation method keeps the checklist very simple,
but execution time may increase as flexibility al-
lowed by parallelism is completely ignored.

Dynamic Sequential and Postbox
Transformation
This transformation results in a checklist as de-
scribed in Sect. 4.5.2, Paragraphs Dynamic Se-
quential Execution and Postbox Method Execution.
The parallel split gateway will be transformed into
a control point pcj . An exemplary transforma-
tion of a parallel split as shown in Fig. 17 into
a control point is demonstrated in Fig. 18. The
parallel subbranches of the process model have to
be written down sequentially in the checklist. At
the end of each branch, a jump to pcj , realised with
a simple control point like in Fig. 16 with descrip-
tion "AND end", except that the go-to instruction
points back to point j instead of j4, is necessary.
Furthermore, in pcj the number of the point fol-
lowing the respective parallel join, in Fig. 17 that
one that gets number j4 in the checklist, has to
be noted (the finally-go-to part in Fig. 18). The

http://dx.doi.org/10.18417/emisa.12.1

Enterprise Modelling and Information Systems Architectures
Vol. 12, No. 1 (2017). DOI:10.18417/emisa.12.1

20 Michaela Baumann, Michael Heinrich Baumann, Stefan Schönig, Stefan Jablonski

j XOR
CO j

□ a j,1 : j1
□ a j,2 : j2
□ a j,3 : j3

AG j

(name)

(date, signature)

(first subprocess with length n − 1)

j
+
n

XOR end go to: j4

AG j+n

(name)

(date, signature)

Figure 16: Representation of the exclusive gateway of Fig. 14 and a jump instruction after the first subprocess
transferring the performer to the task with checklist number j4 after the join gateway of Fig. 15. Usually, when the
process model is transformed successively, it is j1 = j + 1.

parameter specifications are in detail: ANj = "",
CO j = "AND", cj = 1, a j,1, . . . , a j,3 = "go to",
gj,1 = j1, gj,2 = j2, gj,3 = j3, a j,4 = "Finally go
to", gj,4 = j4. For the jump instructions (three
are needed in the example of Fig. 17 as there are
three branches), the parameters are set as follows:
ANjk−1 = "", CO jk−1 = "AND end", cjk−1 = 0,
a jk−1,1 = "go to", gjk−1,1 = j, k = 2, 3, 4.

Parallel Transformation
For each parallel subbranch, a checklist is gen-
erated and distributed by the agent of the split
gateway (AG j in Fig. 17) to the agents of the first
process elements of the subbranches. As intro-
duced in Sect. 4.5.2, Paragraph Parallel Execution,
it is modelled as one control node pcj . If the gate-
way splits into k branches, then a j,k+1 = "finally
go to" and gj,k+1 = j+1. If the name of the current
checklist is "Checklist", then CO j = "AND—print
checklists Checklist_sub1, . . . , Checklist_subk",
if the names of the subchecklists are ‘Check-
list_sub1’, . . . ,‘Checklist_subk’. Of course,
a j,1, . . . , a j,k have to reference these subcheck-
lists, gj,1, . . . , gj,k = 1 (i.e. the first points of the
subchecklists) and cj = 1, which means that sig-
natures for all returning subchecklists are needed
(see Sect. 4.5.2 and Sect. 5.2). At the end of
each subchecklist, a control point referring back
to the subchecklist distribution point of the main
checklist has to be inserted.

5.3.3 Transformation of Inclusive
Gateways

The transformation of inclusive gateways can be
done similarly to the transformation of parallel
gateways. More precisely, there are the possibilit-
ies to use the dynamic sequential or postbox trans-
formation or the parallel transformation (see also
the several execution possibilities in Sect. 4.5.3).
The only difference is that in pcj we have CO j and
a j,1, . . . , a j,k as in the exclusive gateway transform-
ation, i.e. the condition/question and the answers
have to be taken over from the process model. An
‘else’ case, if present in the BPMN model, can
simply be transformed by ai,k = "else" and gi,k
pointing to the respective checklist point.

5.4 Transformation of Events
The transformation of BPMN events is dealt with
very briefly in this paper, as we suggest ad-hoc
transformations of events involving good capa-
bilities of the checklist designer. This can be
the modelling expert and/or an executing agent
who is familiar with the process. It is one time
individually decided whether to include an extra
operating point for the event or to include its
condition in the following checklist point. Like
the multitude of activity types, there are a lot of
different event types. Providing transformation
rules for all of these types would not be expedient
in our opinion, as the work at hand is supposed to
give a basic overview of Process Checklists, their
structure, usage, advantages and disadvantages.

http://dx.doi.org/10.18417/emisa.12.1

Enterprise Modelling and Information Systems Architectures
Vol. 12, No. 1 (2017). DOI:10.18417/emisa.12.1
The Process Checklist 21

j

j1

j2

j3

AG
j

j4

AG
j 4
−

1

Figure 17: Parallel split gateway pcj and parallel join gateway pc
j4−1.

j AND

□ a j,1 : j1
(date, sign.)□ a j,2 : j2
(date, sign.)□ a j,3 : j3
(date, sign.)

finally go to: j4

AG j

(name)

(date, signature)

Figure 18: Checklist representation of the parallel split in the dynamic sequential way without the corresponding
jump instructions that refer to agent AG j of point No. j after every subbranch.

5.4.1 Direct Transformation of Events
Some events, like signal, escalation or compensa-
tion events, as well as milestones (untyped catch-
ing intermediate events) can be transformed like
activities, i.e. to operating points poi , where ACi

is used for transmitting some message (e.g. an
escalation instruction) or ACi = "" (e.g. for letting
a supervisor know that the process has reached a
certain stage).

5.4.2 Indirect Transformation of Events
Certain events, like time, condition and message
events, represent some requirements for the next
point in the checklist and can be modelled this way.
An example for a transformed catching timer event
is given in Fig. 19. The requirement is written
down in AC or AN of the following operating or
control point.

5.4.3 Ignored Events
Other events, like the start event, can be ignored,
which means they have no representation in the
checklist, because they won’t influence the execu-
tion. Usually, the processing of the checklist is
started by the process owner and ended by return-
ing the checklist to the process owner. Therefore,
start and end event are executed automatically
through printing the checklist and returning it
when finished.

5.5 Transformation and Execution of
Infrequent, Mutually Exclusive
Activities or Branches

As a paper-based checklist needs direct human
treating during its execution (see Sect. 4), it can
be handled very flexibly by the agents. This
does not mean that the agents can do what they
want during the execution. Rather they have a
certain freedom, which is not unrestrictedly given
when processing with, e.g. the aid of a WfMS.
Consider a clinical workflow where a diagnosis
(outgoing data) has to be made in one step and,
according to this diagnosis, the treatment has to
be executed in the following step (diagnosis as
incoming data). Implementing all different kinds
of diagnosis-depending treatments would cause
an exclusive gateway with nearly innumerable
branches or subprocesses, not to mention that
all these eventualities have to be considered at
modelling time (cf. Ely et al. 2011). What if a
certain treatment has been forgotten because of
its rarenes or if it was yet unknown at modelling
time, for example?

When facing this problem in the context
of checklists, the following solution is con-
ceivable: List only the most frequently made
diagnoses in the corresponding XOR-control
point ((a j,1, gj,1), . . . , (a j,l, gj,l)) and add one
(a j,l+1, gj,l+1) with a j,l+1 = "other" and gj,l+1

http://dx.doi.org/10.18417/emisa.12.1

Enterprise Modelling and Information Systems Architectures
Vol. 12, No. 1 (2017). DOI:10.18417/emisa.12.1

22 Michaela Baumann, Michael Heinrich Baumann, Stefan Schönig, Stefan Jablonski

i IDOi

Wait until the
15th of the

month, then:
ACi

ODOi

AGi

(name)

(date, signature)

Figure 19: Indirect representation of an intermediate catching timer event in the event-following activity number i.

referring to an empty operating point where the
concrete diagnosis and all incoming and outgoing
data can be entered at running time by the doctor in
charge. These empty operating points offer a way
to reduce complexity of the process model and
to prevent the process from getting stuck during
its execution. But as they require good know-
ledge about the process, they can only be filled in
by agents with the corresponding expertise and
should therefore not be overused.

It should be mentioned, as briefly indicated
above, that also in traditional WfMSs flexibility
can be achieved. In the literature, when talking
about flexibility, it is distinguished between dif-
ferent types of flexibility: flexibility by deviation,
flexibility by underspecification or flexibility by
change (see Mans et al. 2009). However, as stated
in Sect. 1 and, for example, by Pešić (2008) and
Zeising et al. (2014), WfMSs usually do not sup-
port all of the different types of flexibility due
to their conceptional basis. When considering
checklists, the required flexibility can be achieved
in a fast and easy way. A more detailed flexibility
discussion of checklists is given in Sect. 7.1. To
conclude this section, an overview of common
process patterns taken from van der Aalst et al.
(2003) that the Process Checklist is (not) able to
reproduce is given in Tab. 1 and 2. For a detailed
description of the patterns see van der Aalst et al.
(2003).

6 Implementation

Although process execution of the Process Check-
list approach is mainly based on paper, it requires
some implementation. Figure 20 depicts the gen-
eral flow of work in the Process Checklist approach.
We assume that in a first step, a formally correct
BPMN process model is specified. Therefore, any

process modelling system is qualified that is able to
export that BPMN process model as an XML data
structure. This XML model is input for the model
transformation system called PCL Generator that
we have to deliver. The PCL Generator takes the
XML process model and transforms it into a LATEX
file (see Sect. 6.2). The latter can be imported by
a LATEX processor in order to create the Process
Checklist as pdf file. As an additional service, the
PCL Generator also produces an XML model of
the Process Checklist what supports sharing and
exchanging a Process Checklist (see Sect. 6.3).

In the following, we describe the implementa-
tion of the Process Checklist approach, which is a
stand-alone implementation, give insights in the
underlying meta-model as well as the model trans-
formation procedures. Furthermore, we describe
the XML-based serialisation method of checklists
with an example.

6.1 The Checklist Meta-Model

Process
Modelling
System

XML
Process
Model

PCL
Generator

TEX file

LATEX
programme

PDF
Process
Checklist

XML
Process
Checklist

Figure 20: Illustration of the flow of work.

The checklist meta-model as a UML class dia-
gram is shown in Fig. 21 where all elements in-
troduced in Definition 1 can be found again. The
meta-model describes the general representation
structure of checklists and serves as an implement-
ation template. When a new checklist is created
manually or a BPMN model is transformed to a

http://dx.doi.org/10.18417/emisa.12.1

Enterprise Modelling and Information Systems Architectures
Vol. 12, No. 1 (2017). DOI:10.18417/emisa.12.1
The Process Checklist 23

pattern checklist solution

basic control
flow patterns

sequence numbering of the checklist (operating) points

parallel split control points (see Sect. 4.5.2, 5.3.2)

synchronisation control points (realised in the same control point as parallel split
plus redirection control points)

exclusive choice control points (see Sect. 4.5.1, 5.3.1)

simple merge control points (for redirection instructions)

advanced
branching
and syn-
chronisation
patterns

multi-choice control points (see Sect. 4.5.3, 5.3.3)

synchronising
merge

control points (realised in the same control point as multi-choice
plus redirection control points)

multi-merge not explicitly described in this paper; multi-merge can be modelled
alternatively (see van der Aalst et al. 2003) as synchronisation

discriminator not described

structural
patterns

arbitrary cycles control points (see backward jump in Sect. 4.5.1, 5.3.1)

implicit termination not explicitly described in this paper; can be realised through a
checklist point that has no go-to instruction and is not followed by
another point or through a ‘terminate’ note; this only makes sense
if the subprocess is executed with a subchecklist (otherwise there
would be a deadlock)

state-based
patterns

deferred choice can be realised the same way as exclusive choice without de-
cision/question; however, the agent has to choose between alternat-
ive subbranches when he reaches the control point

interleaved parallel
routing

control points of dynamic sequential type (see Sect. 4.5.2, 5.3.2)

milestone operating point (see Sect. 5.4)

Table 1: Common process patterns concerning process design and their representation in the Process Checklist
(part 1)

http://dx.doi.org/10.18417/emisa.12.1

Enterprise Modelling and Information Systems Architectures
Vol. 12, No. 1 (2017). DOI:10.18417/emisa.12.1

24 Michaela Baumann, Michael Heinrich Baumann, Stefan Schönig, Stefan Jablonski

pattern checklist solution

patterns
involving
multiple
instances

multiple instances
without synchonisa-
tion

distribution of several checklists (without control point in a main
checklist to collect them); consistent numbering of the checklists
required so that they can be assigned to one instance

multiple instances
with a priori design
time knowledge

distribution of several checklists (runtime) or repeating the activity
in the checklist as separate operating points (design time)

multiple instances
with a priori
runtime knowledge

distribution of several checklists (runtime) or, if maximum number
of instances given, repeating the activity in the checklist as separate
operating points with go-to instructions to leave the repetition
(design time)

multiple instances
without a priori
runtime knowledge

distribution of several checklists

cancellation
patterns

cancel activity not easily realisable; information about cancellation has to be
brought to the agent at the right time

cancel case can be carried out by the process owner at his periodical milestone
checkings (not immediately; same problems as with cancel activity)

Table 2: Common process patterns concerning process execution and their representation in the Process Checklist
(part 2)

checklist, a new instance of the meta-model is
created. A checklist consists of several Checklist
Elements, which can either be Operating Points
or Control Points. An OperatingPoint can have
several ingoing as well as outgoing Data Objects
and is performed by exactly one Responsible Role.
A ControlPoint has several GoTo instructions and
has also exactly one ResponsibleRole. A GoTo
instruction refers to a Checklist Element again.
The confirmation attribute of ControlPoint corres-
ponds to variable c in the definition of checklist
vectors (Definition 1), which specifies if a confirm-
ation line for signing is added in field GT behind
the go-to numbers of control points (e.g.f̃or par-
allel and inclusive splits, confirmation lines are
added).

6.2 Model Transformation and Checklist
Generation

In order to provide a simple transformation pos-
sibility, the described transformation procedures

from BPMN to a Process Checklist representation
have been implemented in a C-Sharp application
using the Microsoft .NET framework. In this way,
Process Checklists can be generated from existing
BPMN models without great effort, depending on
the size of the original model.

In a first step, the user selects the BPMN-XML
file that should be transformed from a file dia-
log. Subsequently, the selected file is parsed by
the application. As a result, an instantiation of
the (simplified) BPMN meta-model is generated.
Note that for this approach we are only consid-
ering the basic BPMN elements as described in
Sect. 5. Afterwards, the user has to choose the
transformation method of possibly occurring par-
allel gateways, i.e. whether a static sequential, a
dynamic sequential or a parallel transformation
method is preferred. The provided information
is finally used to transform the BPMN model in-
stance to an instance of the checklist meta-model

http://dx.doi.org/10.18417/emisa.12.1

Enterprise Modelling and Information Systems Architectures
Vol. 12, No. 1 (2017). DOI:10.18417/emisa.12.1
The Process Checklist 25

-number : int

ChecklistElement

-activity : string

OperatingPoint

-annotation : string
-condition : string
-confirmation : boolean

ControlPoint

-name : string

DataObject

-name : string

ResponsibleRole

-answer : string

GoTo

0..*

1 1

0..

0..1

goto
outgoing ingoing

Figure 21: Meta-model of the Process Checklist.

as shown in Fig. 21. Adjustments or modifications
such as the milestones mentioned in Sect. 1 for the
checklist owner’s periodical revision can be added
afterwards to the instantiated meta-model. Gener-
ation time then strongly depends on the number
of such manual modifications.

The different checklist model elements can
finally be read and visualised. Of course, there
is no fixed checklist visualisation. However, the
visualisation method presented in the work at hand
is the result of thorough discussions with process
participants and modelling experts.

In our implementation, we are generating graph-
ical checklists by means of LATEX files using the
tikz-package to draw diagrams. Accordingly, the
checklist model needs to be transformed to LATEX-
code. We defined two new LATEX commands CP
for control points and OP for operating points,
which are called with different parameters. Shapes,
fonts and colors are defined within these command
definitions and can therefore be adjusted to the
users’ needs. An operating point perform exam
correction with the running number 5, which con-
sumes a data object exam unmarked, produces a
data object exam marked and should be performed

by the person (role) auditor, is presented by the
following LATEX-code:

\OP{5}{exam unmarked}{perform exam
correction}{exam marked}{auditor}{1}

The last entry ‘1’ is for adjusting the graphical
representation. Based on LATEX, the graphical
checklist generation is independent of the sys-
tem environment. Furthermore, representational
details can be adjusted directly by users and in-
dependent of a specific implementation. The
graphical checklist can then be saved and printed
as LATEX produces a pdf file.

6.3 Checklist Serialisation
In order to be able to adequately save and share
generated checklists, additionally, a possibility to
serialise checklists to XML1 is provided. The
listing in Fig. 22 shows an excerpt of the generated
XML code of the example checklist vector of
Fig. 5.

1 Complete example checklist XML files as well as an
XML schema definition can be found at the project website.
See checklists.kppq.de or ai4.uni-bayreuth.de/de/research/
projects/002_processchecklists for more information.

http://dx.doi.org/10.18417/emisa.12.1
checklists.kppq.de
ai4.uni-bayreuth.de/de/research/projects/002_processchecklists
ai4.uni-bayreuth.de/de/research/projects/002_processchecklists

Enterprise Modelling and Information Systems Architectures
Vol. 12, No. 1 (2017). DOI:10.18417/emisa.12.1

26 Michaela Baumann, Michael Heinrich Baumann, Stefan Schönig, Stefan Jablonski

<checklist process='Administering an exam'>
...
<controlpoint no='2' annotation=} condition='Exam type?'
confirmation='0'>

<gotolist>
<goto answer='written' gotoNo='3' />
<goto answer='oral' gotoNo='9' />
<goto answer=} gotoNo=} />

</gotolist>
<role name='Student' />

</controlpoint>
...
<operatingpoint no='5' activity='Perform exam correction'>

<ingoing>
<DataObject name='Exam unmarked' />

</ingoing>
<outgoing>

<DataObject name='Exam marked' />
</outgoing>
<role name='Auditor' />

</operatingpoint>
...

</checklist>

Figure 22: XML code sample for checklist serialisation

Out of the data stream as in Fig. 22, a check-
list based on the meta-model of Fig. 21 can be
reconstructed independently of the underlying ar-
chitecture.

7 Evaluation and Analysis

In this section, we evaluate our idea with respect
to desired features and report on two case studies,
one in the academic field and one within a bank,
Sparkasse Bamberg. In these case studies, Process
Checklists are examined with regard to several
criteria. One of them is flexibility. As there exist
several interpretations of flexibility, we provide a
short discussion about different flexibility types
in Sect. 7.1. The other criteria, namely parallel-
ism, length, comprehensibility, orientation and
reliability, are self-descriptive. Sect. 7.2 and 7.3
represent the case studies.

Concerning effectiveness we had good exper-
iences within the two case studies as all of the
executed processes were completely and correctly
finished. Problems like forgotten activities did not

occur. Processing times were appropriate, com-
pared to having no support, although the checklist
was just introduced during the case studies. We
expect to lower processing times when process
participants get more familiar with the checklist,
but we also do not expect to reach the processing
times of IT-based execution support in general.
In case of electricity failures or other technical
problems, the checklist can still be used.

For evaluating the desired advantages of paper-
based checklists as well as showing potentials for
improvement, the two case studies were carried
out in different areas of application. The first
case study was performed in the academic domain.
The second one in the financial business area. In
the first case study, we primarily want to verify
the power, i.e. the practicability of the model
requirements as well as the comprehensibility
by the user. The second case study addresses
the user’s comprehensibility and the acceptance
of the user again, which is an important factor
when introducing new procedures in organisations.

http://dx.doi.org/10.18417/emisa.12.1

Enterprise Modelling and Information Systems Architectures
Vol. 12, No. 1 (2017). DOI:10.18417/emisa.12.1
The Process Checklist 27

Additionally, we want to get information whether
Process Checklists are needed at all.

Primarily, the first evaluation is a comparison of
process execution through checklists and through
BPMN models and a comparison of the differ-
ent transformation methods shown in Sect. 5 or,
respectively, of execution possibilities shown in
Sect. 4. Basically, there are different forms of de-
ploying graphical BPMN models. A very simple
form is to publish BPMN models, for example
on the intranet of a company, as hard copies or
on a black-board. Process participants now are
obliged to take these models into account when
working on processes. Although this enactment
is very cheap, it lacks accountability. Another
form of process execution is to deploy a Process
Management System (or WfMS). Although the ex-
ecution of processes now becomes obligatory, the
implementation of a Process Management is very
costly regarding the WfMS selection procedure,
installation costs, licence costs, costs for teaching
end users and building up the IT capabilities to ad-
minister the system etc. Many small and medium
companies cannot and/or will not afford this form
of enactment. Nevertheless, a Process Checklist
is a good compromise between these two ways of
enactment. A Process Checklist is cheap and it
ensures a good degree of accountability. When in-
troducing the checklist, we need a training course
for the checklist users, an administrator and the
installation of all required documents, e.g. simple
pdf documents. In the university where we carried
out the first case study, a WfMS was not available
but only BPMN models. And also for the second
case study, the basis for the evaluation checklist
is a graphical process model (modelled in a pro-
prietary process language), which was the only
process guidance until then.

The former discussion of pros and cons for
process enactment alternatives is the reason why
our two project partners chose to use Process
Checklists for process enactment.

7.1 Feature-based Evaluation of
Checklists wrt. Flexibility

By Schonenberg et al. (2008), four types of flexib-
ility are proposed: flexibility by design, flexibility
by underspecification, flexibility by change and
flexibility by deviation. Since flexibility is a very
important aspect of the deployment of Process
Checklists, the latter are evaluated according to
this aspect.

‘Flexibility by design is the ability to incorpor-
ate alternative execution paths within a process
model at design time allowing the selection of
the most appropriate execution path to be made at
runtime for each process instance (Schonenberg
et al. 2008).’ This type of flexibility is achieved
by Process Checklists through control points and
the different possibilities for designing them as
exclusive, inclusive and parallel splits. As Process
Checklists can be generated from existing process
models, e.g. from BPMN models as described in
Sect. 5, they inherit more or less the same degree
of flexibility by design as the original process
models have.

‘Flexibility by deviation is the ability for a
process instance to deviate at runtime from the
execution path prescribed by the original process
without altering its process model. The deviation
can only encompass changes to the execution
sequence of tasks in the process for a specific
process instance, it does not allow for changes in
the process model or the tasks that it comprises
(Schonenberg et al. 2008).’ This type of flexibility
is fast and easily achieved simply by changing the
checklist, e.g. inserting an additional task, deleting
an existing one or changing the order of two tasks
by swapping the point numbers by hand. These
changes only apply for one instance, i.e. for one
printed checklist. If there are loops in the process,
a hint about the deviation ought be given on the
cover sheet.

‘Flexibility by underspecification is the abil-
ity to execute an incomplete process model at
run-time, i.e. one that does not contain sufficient
information to allow it to be executed to com-
pletion. Note that this type of flexibility does

http://dx.doi.org/10.18417/emisa.12.1

Enterprise Modelling and Information Systems Architectures
Vol. 12, No. 1 (2017). DOI:10.18417/emisa.12.1

28 Michaela Baumann, Michael Heinrich Baumann, Stefan Schönig, Stefan Jablonski

not require the model to be changed at run-time.
Instead the model needs to be completed by provid-
ing a concrete realisation for the undefined parts
(Schonenberg et al. 2008).’ In Process Checklists,
empty control points can be inserted as standard
at the desired places in the model. The concrete
realisation is then done by the corresponding agent
who fills in all the necessary information like task
description and utilised data at run-time. See
Sect. 5.5 for an example of empty checklist points.

‘Flexibility by change is the ability to modify
a process model at runtime such that one or all
of the currently executing process instances are
migrated to a new process model. Unlike the
previously mentioned flexibility types, the model
constructed at design time is modified and one
or more instances need to be transferred from the
old to the new model (Schonenberg et al. 2008).’
This type of flexibility is the most challenging for
Process Checklists. Changing a checklist itself is
about as expensive as changing any other process
model when requirements like validity, correct-
ness and soundness are considered. Adjusting
point numbers and especially go-to numbers is,
however, more complex than shifting arrows in
graphical process models. But transferring the
model changes to running process instances is
difficult in that way that it could take some time to
locate the checklist at all, even if a (paper-based)
receipt system is applied. This is a natural con-
sequence of the paper-based approach that can
hardly be fixed without slowing down the pro-
cessing time of each currently running checklist
pass or introducing electronic receipts. Within
one institution, the change of a Process Checklist
could also be communicated to each employee so
that all employees working on a changed checklist
can print the new version and continue with the
new one as described in Sect. 4.5.1 concerning
backward jumps, keeping the old one for recon-
struction purposes. This approach, however, needs
concrete mapping instructions like ‘point number
15 of the old version refers to point number 17 of
the new checklist version’ for all checklist points
so that every employee knows where to proceed
with the updated checklist.

In summary, we come to the conclusion that
checklists meet three of the four flexibility types

proposed by Schonenberg et al. (2008). Flexibility
by design is a type that is available in virtually
all process modelling languages. Admittedly, this
flexibility type is easier to realise for graphical
process modelling languages than for checklists.
Flexibility by deviation and flexibility by underspe-
cification are feasible quite simply, since changing
single process instances just means to ‘rewrite’
the checklist with a pen. Flexibility by change,
however, is a problem and difficult to achieve.
Regarding only the flexibility criterion, this is why
we suggest using Process Checklists primarily
in those fields where modifications of particular
process executions are often necessary without
permanently changing the underlying standard
process, i.e. the checklist template. They are also
suitable for situations where the explicit modelling
of all alternatives at one decision point is virtually
unfeasible. They are not recommended in fields
where, for example, the processes strongly depend
on normative or legal regulations and where these
regulations are changed quite often so that the
underlying process has to be changed as well. In
these cases, a good flexibility by change would be
necessary. An example for such processes would
be management standards for quality management
or environmental standards.

To get feedback about comprehensibility, ac-
ceptance and necessity, the two case studies were
carried out and are presented in the remainder of
this section. Before continuing with the two case
studies, it is relevant to note that even if graphical
process models are sometimes the only available
process support tools in (mostly small and middle-
sised) companies, they are not intended for that
purpose. But as Process Checklists address the
same target group, the BPMN models in the first
case study were used as a reference. Especially
for those companies that already have graphically
modelled processes, as is the case for the second
case study discussed below, the enactment of Pro-
cess Checklists is inexpensive and could lead to
evaluation improvements, such as are shown in
the following. We compare purely paper-based
execution methods, not execution support with
WfMSs.

http://dx.doi.org/10.18417/emisa.12.1

Enterprise Modelling and Information Systems Architectures
Vol. 12, No. 1 (2017). DOI:10.18417/emisa.12.1
The Process Checklist 29

7.2 Academic Domain Case Study
For evaluating the differences between checklists
and BPMN models, we distinguish between object-
ive and subjective criteria. The objective criteria
are flexibility, parallelism and length. Which char-
acteristics of the checklists and the BPMN models
are used to determine these criteria is stated in
Sect. 7.2.1. The subjective criteria, comprehensib-
ility, orientation and reliability, had to be derived
from interviews and surveys and an ensuing stat-
istical evaluation. Two different processes were
modelled to get more reliable results.

We modelled the example process ‘Administer-
ing an exam’ as a graphical BPMN process (see
Fig. 23) and as a Process Checklist, which was
derived from the BPMN model according to the
method presented in Sect. 6.2. Parts of the check-
list are represented in Fig. 1. The corresponding
checklist vector, the basis for the graphical check-
list, is presented in Fig. 5. The first process of the
academic domain case study includes the student,
the chair’s secretariat, the auditor and the assessor
as involved agents.

For the second process, applying for a business
trip, again a graphical BPMN process was mod-
elled (see Fig. 24). Additionally, two different
checklists to examine the differences presented
in Sect. 5.3.2 concerning the transformation of
parallel gateways were generated. Involved actors
are the head of chair, the chair’s secretariat and
the applicant. The two different transformations
of the parallel gateway appearing in the process
model were the static and the dynamic sequential
transformation. To do a parallel transformation
was not suitable in this context, as the parallel
subprocesses were too short to get any substan-
tial advantages of this form. To get results for
the subjective criteria, every execution support
tool (two BPMN models and three checklists) was
evaluated by 21 test persons, which means a total
of 105 evaluations. Every test person applied
the two or, respectively, three support tools for
both processes. We diminished learning effects
by changing the order of the support tools (BPMN
model and checklist) arbitrarily.

7.2.1 Objective Criteria
First of all, the conditions for the three objective
criteria had to be set up. For the criterion of flex-
ibility three possible values are available: A low
flexibility value means that during the execution
of a process the tasks (including the functional,
data, operational and organisational perspective)
and their order (the control-flow perspective) as
prescribed by the support tool cannot be changed.
A medium value means that the order of activ-
ities can be customised or that certain elements
(e.g. a document or a process step) can be deleted.
This refers to a certain degree of flexibility by
deviation (see Sect. 7.1). A high flexibility value
is assigned, if nearly everything can be adjusted
during execution (particularly full flexibility by
deviation and flexibility by underspecification, see
Sect. 7.1). For example, if the chair’s secretary
is not accessible, this agent can be changed to
another person in all activities where necessary
for this single process instance. Flexibility by
design is available both in the checklist approach
and the BPMN process model, whereas flexibility
by change is problematic in both cases. Imagine
that the BPMN model is available on several black-
boards in an organisation. Indeed, they may be
changed with a pen, but it is difficult or nearly
impossible to change the model for all instances as
well as for the execution of exactly one instance.

The values for the parallelism criterion are dis-
tributed in the following manner: A low value is
allocated if the execution order is fully determ-
ined before process initialisation and is therefore
only sequential. A medium value means that the
execution order is sequential but determinable at
run time to make use of agent availability as stated
by Degani and Wiener (1991). The parallelism
criterion is rated high if real parallelism is pos-
sible, i.e. a fully independent execution of several
subprocesses. For the ‘Administering an exam’
process model, no parallelism values could be
distributed as there are no parallel gateways in the
BPMN process model.

http://dx.doi.org/10.18417/emisa.12.1

Enterprise Modelling and Information Systems Architectures
Vol. 12, No. 1 (2017). DOI:10.18417/emisa.12.1

30 Michaela Baumann, Michael Heinrich Baumann, Stefan Schönig, Stefan Jablonski

University
Student Secretary of chair

D
et

er
m

in
e

ex
am

 s
ub

je
ct

Auditor Assessor

S
en

d
ex

am
 m

ar
k

an
d

pr
ot

oc
ol

 to
 e

xa
m

in
at

io
n

of
fic

e

R
eg

is
te

r e
xa

m
m

ar
ks

 in
 s

ys
te

m

D
et

er
m

in
e

an
d

as
si

gn
ex

am
in

at
io

n
da

te

S
ys

te
m

 n
ot

ifi
ca

tio
n

(o
ra

l e
xa

m
)

S
ys

te
m

 n
ot

ifi
ca

tio
n

(w
rit

te
n

ex
am

)

S
en

d
ex

am
 to

 e
xa

m
in

at
io

n
of

fic
e

P
er

fo
rm

 w
rit

te
n

ex
am

P
er

fo
rm

 e
xa

m
 c

or
re

ct
io

n

P
er

fo
rm

 o
ra

l e
xa

m
S

ig
n

m
in

ut
es

 o
f

ex
am

in
at

io
n

S
ig

n
m

in
ut

es
 o

f
ex

am
in

at
io

n

ex
am

in
at

io
n

da
te

D
at

e
w

rit
te

n
ex

am

R
oo

m
 w

rit
te

n
ex

am
E

xa
m

 ty
pe

?

E
xa

m

m
in

ut
es

 o
f

ex
am

in
at

io
nl

(s
ig

ne
d)

ex
am

 (m
ar

ke
d)

ex
am

 (u
nm

ar
ke

d)

m
in

ut
es

 o
f

ex
am

in
at

io
nl

(u
ns

ig
ne

d)

or
al

w
rit

te
n

Figure 23: BPMN model for the process ‘Administering an exam’.

http://dx.doi.org/10.18417/emisa.12.1

Enterprise Modelling and Information Systems Architectures
Vol. 12, No. 1 (2017). DOI:10.18417/emisa.12.1
The Process Checklist 31

Applying organizational unit

Applicant Secretary

Administration

A
pp

ly
 fo

r
tr

ip

C
he

ck
 a

pp
lic

at
io

n

B
oo

k
ac

co
m

m
od

at
io

n

P
ro

ce
ed

 fe
ed

ba
ck

O
bt

ai
n

bu
si

ne
ss

 tr
ip

in
fo

rm
at

io
n

an
d

co
st

s

A
rc

hi
ve

 tr
ip

 d
oc

um
en

ts

Chairman

B
oo

k
tr

an
sf

er
B

oo
k

fli
gh

t

B
oo

k
tr

ai
n

A
pp

ro
ve

 a
pp

lic
at

io
n

in
te

rn
al

D
et

er
m

in
e

ty
pe

 o
f

tr
ip

T
rip

 a
pp

ro
ve

d

T
yp

e
of

 tr
ip

T
em

pl
at

e
tr

ip
 a

pp
lic

at
io

n

B
us

in
es

s
tr

ip
 a

pp
lic

at
io

n

A
pp

ro
ve

d
tr

ip
 a

pp
lic

at
io

n

B
oo

ki
ng

 o
f a

cc
om

m
od

at
io

n

B
oo

ki
ng

 o
f t

ra
ns

fe
r

T
en

ta
tiv

e
C

os
ts

B
oo

ki
ng

 o
f f

lig
ht

B
oo

ki
ng

 o
f t

ra
in

F
ee

db
ac

k

B
us

in
es

s
tr

ip
 a

pp
lic

at
io

n

T
yp

e
of

 tr
ip

O
w

n
C

ar

T
ra

inF
lig

ht

F
ee

db
ac

k

T
rip

 a
pp

ro
ve

d

Figure 24: BPMN model for the process ‘Applying for a business trip’.

http://dx.doi.org/10.18417/emisa.12.1

Enterprise Modelling and Information Systems Architectures
Vol. 12, No. 1 (2017). DOI:10.18417/emisa.12.1

32 Michaela Baumann, Michael Heinrich Baumann, Stefan Schönig, Stefan Jablonski

Length of the process execution support tools,
i.e. of the checklists and the BPMN models, is just
the number of all flow objects in the BPMN model
(activities, events, gateways) or the number of
operating and control points in the checklists. This
value depends strongly on the underlying process
and only gives an impression of the compactness
or complexity of the different tools and the several
transformation methods. Only tools with the same
underlying process are comparable with each other.
Tab. 3 shows the results of the objective criteria
evaluation for the two processes ‘Administering
an exam’ and ‘Applying for a business trip’.

7.2.2 Subjective Criteria
As mentioned in the introduction of Sect. 7.2,
the subjective evaluation criteria are comprehens-
ibility, orientation and reliability. The 21 test
persons—students, PhD students, employees and
professors from different chairs and faculties—
had to go through the two processes with the help
of the different process execution support tools:
one BPMN model and one checklist for the first
process and one BPMN model and two checklists
for the second process. About half of them were
not familiar with process models. Afterwards,
they rated their impressions of the three subjective
criteria by classifying with a Likert scale of five
classes. The generated boxplots2 allow a good
interpretation of the results for the three criteria.

In Fig. 25, the boxplots for comprehensibility
of the different process execution support tools for
both processes are shown. A high value reflects
the opinion of the test person that he completely
understands the process and the handling of the
support tool, in contrast to a low value where the
person neither understands the process nor the
tool’s handling. As it can be seen in Fig. 25, the
scattering for both BPMN models is greater than
that of the checklists. This could be because some
persons—probably those familiar with process
models—easily understand the BPMN notation,
but others do not, and that the checklists are

2 For more information about boxplots see Fahrmeir et al.
(2016), Sect. 2.2 and The R Foundation (2017).

understood quite well among all test persons. Fur-
thermore, the answers’ median for the checklists
is higher than that of the corresponding BPMN
models. Nevertheless, the shorter but less flexible
checklist for the business trip process seems easier
to be understood than the longer but more flexible
one.

The second subjective evaluation criterion is
orientation, which asks about one’s own position
during the process execution and the steps that
have to be performed next. The possible answers
ranged from ‘When I receive the support tool I
know where I am in the process and what I have
to do next’ to ‘When I receive the support tool
I neither know where I am in the process nor
what I have to do next’. Again, a set of boxplots
for the two processes and the two, respectively
three, execution support tools was generated and
is shown in Fig. 26.

The results for the orientation aspect are sim-
ilar to that of comprehensibility: Scattering for
the BPMN support tools is higher than for the
checklists and values for the median are higher, i.e.
better, for the checklists than for the BPMN model.
As can be seen, the short checklist for the business
trip process has a better orientation value than
the long checklist. This could be due to the fact
that the short checklist provides a slightly better
overview over the process and clearer instructions
for the tasks. There are fewer control points and
thus more longer sequential task chains, consist-
ing of operating points, which allow for easier
orientation. Moreover, one conspicuous aspect is
that the difference of the BPMN support tools and
the checklists is greater for the orientation aspect
than for the first aspect, comprehensibility.

In Fig. 27, boxplots for the third subjective
evaluation criterion, reliability, are presented. A
high level of reliability means that the course of
the process execution so far is traceable and it is
clear, who has carried out which tasks. A low
level means the opposite, i.e. the execution is
not traceable and it is not clear who has carried
out which tasks. It is noteworthy that the median
values for the BPMN support tool are quite low and
for the checklists have even increased compared to

http://dx.doi.org/10.18417/emisa.12.1

Enterprise Modelling and Information Systems Architectures
Vol. 12, No. 1 (2017). DOI:10.18417/emisa.12.1
The Process Checklist 33

Subscribe for exam Apply for business trip

BPMN Checklist BPMN ShortChecklist LongChecklist

Flexibility low high low high high

Parallelism NA NA high low medium

Length 16 15 20 15 18

Table 3: Values for the objective evaluation criteria for the different support tools; NA = not available.

BPMN Checklist

Subscribe for exam

lo
w

hi
gh

BPMN ShortChecklist LongChecklist

Apply for business trip

lo
w

hi
gh

Comprehensibility

Figure 25: Boxplot evaluation of the comprehensibility for the two processes ‘Administering an exam’ (BPMN model
and checklist) and ‘Apply for a business trip’ (BPMN model, a short checklist and a long checklist).

http://dx.doi.org/10.18417/emisa.12.1

Enterprise Modelling and Information Systems Architectures
Vol. 12, No. 1 (2017). DOI:10.18417/emisa.12.1

34 Michaela Baumann, Michael Heinrich Baumann, Stefan Schönig, Stefan Jablonski

BPMN Checklist

Subscribe for exam

lo
w

hi
gh

BPMN ShortChecklist LongChecklist

Apply for business trip

lo
w

hi
gh

Orientation

Figure 26: Boxplot evaluation of the orientation for the two processes ‘Administering an exam’ (BPMN model and
checklist) and ‘Apply for a business trip’ (BPMN model, a short checklist and a long checklist).

BPMN Checklist

Subscribe for exam

lo
w

hi
gh

●●●●

BPMN ShortChecklist LongChecklist

Apply for business trip

lo
w

hi
gh

Reliability

Figure 27: Boxplot evaluation of the reliability for the two processes ‘Administering an exam’ (BPMN model and
checklist) and ‘Apply for a business trip’ (BPMN model, a short checklist and a long checklist).

http://dx.doi.org/10.18417/emisa.12.1

Enterprise Modelling and Information Systems Architectures
Vol. 12, No. 1 (2017). DOI:10.18417/emisa.12.1
The Process Checklist 35

the other evaluation criteria. There is hardly any
spread in the responses concerning the checklists,
which means that they provide a high reliability
for nearly all test persons. Responses concerning
the BPMN model again vary very much, but at a
rather low level. Thus, even for the people who
understood the BPMN evaluation tool quite well,
it does not seem to provide an accordingly good
value of reliability during the execution.

Concerning the expectations for the first case
study, it can be said that practicability is attained
simply by the fact that we were able to gener-
ate checklists out of BPMN models and that the
processes were correctly performed. Also, com-
prehensibility was rated good or very good by
the majority of the test persons and the correct
performances of the processes support these state-
ments.

7.3 Bank Case Study
The second case study was performed together
with Sparkasse Bamberg, a German savings bank
with 837 employees and a balance sheet total
of EUR 3.752 billion (both in 2015) (Sparkasse
Bamberg 2015). One process about how to handle
an overdraft facility was chosen for the evaluation.
This process is a very common one, i.e. we achieve
a statistically sufficient number of process passes
in a relatively short period of time. In a first
step, the process model was transferred from an
internally used modelling language to a BPMN
model to provide comprehension of the process
without having to introduce another modelling
language to the reader and to make use of the
transformation rules stated in Sect. 5 for generating
the checklist. The BPMN model was validated
by several employees including the CEO of the
bank. For reasons of readability and secrecy, we
shortened and translated the original model. This
modified version of the overdraft facility process is
shown in Fig. 28. The original model, a translated
excerpt of it is shown in Fig. 29, consisted of 24
different activities, which were transformed into
14 tasks in the BPMN-model. Additionally, 6
exclusive gateways (splits and joins) and 4 events
(start, end, abort) have been added. The length of

the considered model, as defined in Sect. 7.2.1, is
24. The length of the shortened model in Fig. 28
is only 16.

Afterwards, the BPMN process model was
transformed to a Process Checklist according to
the rules from Sect. 5. This serialisation was done
in merely about one hour. As the BPMN model
was derived by hand from the internally-used pro-
cess model, a BPMN-XML file was not given.
Thus, the transformation to the checklist repres-
entation was done manually. The length of the
resulting checklist is 19, consisting of 14 operating
points and 5 control points. The checklist allows
for 7 different cases to be executed, loops are not
included. A summarising table of the objective
criteria is given in Tab. 4.

The checklist bundle, i.e. the Process Checklist
and the cover sheet, was then physically handed
over to the employees of the savings bank to run
the overdraft loan process. So far, only the in-
ternal process model was available as guideline
for process execution. A manual of 2.5 pages
was provided to learn about the usage of Process
Checklists. The 31 employees who were involved
in the overdraft loan process did not get any other
instruction about how to use the Process Checklist.
As in the case study in the academic domain, the
employees filled in an evaluation sheet afterwards.
Again, a Likert-scale with five classes was used to
get their opinion about comprehensibility, orienta-
tion and reliability of the checklist. Furthermore,
a fourth criterion we asked was their compre-
hensibility of the process so that participants not
understanding the process itself could be excluded
from the case study to prevent a bias of the results.
Actually, this was not the case in our evaluation.
The results of the evaluation are shown in Fig. 30
and summarised in the following.

At least 75% of the test persons claimed that
they understand both the process and the checklist,
i.e. its structure and its handling, quite well (the
two higher classes of the Likert-scale). Note that
the checklist was explained to the test persons only
via a written instruction manual. Also, only a few
hours after receiving the checklist and the manual,
the employees went through the process for the

http://dx.doi.org/10.18417/emisa.12.1

Enterprise Modelling and Information Systems Architectures
Vol. 12, No. 1 (2017). DOI:10.18417/emisa.12.1

36 Michaela Baumann, Michael Heinrich Baumann, Stefan Schönig, Stefan Jablonski

Determine
credit

request
Require-
ments

satisfied?

Process abort

no

Register
credit

yes

Free
active line
available?

Sign
documentsyes

Sign
special

documents

no

Documents
complete?

yes
Record

documents

Complete
documents

no

Documents
complete and
deadline met?

Process
abort

no

yes

Figure 28: BPMN model of an overdraft facility process in a shortened version without data and human resources.

Participants

M
ar

ke
t

C
om

pe
te

nc
e

pr
ov

id
er

Fi
na

nc
ia

ls
er

vi
ce

pr
ov

id
er

C
re

di
t

ac
co

un
tin

g

Detailed process steps Annotations

→ Required documents are
submitted within two weeks
→ Control of recording (4a)

→ Required documents are not
submitted within two weeks→
Overdraft is checked incorrectly

(4a) at 1. documents are complete
Continuation of the process
with (5)

Figure 29: Translated excerpt of the overdraft facility process in its original notation.

http://dx.doi.org/10.18417/emisa.12.1

Enterprise Modelling and Information Systems Architectures
Vol. 12, No. 1 (2017). DOI:10.18417/emisa.12.1
The Process Checklist 37

ProcessComprehensibility ChecklistComprehensibility Orientation Reliability

Overcraft Facility Process

lo
w

hi
gh

Business Domain Case Study Results

Figure 30: Results of the financial domain case study.

Overdraft facility

BPMN Checklist

Flexibility low high

Parallelism NA NA

Length 24 19

Table 4: Values for the objective evaluation criteria for
the overdraft facility process support tools; NA = not
available.

first time. No employee did not understand the
process or the checklist (no responses in the two
lowest classes). The results for the orientation
criterion are slightly better, as at least 50% of
the test persons even specified a very good (high)
value for orientation and 75% a good or very
good value. However, the assessment also shows
some outliers for this criterion. The reliability
criterion was, with a few exceptions, rated quite
well. At least 50% assigned the highest value for
reliability and at least 75% assigned at least the
second highest value. During the evaluation, none

of the employees deviated from the cases provided
by the checklist.

These results of the subjective evaluation cri-
teria basically seem to affirm our approach, but the
most valuable outcomes are the (positive and neg-
ative) feedback comments and the proposals for
improvement of the Process Checklist approach.
Basically, the feedback and proposals could be di-
vided into two categories: statements concerning
the checklist and statements concerning the over-
draft facility process. We show no further interest
in the latter statements as they are process specific
and do not relate to the checklist in the first place.
The comments concerning the checklist can be
divided into positive feedback, negative feedback
and improvement proposals and are classified into
several criteria. Issues declared as frequently are
mentioned three or more times in the evaluation.

Positive Feedback
A frequent positive review is that everybody un-
derstands the Process Checklist or that it is easy to
understand the checklist. Another positive review
mentioned is that traceability and transparency
is rather high, transparency in the sense of ‘fully
observable’. Furthermore, no process step may be

http://dx.doi.org/10.18417/emisa.12.1

Enterprise Modelling and Information Systems Architectures
Vol. 12, No. 1 (2017). DOI:10.18417/emisa.12.1

38 Michaela Baumann, Michael Heinrich Baumann, Stefan Schönig, Stefan Jablonski

forgotten. Apparently, this last point also holds
for any other WfMS. Also, traceability is an is-
sue supported by WfMSs but Process Checklists
provide easy access to this issue, particularly for
the involved agents at every point in the checklist.
The understanding of the checklist also strongly
depends on the checklist design, especially on a
clear arrangement of the checklist elements. Even
if frequently mentioned as a positive feature, the
checklist design could be improved to provide
better comprehensibility to all employees.

Negative Feedback
Two frequently mentioned negative reviews are the
following: the processing of a Process Checklist
is work and time intensive and the cover sheet is
redundant. For the first comment, some proposals
for improvement are given in the following para-
graph. Concerning the redundancy of the cover
sheet a brief discussion is relevant. First of all,
the cover sheet is redundant in such a way that a
checklist point has to be signed in field AG and
that its number has to be written on the cover
sheet, so the completion of the task is indicated
twice. The note on the cover sheet is, however,
needed in that cases when the checklist points are
not enacted sequentially, i.e. if jumps (forward or
backward) are performed and so the point to be
performed next is either not recognisable or only
recognisable with a certain amount of reproducing
efforts. In the following improvements section,
a proposal for optimising the usage of the cover
sheet is listed. Other characteristics negatively
mentioned are that the checklist is too complic-
ated, especially the control points (gateways) are
too confusing and that the checklist is too long.
We want to mention here that the length of the
checklist strongly depends on the length of the
underlying process. But also for this criticism a
possible remedy is presented in the improvements
section.

Improvement proposals
The most frequent proposal was to use the Process
Checklist only for long (complex) or infrequently

executed processes. For simple and/or often ex-
ecuted processes, the checklist use offers no ad-
ditional value but extends the processing time.
We would add another requirement for situations
in which Process Checklists are not necessarily
needed: The need for traceability is either not
essential or can be achieved through other ways,
like the archiving of documents produced through
the process itself. Another improvement proposal
relates to the extension of the processing time.
The time requirement could be reduced by not
demanding complete signings with name, person-
nel number and so on, but to request only a short
handwritten mark like initial letters (plus the per-
sonnel number). Adding the current date could
be achieved by using a stamp. Concerning the
usage of the cover sheet, it would be helpful to list
only the next point number on the cover sheet if
the checklist is handed over to another agent. If
two or more points are consecutively executed by
the same agent then the entry on the cover sheet is
not needed. For reducing the length and therefore
the time required for signing the points, it could
be useful, if possible, to summarise several small
tasks that would have resulted in several checklist
points into one checklist point if the assigned agent
or role is the same and if the contents fit. When
doing so, the change of checklist elements could
become a little costlier because the composed ele-
ments have to be separated first before applying
the changes (and summarised afterwards again).
For generating the Process Checklist for the finan-
cial domain evaluation, we simply used the same
task allocation as given through the underlying (in-
ternal) graphical process model, which showed a
relatively fine granularity. Concerning the design
of the Process Checklist it was proposed to high-
light the middle field of each checklist point (the
activity field AC of operating points and the con-
dition field CO of control points) and to clearly
identify operating and control points through sig-
nal words like ‘task’ and ‘decision’. Also, another
remark given by the test persons was to process
the checklist electronically. This proposal is justi-
fied in times of mobile devices but we wanted to
examine and test paper-based Process Checklists

http://dx.doi.org/10.18417/emisa.12.1

Enterprise Modelling and Information Systems Architectures
Vol. 12, No. 1 (2017). DOI:10.18417/emisa.12.1
The Process Checklist 39

explicitly for the reasons given in Sect. 1: their
fast, cheap and easy enactment. However, the
structure of Process Checklists as introduced in
Sect. 2 may likely be transferred to an electronic
version of the Process Checklist. This would be
an issue for future work.

To sum up, we can say that comprehensibility
was rated well by over 3/4 of the test persons,
which is a very high percentage after one test
run. Furthermore, the comments show a basic
acceptance and a certain necessity for checklists by
most of the employees. However, the improvement
proposals should be considered in any case and
incorporated as far as possible to further increase
the acceptance. As the improvement proposals
show, the necessity for checklists strongly depends
on the types of processes. Complex or infrequently
performed processes require execution support.

At the end of this paper, a short conclusion will
follow, highlighting also the restrictions of the
proposed Process Checklist approach, as well as
issues for future work that could be devoted to this
topic.

8 Conclusion, Limitations and Future
Work

In order to provide an alternative to IT-based
process management systems, the work at hand
presented a paper-based scheme in order to support
workflow execution that is suitable for human-
driven processes. We introduced the Process
Checklist representation of process models where
processes are described as a paper-based step-by-
step instruction manual. The Process Checklist
is handed over during process execution from
process participant to process participant. Suc-
cessful task accomplishments are recorded with
the help of signatures of corresponding process
participants.

In this way, the Process Checklist also sup-
ports the key benefits of traditional WfMSs. The
checklist is handed over to responsible agents
(task coordination), process tasks are serialised
and marked by a unique identifier (step-by-step
guidance) and the checklist itself as well as the

corresponding signatures ensure traceable pro-
cess execution. The work at hand provides the
following as the main contributions:

• the general structure of Process Checklists to
serve as an execution support

• enactment instructions for Process Checklists
• a transformation algorithm of basic BPMN

process model elements to Process Checklists
• a comprehensive evaluation

Furthermore, we described implementation de-
tails by giving a concrete checklist meta-model
as well as an XML-based serialisation possibility.
The checklist approach has been evaluated in two
real-life case studies, one in the academic domain
and one in the financial business domain. The
results show that Process Checklists serve as a
feasible process execution support and are highly
accepted by process participants.

Paper-based checklists also have disadvantages
compared to traditional WfMS. Checklists rep-
resent a single point of access, so support for
distributed agents may be difficult. If this is the
case, one has to ask if using a paper-based check-
list is the right thing for this specific application,
as we recommend using checklists, for example,
in processes where information is mostly present
on paper or the physical realm and moving this
information into the digital realm is prohibitively
costly or even impossible. Moreover, one dis-
advantage may occur due to human failure as
the Process Checklist, i.e. one process instance,
simply may get lost. Ameliorating such a circum-
stance can be effected with the help of receipts,
though this task may be laborious. However, the
problem of losing documents is not only an issue
concerning paper-based checklists, but is relevant
for all institutions dealing with documents and
files, e.g. in accounting.

In general, it is possible to transform a proced-
ural process model to a Process Checklist based
on the proposed algorithm. However, due to the
serialisation of the process, the checklist repres-
entation has of course problems when dealing
with parallelism. Here, process modellers have

http://dx.doi.org/10.18417/emisa.12.1

Enterprise Modelling and Information Systems Architectures
Vol. 12, No. 1 (2017). DOI:10.18417/emisa.12.1

40 Michaela Baumann, Michael Heinrich Baumann, Stefan Schönig, Stefan Jablonski

to choose a suitable transformation method as
described in Sect. 5. The presented case studies
focused on a first evaluation in the fields of univer-
sity processes and banking processes. Here, we
got useful information regarding the acceptance
and cooperation of participating agents as well as
valuable suggestions for improving methodology,
design and representation.

A further extension of the checklist approach,
as it was also proposed by test persons in the case
studies, would be to investigate if it is possible to
use the transformation rules from BPMN process
models to checklists as the basis for a digital ToDo
application, e.g. for mobile devices to achieve
better navigation through the process instance
than the paper-based checklist provides. In doing
so, the problem of documents and files that need
to be passed—now detached from the checklist—
will have to be addressed again. Furthermore, we
will focus the transformation of loosely-specified
process models like declarative process models
defined in languages like Declare (Baumann et
al. 2016; Pešić 2008) or DPIL (Zeising et al.
2014), which already contain a high degree of
flexible process execution but need, due to this
extreme flexibility, appropriate navigation and
support tools.

References
AXONiVY (2016) Axon.ivy BPM Suite -
Axon.ivy Designer. http://developer.axonivy.com/
download/. Last Access: 2017-01-11

Baumann M., Baumann M. H., Gruber D. F.-X.,
Jablonski S. (2016) Infinite Horizon Decision
Support For Rule-based Process Models. In: Inter-
national Journal on Advances in Software 9(1&2),
pp. 141–153

Baumann M., Baumann M. H., Schönig S., Jablon-
ski S. (2014) Enhancing Feasibility of Human-
Driven Processes by Transforming Process Mod-
els to Process Checklists. In: Bider I., Gaaloul K.,
Krogstie J., Nurcan S., Proper H. A., Schmidt R.,
Soffer P. (eds.) Enterprise, Business-Process and
Information Systems Modeling. LNBIP Vol. 175.
Springer, Berlin, Heidelberg, pp. 124–138

Boehm B. (1991) Software risk management: prin-
ciples and practices. In: Software, IEEE 8(1),
pp. 32–41

Briere J., Johnson K., Bissada A., Damon L.,
Crouch J., Gil E., Hanson R., Ernst V. (2001) The
Trauma Symptom Checklist for Young Children
(TSCYC): reliability and association with abuse
exposure in a multi-site study. In: Child Abuse &
Neglect 25, pp. 1001–1014

C2P2 (2015) Competence Center for Practical
Process Management. http://www.kppq.de/. Last
Access: 2017-01-11

Chong S. (2014) Business process management
for SMEs: an exploratory study of implementation
factors for the Australian wine industry. In: Journal
of Information Systems and Small Business 1(1-2),
pp. 41–58

Condon C. (1993) The Computer Won’t Let Me:
Cooperation, Conflict and the Ownership of In-
formation. In: Easterbrook S. (ed.) CSCW: Co-
operation or Conflict? CSCW. Springer, London,
pp. 171–185

Degani A., Wiener E. L. (1991) Human factors
of flight-deck checklists: the normal checklist. In:
NASA Contractor Report 177549

Derogatis L. R., Lipman R. S., Rickels K., Uhlen-
huth E. H., Covi L. (1974) The Hopkins Symptom
Checklist (HSCL): A self-report symptom invent-
ory. In: Behavioral Science 19(1), pp. 1–15

Ely J. W., Graber M. L., Croskerry P. (2011)
Checklists to reduce diagnostic errors. In: Aca-
demic Medicine 86(3), pp. 307–313

Faerber M., Jablonski S., Schneider T. (2007) A
Comprehensive Modeling Language for Clinical
Processes.. In: ECEH. Citeseer, pp. 77–88

Fahrmeir L., Heumann C., Künstler R., Pigeot I.,
Tutz G. (2016) Statistik – Der Weg zur Datenana-
lyse, 8th ed. Springer, Berlin, Heidelberg

GPM Netzwerk (2015) Netzwerk Geschäfts-
prozessmanagement. http://www.gpm-netzwerk.
de/prozessmanagement- in-kmu.html. Last Ac-
cess: 2017-01-11

http://dx.doi.org/10.18417/emisa.12.1
http://developer.axonivy.com/download/
http://developer.axonivy.com/download/
http://www.kppq.de/
http://www.gpm-netzwerk.de/prozessmanagement-in-kmu.html
http://www.gpm-netzwerk.de/prozessmanagement-in-kmu.html

Enterprise Modelling and Information Systems Architectures
Vol. 12, No. 1 (2017). DOI:10.18417/emisa.12.1
The Process Checklist 41

Hales B. M., Pronovost P. J. (2006) The checklist
– a tool for error management and performance
improvement. In: Journal of Critical Care 21(3),
pp. 231–235

Harrison-Broninski K. (2010) Dealing with
Human-Driven Processes. In: vom Brocke J., Rose-
mann M. (eds.) Handbook on Business Process
Management 2: Strategic Alignment, Governance,
People and Culture. Springer, Berlin, Heidelberg,
pp. 443–461

Hartel M. C., Chou S. C. (1995) Electronic Check-
list System. United States Patent (Patent Number
5 454 074)

Hauser R., Friess M., Kuster J., Vanhatalo J. (2006)
Combining Analysis of Unstructured Workflows
with Transformation to Structured Workflows. In:
Enterprise Distributed Object Computing Confer-
ence, pp. 129–140

Hevner A., Chatterjee S. (2010) Design Science
Research in Information Systems. In: Hevner A.,
Chatterjee S. (eds.) Design Research in Informa-
tion Systems: Theory and Practice. Springer, New
York, London, pp. 9–22

Jablonski S. (2010) Do We Really Know How
to Support Processes? Considerations and Recon-
struction. In: Engels G., Lewerentz C., Schäfer
W., Schürr A., Westfechtel B. (eds.) Graph Trans-
formations and Model-Driven Engineering. LNCS
Vol. 5765. Springer, Berlin, Heidelberg, pp. 393–
410

Jablonski S., Bussler C. (1996) Workflow Manage-
ment: Modeling Concepts, Architecture and Im-
plementation. International Thomson Computer
Press, London

Jackson M. A. (1975) Principles of program
design. Academic Press, Orlando, FL

Kellerhoff F. (2012) Prozessanalyse und
Prozesskostenrechnung im Krankenhaus - Ergebn-
isse aus der Praxis. In: Mühlbauer B. H., Kellerhoff
F., Matusiewicz D. (eds.) Zukunftsperspektiven
der Gesundheitswirtschaft. Lit, Berlin, Münster,
pp. 64–82

Kerzner H. R. (2013) Project Management: A Sys-
tems Approach to Planning, Scheduling, and Con-
trolling, 11th ed. John Wiley & Sons, Hoboken,
NJ

Koehler J., Hauser R., Küster J., Ryndina K., Van-
hatalo J., Wahler M. (2008) The Role of Visual
Modeling and Model Transformations in Business-
driven Development. In: Electronic Notes in The-
oretical Computer Science 211 Proceedings of the
Fifth International Workshop on Graph Transform-
ation and Visual Modeling Techniques (GT-VMT
2006), pp. 5–15

Kumar A., Zhao J. L. (2002) Workflow support for
electronic commerce applications. In: Decision
Support Systems 32(3), pp. 265–278

Luff P., Heath C., Greatbatch D. (1992) Tasks-in-
interaction: Paper and Screen Based Document-
ation in Collaborative Activity. In: Computer-
supported Cooperative Work. CSCW. ACM,
Toronto, Ontario, Canada, pp. 163–170

Mans R., van der Aalst W. M. P., Russell N.,
Bakker P. (2009) Flexibility Schemes for Work-
flow Management Systems. In: Ardagna D., Me-
cella M., Yang J. (eds.) Business Process Man-
agement Workshops. LNBIP Vol. 17. Springer,
Berlin, Heidelberg, pp. 361–372

Melenovsky M. J. (2005) Business process man-
agement’s success hinges on business-led initi-
atives. In: Gartner Research, Stamford, CT July,
pp. 1–6

Montali M. (2009) Specification and Verifica-
tion of Declarative Open Interaction Models – A
Logic-based framework. PhD thesis, Alma Mater
Studiorum Universitá di Bologna

Nassi I., Shneiderman B. (1973) Flowchart tech-
niques for structured programming. In: ACM Sig-
plan Notices 8(8), pp. 12–26

Object Management Group Inc. (2011) Business
Process Model and Notation (BPMN) Version 2.0.
http://www.omg.org/spec/BPMN/2.0. Last Access:
2017-01-11

http://dx.doi.org/10.18417/emisa.12.1
http://www.omg.org/spec/BPMN/2.0

Enterprise Modelling and Information Systems Architectures
Vol. 12, No. 1 (2017). DOI:10.18417/emisa.12.1

42 Michaela Baumann, Michael Heinrich Baumann, Stefan Schönig, Stefan Jablonski

Organisationshandbuch (2015) Das Organisation-
shandbuch - vom Praktiker für den Praktiker. http:
//www.orghandbuch.de. Last Access: 2017-01-11

Pešić M. M. (2008) Constraint-based Workflow
Management: Shifting Control to Users. PhD
thesis, Technische Universiteit Eindhoven

Reichert M., Weber B. (2012) Enabling flexibility
in process-aware information systems: challenges,
methods, technologies. Springer, Berlin, Heidel-
berg

Schonenberg H., Mans R., Russell N., Mulyar N.,
van der Aalst W. M. P. (2008) Process Flexibility: A
Survey of Contemporary Approaches. In: Dietz J.,
Albani A., Barjis J. (eds.) Advances in Enterprise
Engineering I. LNBIP Vol. 10. Springer, Berlin,
Heidelberg, pp. 16–30

Seitz M., Schönig S., Jablonski S. (2014) A
Framework for Reasonable Support of Process
Compliance Management. In: Abramowicz W.,
Kokkinaki A. (eds.) Business Information Sys-
tems Workshops. LNBIP Vol. 183. Springer, New
York, pp. 131–144

Sparkasse Bamberg (2015) Report 2015. https:
/ / www . sparkasse - bamberg . de / de / home /
ihre - sparkasse / ihre - sparkasse - vor - ort /
finanzpublikationen.html?n=true. Last Access:
2017-01-11

Swenson K. D. (2010) Mastering the Unpredict-
able: How Adaptive Case Management Will Revo-
lutionize the Way That Knowledge Workers Get
Things Done. Meghan-Kiffer Press, Tampa

The R Foundation (2017) R: The R Project for
Statistical Computing. http://www.r-project.org/.
Last Access: 2017-01-11

van der Aalst W. M. P., ter Hofstede A. H. M.,
Kiepuszewski B., Barros A. P. (2003) Workflow
Patterns. In: Distributed and Parallel Databases
14(1), pp. 5–51

van der Aalst W. M. P., Weske M., Grünbauer
D. (2005) Case handling: a new paradigm for
business process support. In: Data & Knowledge
Engineering 53(2), pp. 129–162

WHO (2009) WHO Guidelines for Safe Surgery
2009: Safe Surgery Saves Lives. http://www.ncbi.
nlm.nih.gov/books/NBK143244/. Last Access:
2017-01-11

Wolff A. M., Taylor S. A., McCabe J. F. (2004) Us-
ing checklists and reminders in clinical pathways
to improve hospital inpatient care. In: Medical
Journal of Australia 181, pp. 428–431

Zairi M. (1997) Business process management: a
boundaryless approach to modern competitiveness.
In: Business Process Management Journal 3(1),
pp. 64–80

Zeising M., Schönig S., Jablonski S. (2014) To-
wards a common platform for the support of
routine and agile business processes. In: Inter-
national Conference on Collaborative Computing:
Networking, Applications and Worksharing (Col-
laborateCom), pp. 94–103

zur Muehlen M., Recker J. (2008) How Much
Language Is Enough? Theoretical and Practical
Use of the Business Process Modeling Notation.
In: Bellahsène Z., Léonard M. (eds.) Advanced In-
formation Systems Engineering. LNCS Vol. 5074.
Springer, Berlin, Heidelberg, pp. 465–479

This work is licensed under
a Creative Commons
‘Attribution-ShareAlike 4.0
International’ license.

http://dx.doi.org/10.18417/emisa.12.1
http://www.orghandbuch.de
http://www.orghandbuch.de
https://www.sparkasse-bamberg.de/de/home/ihre-sparkasse/ihre-sparkasse-vor-ort/finanzpublikationen.html?n=true
https://www.sparkasse-bamberg.de/de/home/ihre-sparkasse/ihre-sparkasse-vor-ort/finanzpublikationen.html?n=true
https://www.sparkasse-bamberg.de/de/home/ihre-sparkasse/ihre-sparkasse-vor-ort/finanzpublikationen.html?n=true
https://www.sparkasse-bamberg.de/de/home/ihre-sparkasse/ihre-sparkasse-vor-ort/finanzpublikationen.html?n=true
http://www.r-project.org/
http://www.ncbi.nlm.nih.gov/books/NBK143244/
http://www.ncbi.nlm.nih.gov/books/NBK143244/
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en

