
International Journal of Conceptual Modeling
February 2018. DOI:10.18417/emisa.si.hcm.14

190 Mykola Tkachuk, Rustam Gamzayev, Iryna Martinkus, Volodymyr Sokol, Oleh Tovstokorenko
Special Issue on Conceptual Modelling in Honour of Heinrich C. Mayr

Towards Effectiveness Assessment of Domain Modelling
Methods and Tools in SPL Development

Mykola Tkachuk*,a,b, Rustam Gamzayeva, Iryna Martinkusa, Volodymyr Sokola,
Oleh Tovstokorenkoa

a Department of Software Engineering and Management Information Technologies, National Technical University “Kharkiv
Polytechnic Institute”, Ukraine
b Department of Systems and Technologies Modelling, V.N. Karazin Kharkiv National University, Ukraine

Abstract. Domain-driven design (DDD) and especially the usage of domain modelling methods (DMM) are
modern approaches to improve software quality, and a way to develop software product lines (SPL). To
emphasize advantages of DDD and DMM usage, a 3-level design scheme is proposed, which reflects also
variability issues in the framework. According to this metaphor the main attention is paid to the phases of
logical domain modelling and physical modelling, with usage of two alternative DMM-methods: JODA and
ODM approaches. The algorithmic model for an efficiency coefficient estimation of alternative DMM usage
is proposed, which utilizes structured data resources, expert methods and metrics used in SPL development
processes. A feasibility study for the proposed approach is provided and the obtained experimental results
are discussed, which allow to make positive conclusions about this research and to outline its further steps
to be done.

Keywords. Domain Modelling Methods • Software Product Line • Variability • Structural Complexity •
Efficiency Coefficient • Code Reusing • Metric

1 Introduction: Research Actuality and
Goals

The largest amount of existing methodologies for
software development, and in the first place mod-
ern agile-methods are supposed to achieve the fol-
lowing two main goals proposed by Sommerville
(2011):

1. to decrease the project’s costs with respect to
all specified functional requirements and quality
attributes to be implemented in a target software
system;

2. to reduce the time needed for delivering of this
software product on consumer market.

* Corresponding author.
E-mail. tka.mobile@gmail.com

One of the most effective way to resolve this
problem is reusing different project solutions (as-
sets): domain knowledge, requirements specifica-
tions, software architectures, design patterns, and
finally source (program) code. This approach is
the basis of advanced concepts of software en-
gineering such as the development of software
products lines and software factories (Greenfield
and Short 2004), as well as methods of software
variability management (Capilla et al. 2013). In
turn, in order to achieve an appropriate level of
assets reuse in these processes, the methodology
of domain-driven design (DDD) is widely used
(Evans 2004; Tune and Millet 2015), where a
concept of domain model (DM) as a core for
conceptualization and reuse of expert knowledge
within the given application area (universe of dis-
cuss - UoD) was elaborated: e. g. Karagiannis et al.
(2016), Michael and Mayr (2015) and others. The

http://dx.doi.org/10.18417/emisa.si.hcm.14
tka.mobile@gmail.com


Enterprise Modelling and Information Systems Architectures
February 2018. DOI:10.18417/emisa.si.hcm.14
Towards Effectiveness Assessment of Domain Modelling Methods and Tools in SPL Development 191
Special Issue on Conceptual Modelling in Honour of Heinrich C. Mayr

DDD approach is successfully used to develop soft-
ware system families (SSF) and software product
lines (SPL), which is one of the a main trends in
modern software engineering (Klaus 2016). It
is to mention that these 2 notions sometimes are
used as synonyms because they define a specific
collection of software components, which have
both general and specific functional properties,
and include a special mechanism to provide soft-
ware variability (Capilla et al. 2013) in order to
be configured for multiple reuse for solving of
different problem-specific tasks in an appropriate
UoD.

But some authors, e.g. Kittlaus and Clough
(2009) and Lee (2015) define an important differ-
ence between SSF and SPL, namely: the members
of SSF as usually are used together to solve some
tasks in an appropriate UoD, while single items of
any SPL can be applied autonomously in particular
software applications.

As a example of SSF the collection of service-
oriented software solutions on cloud-based plat-
form Oracle SOA Suite 11g (Oracle Corp n.d.)
can be considered, and as a typical example of
SPL a well-known office software package MS
Office (Microsoft Corp n.d.) can be named. In the
following some development problems of SPLs
are examined, which are defined more correctly in
the manuals of the world-wide recognized interna-
tional organization in the IT-domain, the Software
Engineering Institute at the Carnegie Mellon Uni-
versity (Software Product Line Conference n.d.),
namely «. . . software product line is a set of
software-intensive systems that share a common,
managed set of features satisfying the specific
needs of a particular market segment or mission
and that are developed from a common set of core
assets in a prescribed way. . . ». Due to these
properties, the usage of SPL concepts provide, in
particular, the following advantages in compar-
ison with separate software system development,
namely:

• less project costs (up to 60%),
• time decreasing for release of a software product

on the market (in some cases up to 90%)

• significant reduction of IT-project’s staff (up to
70%), and some others.

Taking the issues mentioned above into account,
the main objective of the research presented in
this article is to propose a sophisticated approach
to effectiveness estimation of DMM usage in the
SPL development. The remaining article is or-
ganized in the following way: Section 2 analyses
briefly related work in the SPL domain, provides
the classification of existing DMMs and shows the
results of the comparative analysis of some CASE-
tools used for support. In section 3 the proposed
research methodology is outlined, which emphas-
izes variability issues in the domain modelling
conceptual scheme, and includes a collection of
heuristic assumptions combined with formalized
specifications to define an efficiency coefficient for
alternative DMM usage. In section 4 we present
the algorithmic model for the estimation of this
efficiency coefficient in different project situations,
which is based on structuring and analysing of
domain-specific knowledge about interconnected
and complex data resources, expert methods and
metrics. Section 5 presents the first implementa-
tion issues and results of the test-cases to prove the
proposed approach. In section 6 the article con-
cludes with a short summary and with an outlook
on next steps to be done.

2 Software Product Lines Development
with Domain Modelling: Related Work
and Open Problems

2.1 Typical Structure and Features of
Software Product Lines

Considering typical SPL structures (can be found
in Klaus (2016)), usually its software components
can be categorized into three main groups (see
Figure 1), namely:

i constant components, which form so-called
core of SPL;

ii variable components that already exist, and
which can be customized for the specific usage
with special features as a part of this SPL;

http://dx.doi.org/10.18417/emisa.si.hcm.14


International Journal of Conceptual Modeling
February 2018. DOI:10.18417/emisa.si.hcm.14

192 Mykola Tkachuk, Rustam Gamzayev, Iryna Martinkus, Volodymyr Sokol, Oleh Tovstokorenko
Special Issue on Conceptual Modelling in Honour of Heinrich C. Mayr

iii new components that have to be developed
additionally in this SPL, taking into account
new customer’s functional requirements etc.

Figure 1: Reference SPL structure

Summarizing the research presented in Nagesh
and Vivek (2016), components of any SPL can be
divided into their three main types (i) – (iii) in the
following way (see Figure 1):

- constant components (group i): they are the
components, that have a number of functional
changes not higher than 25%;

- variable components (group ii): these compon-
ents have a number of functional changes within
range of 25% - 75%;

- new components (group iii): they represent the
components, that have a number of functional
changes more than 75%.

Main problems of development and efficient
SPL implementation are considered by many ex-
perts, e. g. in Pohl et al. (2010); Perovich et al.
(2009); Bayer et al. (2004), and the relevance of
those works proved by a representative interna-
tional scientific and practical conference: The
Software Product Line Conference (n.d.) (SPLC),
which has been held annually for more than 20
years. So, in particular, among these problems the
following can be identified:

- design and evaluation of SPL reference archi-
tectures,

- development of CASE-tools and code frame-
works for SPL implementation and mainten-
ance,

- advanced requirements management in SPL
development,

- transformation legacy software into new SPL,
and some others.

At the same time, the provided analysis of the
obtained results in the SPL problem domain shows,
that the following important issues still remain
insufficiently elaborated, namely:

- building of quantitative metrics for SPL com-
ponents complexity assessment, which have an
impact on the degree of code reuse extent;

- determination of structural and functional com-
plexity of a DM which is further used for code
generation in the SPL development;

- elaboration of approaches to effectiveness es-
timation of alternative DMM usage in order to
improve the quality of SPL construction.

These problems are considered more detailed in
the following sections.

2.2 Classification of Domain Modelling
Methods

During the last 10-15 years a lot of different do-
main modelling methods (DMM) were developed
(Ferré 1999; Kelly and Tolvanen 2008). Despite
of their differences from the design point of view,
the most suitable way to classify DMMs, is to
consider them by type of phases / artefacts to be
reused in a software development process. Based
on this suggestion, the following groups of these
methods should be considered (see Figure 2):

1. DMM for requirements reusing;
2. DMM for architectures reusing;
3. DMM for assets reusing;
4. DMM for component reusing.

Taking our main research goal into account: to
identify the effectiveness of different DMM usage
in the SPL development, we have to consider the
methods from two similar groups more detailed:
(1) and (3) respectively. Therefore, two appro-
priate methods, namely JODA and ODM were
chosen and briefly presented below. The JODA
method (Joint integrated avionics Object oriented
Domain Analysis (Ferré 1999)) uses an object -

http://dx.doi.org/10.18417/emisa.si.hcm.14


Enterprise Modelling and Information Systems Architectures
February 2018. DOI:10.18417/emisa.si.hcm.14
Towards Effectiveness Assessment of Domain Modelling Methods and Tools in SPL Development 193
Special Issue on Conceptual Modelling in Honour of Heinrich C. Mayr

Figure 2: Taxonomy of domain modelling methods.

oriented approach to cover the domain analysis
phase, and includes the following processes:

• Domain data preparation: identification and
gathering of appropriate data sources, refer-
ences and software artefacts, which are relevant
for a given domain.

• Domain scope definition: elaboration of dia-
grams for higher-level entities, identify of
generalization-specialization, aggregation and
other relations within domain, build a domain
glossary.

• Domain modelling: identification, definition
and modelling several domain scenarios in order
to group domain-specific objects and activities
to represent them in next domain engineering
process.

The ODM method (Organizational Domain
Modelling (Ferré 1999)) systematically supports
the mapping of domain-specific artefacts into re-
usable assets, that can be reused in future software
development activities. This approach includes
the following phases:

• Plan domain engineering: this one is focused
on understanding stakeholders and defining the
domain analysis scope.

• Domain modelling: it concerns collecting and
documenting the domain-specific information
resources which are relevant for future reusing.

• Domain assets base: the final phase of the ODM
method that supposes defining the project scope,
creating (choosing) system architectures and
implementing a physical asset base for the given
domain.

In order to support all main phases / activit-
ies with any DA&DSM method the appropriate
CASE-tool has to be used, and a short overview
of them is given in the next paragraph.

2.3 Comparative Analysis of Domain
Modelling CASE-tools

Generally, visual modelling tools in Software En-
gineering have evolved a lot in recent years. One
of the new trends in this domain is the transition
from unified modelling environments like UML
or SysML (OMG 2010), to domain-specific mod-
elling (DSM) languages and tools, e.g. WebML,
SoaML, and some others (Reinhartz-Berger 2013).
These DSM - approaches allow developers to
design and to analyse software in terms of a tar-
get problem domain, and finally to generate an
application source code in different programming
languages based on high-level requirements spe-
cifications. It is to mention that existing CASE-
tools for DSM are quite varied in their capabilities,

http://dx.doi.org/10.18417/emisa.si.hcm.14


International Journal of Conceptual Modeling
February 2018. DOI:10.18417/emisa.si.hcm.14

194 Mykola Tkachuk, Rustam Gamzayev, Iryna Martinkus, Volodymyr Sokol, Oleh Tovstokorenko
Special Issue on Conceptual Modelling in Honour of Heinrich C. Mayr

and for comparing them, it is necessary to choose
a set of criteria. Obviously there are a lot of differ-
ent ways to define such criteria configurations, but
generic enough and in the same time a practice-
oriented one is the following list of criterion: a
possibility to generate code by domain model, a
possibility to build model by code, and last but
not least mandatory license. The appropriate data
about wide-used CASE-tools to support DMM
are shown in Table 1.

Table 1: Results by comparative analysis of domain
modelling CASE-tools

Generate
code
by model

Build
model
by code

Mandatory
license

Eclipse
Modeling
Framework

+ - +

Rational Rose + + +
FeatureIDE + + -
Visual
Paradigm + + ?

Actifsource + + -

The legend here is the follows: "-" means "is
not available"; "+" means “is available for free”;
and "?" means “a proprietary license is needed”.

Taking into account the data presented in Table 1
as the dedicated CASE-tools for future DM imple-
mentation the Actifsource and Eclipse Modeling
Framework (EMF) were chosen.

3 Research Methodology Outline

3.1 Variability Issues in Domain
Modelling: A Conceptual Scheme

Nowadays DDD in considered as a recognized
methodology to build a complex software in dif-
ferent application areas with respect to this im-
portant challenge: to provide a high level of assets
reusability in a given project. Although main
essential advantages and limitations of DDD are
already discussed intensively in many recent pub-
lications, from our point of view the positive
core of the DDD-methodology can be emphasized
once again if we consider an analogy between the

DDD-approach in software development and the
well-known 3-level vision about data representa-
tion in database development (Batini et al. 1992)
(see Figure 3).

Figure 3: 3-level scheme in DDD approach.

Note that, according to this vision about the
DDD approach for the one and the same domain
model (at conceptual modelling level), a lot of
different of its realizations (at the logical model-
ling level) can be constructed. And for each of
them an appropriated code framework might be
generated finally (at the physical modelling level)
using CASE-tools. In fact, in this scheme we are
facing with a variability problem (see in Figure
3 "Variability point 1" and "Variability point 2"),
which is now one of the main challenges in modern
software development (Capilla et al. 2013).

3.2 An Approach to Effectiveness
Estimation of Domain Modelling
Methods (DMMs): Heuristic Rules
and Formalization

In order to evaluate an influence of different factors
on effectiveness of DMM usage within a SPL de-
velopment framework, it is necessary to take a

http://dx.doi.org/10.18417/emisa.si.hcm.14


Enterprise Modelling and Information Systems Architectures
February 2018. DOI:10.18417/emisa.si.hcm.14
Towards Effectiveness Assessment of Domain Modelling Methods and Tools in SPL Development 195
Special Issue on Conceptual Modelling in Honour of Heinrich C. Mayr

large number of complicated and poorly formal-
ized information processes and objects into ac-
count. This is the reason why we propose to
develop an appropriate algorithmic model for this
purpose (Patdar 2014). The methodological basis
for constructing this model is the following system
of five heuristic assumptions, which were formu-
lated based on the study of modern information
sources and the generalization of our own experi-
ence in software development using the methods
of domain modelling, namely:

Assumption 1. There exists a certain set of do-
main modelling methods (set M):

(DM M)i ϵ M, i = 1, 2, 3... (1)

where DMM (DomainModelingMethod) is an
identifier denoting a separate method, that can be
used to construct an appropriate DM. There also
exists the set of relevant technologies T:

(DMT)j ϵ T, j = 1, 2, 3... (2)

where DMT (DomainModelingTechnology) is
an identifier denoting a particular technology (with
a CASE-tool) for implementing the appropriate
DMM.

As a result of the application of a particular
DMM with the corresponding DMT, the target
DM from the set D can be constructed for the
given UoD:

(DM)i, j ϵ D, (3)

where (DM)i, j is a domain model obtained as
a result of the application of the i-th DMM and
j-th DMT respectively.

Assumption 2. All DM from the set D have
different complexity levels, so there is such a
mapping ρ:

p : D → DMC, (4)

where DMC (DomainModelComplexity) is a
set of possible values of the quantitative level of
structural and functional complexity of domain
models.

Assumption 3. Based on each DM from a set D,
an appropriate generated code framework can be
obtained, so there is such a mapping ϕ:

ϕ : D → GCF, (5)

where GCF (GeneratedCodeFramework) is a
set of program code frames that can be used for
the construction of SPLs.

Assumption 4. All generated code frameworks
from a set GCF have different code reusability
extents (CRE), so there is such a mapping σ

ϕ : GCF → CRE, (6)

where CRE is a set of possible values of pro-
gram code reusability extent.

Assumption 5. The efficiency coefficient of a
certain DMM usage in SPL development can be
defined as the ratio of the code reusability extent
received using this DM, to the level of its structural
complexity, namely:

(K)E f f

[
(DM)i, j, (GCF)i, j

]
=

(CRE)i, j

(DMC)i, j
(7)

where (K)E f f is an efficiency coefficient, and
the variables (CRE)i, j and (DMC)i, j are defined
by expressions (6) and (4).

3.3 Analysis of Relationship Between
Software Quality Attributes,
Complexity Metrics and Rate of
Software Code Reuse

We have already shown, that the DDD approach for
software development assumes a reuse of different
project artefacts, which improves software quality
attributes. A variety of projects asset types and
their complex and hardly formalized relationships
make quantitative analysis practically infeasible.
Therefore, it defines a sophisticated and actual
task in software engineering (see Sommerville
2011). In order to structure reusable artefacts
and perform their qualitative analysis, the article
proposes to use mind maps (Guerrero and Ramos
2015), which unlike more formalized approaches
(such as UML, IDEF0, etc.) allows to represent

http://dx.doi.org/10.18417/emisa.si.hcm.14


International Journal of Conceptual Modeling
February 2018. DOI:10.18417/emisa.si.hcm.14

196 Mykola Tkachuk, Rustam Gamzayev, Iryna Martinkus, Volodymyr Sokol, Oleh Tovstokorenko
Special Issue on Conceptual Modelling in Honour of Heinrich C. Mayr

Figure 4: Software reuse artefacts.

in any UoD conceptual entities and their semantic
relationships of any nature. The ideas about gen-
eral classification and analysis of software reuse
factors may be concluded from research performed
in (Paliwal and Shrivastava 2014) and they are
depicted as the mind map in Figure 4.

The following entities and their relationships,
which qualitatively represent the software reuse
process, are shown: Development Scope defines
the source of reusable components (e.g., from the
same project or not); Approach defines technical
methods to be applied for the software reuse imple-
mentation; Domain Scope defines where software
reuse takes place (e.g., within the same software
family or between different ones); Management
defines how a systematically software reuse pro-
cess occurs; Reused entity defines the object type
to be reused.

The next step in this research is to perform a
qualitative analysis of relationships between soft-
ware reusability and software quality attributes as
maintainability, adaptability and understandabil-
ity, as well as software structural complexity. The
corresponding mind map for their qualitative ana-
lysis is presented in Figure 5. We may conclude
that aforementioned software quality attributes,
and therefore its ability for reuse, significantly
depends on structural software complexity. For an
object-oriented approach, it may be defined with

the help of well-known metrics (Tkachuk et al.
2016a) as depicted on Figure 5.

Moreover, Preschern et al. (2014) define a cor-
relation between the rate of software reuse and
metrics such as DIT, RFC, NOC, CBO and WMC,
where:

- DIT (Depth of Inheritance Tree) is defined as
the longest path to the current class from the
parent class in the class hierarchy.

- RFC (Responses For a Class) is the number of
methods, which may be called from an object
of the class.

- NOC (Number Of Children) is the number of
direct subclasses of the class.

- CBO (Coupling Between Object classes) shows
interaction between objects and defines a num-
ber of other related classes excluding subclasses.

- WMC (Weighted Methods per Class) is defined
as a sum of all class methods, where each
method is assessed by its cyclomatic number.

We have to note (Tkachuk et al. 2016a), that
there is still a lack of comprehensive analysis
in which way the different DMMs influence the
complexity of source program code generated
basing on an appropriate DM within the DDD
software development. Therefore, it is crucial task
to identify this correlation in order to reduce costs
for DDD-oriented software projects and especially

http://dx.doi.org/10.18417/emisa.si.hcm.14


Enterprise Modelling and Information Systems Architectures
February 2018. DOI:10.18417/emisa.si.hcm.14
Towards Effectiveness Assessment of Domain Modelling Methods and Tools in SPL Development 197
Special Issue on Conceptual Modelling in Honour of Heinrich C. Mayr

Figure 5: Quality attributes, metrics and their influence on the software reuse process

for SPL development. Consequently, taking the
analysis results of relationships between quality
attributes into account, complexity metrics and
software code reuse artefacts shown in Figure
4 and Figure 5, we are able to provide the SPL
development approach. It utilizes methods and
tools for domain modelling support and uses a
source code reusability extent as an effectiveness
measurement criteria.

3.4 Cybernetic-based Technological
Scheme for Software Products Line
Development with Usage of DMM

The proposed schema for constructing a SPL,
structured as an automated control system with
a feedback loop, is finally given on Figure 6. Its
main functional modules cooperate in the follow-
ing manner:

- an initial description of a given UoD in the
form of business requirements (as User Stor-
ies) to functionality of a target SPL serves as
informational basis for building a DM on the
conceptual level;

- DMMs (e.g., FODA, JODA, ODM, etc.) and
appropriate CASE-tools or domain modelling
tools (DMT), such as e.g. FeatureIDE, Actif-
source etc., allow to provide a DM realization
(DMR);

- a generated code framework (GCF) can be de-
rived based on DMR, and after some changes
(e.g., via code refactoring, applying code pat-
terns, etc.) it should be used to build compon-
ents of a target SPL;

- an efficiency coefficient (see formula (7)), which
is used in the feedback control loop, allows us
to analyse the domain modelling quality, and to
make decisions how to choose the appropriate
DMM and CASE-tool for the development of a
target SPL.

It is worth to note, that the schema proposed in
Figure 6 allows us also to use also other metrics
than the proposed efficiency coefficient, in order
to perform the analysis of various SPL implement-
ations, and therefore may be seen as improvement
of existing methods for solving variability issues in

http://dx.doi.org/10.18417/emisa.si.hcm.14


International Journal of Conceptual Modeling
February 2018. DOI:10.18417/emisa.si.hcm.14

198 Mykola Tkachuk, Rustam Gamzayev, Iryna Martinkus, Volodymyr Sokol, Oleh Tovstokorenko
Special Issue on Conceptual Modelling in Honour of Heinrich C. Mayr

Figure 6: The proposed technological scheme.

software development with usage of an alternative
DMM.

4 Algorithmic Model for Effectiveness
Assessment of Domain Modelling
Effectiveness

4.1 Definition of the Proposed
Algorithmic Model

The functional dependence given with formula
(7) can not be obtained analytically, therefore,
for its investigation, it is necessary to develop a
collection of information models, methods and
metrics. The corresponding algorithmic model
(AM) allows us to present all these components
in a formalized way, and it can be presented as
follows:

AM = ⟨In f oBaseWorkFlow(Methods),

Metrics⟩
(8)

where InfoBase is an information basis of the
AM, WorkFlow(Methods) is a set of algorithms

(WorkFlow) that implement the appropriate meth-
ods (Methods) for assessing the effectiveness of
DMM usage, and finally Metrics is a collection
of metrics that are used in the corresponding al-
gorithms of the AM model. The information basis
of the algorithmic model AM can be presented in
the form of the following tuple:

In f oBase = ⟨M,T,D⟩ (9)

where M is a set of methods of DM given in
formula (1), T is a set of implementation technolo-
gies from formula (2), and D is a set of DM given
in formula (3).

The collection Methods for evaluating the ef-
fectiveness in expression (8) includes:

• the method to determine the code reuse extent
of the program code, which is proposed in
Tkachuk et al. (2016a);

• the method to estimate the complexity level of
a DM, which is given by the expression (4) and
is discussed in more detail below.

http://dx.doi.org/10.18417/emisa.si.hcm.14


Enterprise Modelling and Information Systems Architectures
February 2018. DOI:10.18417/emisa.si.hcm.14
Towards Effectiveness Assessment of Domain Modelling Methods and Tools in SPL Development 199
Special Issue on Conceptual Modelling in Honour of Heinrich C. Mayr

Finally, the collection Metrics from expression (8)
consists of:

- metrics for evaluating the structural complexity
of the program code (Paliwal and Shrivastava
2014), which are used to analyse the frames
generated with the help of the corresponding
DM from expression (5);

- metrics for assessing the code reusability extent
(Nandakumar 2016), that should be used to
construct the corresponding SPL;

- metrics for complexity estimation of the DM
(Preschern et al. 2014; Poels et al. 2001) from
the set D given by expression(4);

- metrics to define an effectiveness coefficient
of the DMM usage in the SPL development or
maintenance given by expression (7).

The next step in the proposed approach is the
direct development of a method for determining
the complexity of DM.

4.2 Method for Estimation of Domain
Model Complexity

Current publications show, that the problem of DM
structural complexity assessment is very relevant
both for stand-alone software systems, and for
SPL and SSF development. Thus, in Preschern
et al. (2014) the approach for an evaluation of
DM complexity is proposed, that takes all its main
structural components into account, namely:

• a number of DM objects types (#OT),
• a number of links between these objects (#ED),

and
• a number of operations defined on them (#DO).

Further, the overall DM structural complexity
index CD is considered as the ratio of existing
associations to the number of object types: CD =
(#ED) / (#OT), but at the same time the number of
operations (#DO) is not taken into account while
calculating CD and becomes a separate indicator
of the DM complexity.

So, this approach does not allow to evaluate
comprehensively the corresponding DM complex-
ity. In Poels et al. (2001) a DM complexity prob-
lem is considered more detailed. Based on the
methodology GOPPRR (Graph-Object-Property-
Port-Role-Relationship) for evaluation of indi-
vidual structural units of a DM, the authors offer
their expressions for quantitative estimations:

(C)inter f ace = #Relationship + #Role+

+#Constraints,

(C)element = #Objects + #Ports,

(C)property = #Properties,

(10)

where (C)inter f ace , (C)element , (C)property

are the quantitative indicators of complexity for
structural DM elements. For a final evaluation of
DM complexity the use of the following expres-
sions is suggested:

(C)Overall = (C)inter f ace + (C)element+

+(C)property
(11)

However, at the same time this method does not
take the functional DM complexity into account,
but evaluates only its structure complexity.

Taking aforementioned disadvantages of exist-
ing methods for DM complexity assessment into
account, it is necessary to propose an integrated
approach to structural and functional model com-
plexity estimation, which will allow to obtain a
single integral index for this purpose.

In Tkachuk et al. (2016b) an approach for com-
plexity of architectural model assessment in soft-
ware systems is defined, that was developed us-
ing post object-oriented technologies (POOT). It
provides a possibility to build analytical expres-
sions to assess the common complexity of different
POOT architectures based of their specific com-
ponents and corresponding weight coefficients,
which can be obtained with elaborated expert-
oriented procedures. In our opinion, the similar
approach can be applied to DM complexity assess-
ment as well. In this way, we propose to introduce

http://dx.doi.org/10.18417/emisa.si.hcm.14


International Journal of Conceptual Modeling
February 2018. DOI:10.18417/emisa.si.hcm.14

200 Mykola Tkachuk, Rustam Gamzayev, Iryna Martinkus, Volodymyr Sokol, Oleh Tovstokorenko
Special Issue on Conceptual Modelling in Honour of Heinrich C. Mayr

formalized definitions for all major artefacts while
constructing an appropriate DM. The small ex-
ample of such a DM (as a fragment) is shown in
Figure 7.

Figure 7: A fragment of a DM to be assessed

Definition 1. A Domain Model (DM) is a tuple:

DM = ⟨C, R⟩ (12)

where C is a set of classes, and R is a set of
relationships between them.

Definition 2. Any class ckϵC is a tuple:

ck = ⟨P(k), F(k)⟩ (13)

where P(k) =
{
p(k)i

}
, i = 1, n is a set of class‘’s

properties; F(k) =
{

f (k)j

}
, j = 1,m is a set of

functions (or methods) of a given class, which
represent its functional content.

Definition 3. A set of links R between elements
of the DM is a tuple:

R =
{
(r)i, j

}
(14)

where ri, j is the connection between classes i
and j in this DM. At the same time, each element
of the set R refers to one possible element in the
set RT.

Definition 4. A set RT defines all types of rela-
tionship which can be defined between different
classes:

RT = {As, Ag,Cm, In} (15)
where As is the name of the Association, Ag is

the name for the Aggregation, Cm is the name for
the Composition, and In is the name for Inheritance
relationships in a given DM.

In (Kang et al. 2004) a quantitative analysis was
carried out to estimate the impact of these types
of relationships on an objects behaviour in the
corresponding DM. Analytically, this dependence
can be expressed in the following way:

(H)As < (H)Ag < (H)Cm < (H)In (16)

where (H)As, (H)Ag, (H)Cm, (H)In are the coef-
ficients of the influence degree for the correspond-
ing type of communication on the overall DM
complexity. The proposed method realizes the
mapping ρ (see the expression (4)), that in turn
supposes to provide the following calculations:

1) the complexity value for each class included
in a given DM,

2) the complexity value for all relationships
between classes in this DM,

3) the overall complexity value for a given DM.

The appropriate weight coefficients for each
type of DM components to be assessment can be
determined in an expert-centred way, e. g. using
the analytical hierarchy method (Saaty 2000). The
steps (1)-(3) are presented below in more details.

Step 1. Calculation of the complexity for each
class. As the influence of functional class prop-
erties on the overall DM complexity is more im-
portant, the complexity of each DM class can be
obtained using the following expression:

CC = 0.3 × PC + 0.7 × FPC, (17)
where CC (ClassComplexity) is a parameter

that determines quantitatively the overall struc-
tural and functional class complexity; PC (Proper-
tyComplexity) is a parameter that determines the

http://dx.doi.org/10.18417/emisa.si.hcm.14


Enterprise Modelling and Information Systems Architectures
February 2018. DOI:10.18417/emisa.si.hcm.14
Towards Effectiveness Assessment of Domain Modelling Methods and Tools in SPL Development 201
Special Issue on Conceptual Modelling in Honour of Heinrich C. Mayr

complexity of class properties (structural complex-
ity); FPC (FuncPropertyComlexity) is a parameter
that determines the complexity of functional prop-
erties of a given class (the behavioural complexity
of a class). Similarly, a quantitative impact on
class complexity (its atomic attributes), and their
collections cen be represented by the following
expression:

PC = 0.4 × #STP + 0.6 × #CTP, (18)

where #STP (SimpleTypeProp) is a number
of properties counted for any "simple" types (no
collections), #CTP (CollectionTypePrperty) is the
number of properties counted for any collection
types. The definition of any DM provides its func-
tions signature only (without their implementation
details). For this reason, it is enough to calculate
their number for the determination of their impact
on the overall separate class complexity. By this
fact, the following expression is offered:

FPC = #FP, (19)

where #FP (FunctionalProperty) is the number
of functional properties of the class (operations).

Step 2. Calculation of the complexity for each
relationship According to expression (14) follow-
ing weighting factors for each DM class connec-
tion types can be determined:

(W)As = 0.1, (W)Ag = 0.2,
(W)Cm = 0.3, (W)In = 0.4

(20)

Given the expression coefficients from (18) the
overall connections complexity of a certain DM
can be calculated using the following expression:

RC = (W)As × (#As) + (W)Ag × (#Ag)+

+(W)Cm × (#Cm) + (W)In × (#In)
(21)

where RC (RelationalComplexity) is a para-
meter, that determines the overall link complexity
of DM; #As (AssociationRelation) is the num-
ber of association type connections; #Ag (Ag-
gregationRelation) is the number of aggregation

connections, #Cm (CompoistionRelation) is the
number of composition connections; and #IR (In-
haritanceRelation) is the number of inheritance
connections.

Step 3. Structural and functional DM com-
plexity Calculation. For the final evaluation of
structural and functional DM complexity, we sug-
gest the following expression:

DMC = 0.7 × #Class × CC + 0.3 × RC (22)

where DMC (DomainModelComplexity) – is
a parameter, that represents the overall structural
and functional DM complexity and #Class – an
amount of DM classes. The analytical expressions
(12) – (22) define an algorithm for implementing a
method which determines structural and functional
DM complexity, which is a component of the
algorithmic model AM given by expression (8).

4.3 Method for the Assessment of Code
Reusability Extent

In Tkachuk et al. (2016a), an approach for the
assessment of code reusability extent (CRE) is
proposed, which is generated using DMM and
appropriate CASE-tools. This method has three
main phases, namely: 1) elaboration of a DM
based on the UoD description using initial busi-
ness requirements, e.g. given in form of user
stories; 2) evaluation of source code complexity
by using the OOP code metrics mentioned before;
3) calculation of a target CRE in form of their
summarized values with weighted coefficients,
which have to be defined using, e. g. the analytical
hierarchy method. As a result, the following ana-
lytical expression was obtained to determine the
integrated value of CRE:

CRE = 0.12 × W MC + 0.04 × RFC

+0.27 × DIT + 0.36 × NOC+

+0.21 × CBO

(23)

where WMC, RFC, DIT, NOC and CBO are the
OOP code complexity metrics mentioned before
(see in section 3.3 for more details).

http://dx.doi.org/10.18417/emisa.si.hcm.14


International Journal of Conceptual Modeling
February 2018. DOI:10.18417/emisa.si.hcm.14

202 Mykola Tkachuk, Rustam Gamzayev, Iryna Martinkus, Volodymyr Sokol, Oleh Tovstokorenko
Special Issue on Conceptual Modelling in Honour of Heinrich C. Mayr

5 Feasibility Study of the Proposed
Approach: Implementation Workflow
and Experimental Results Discussion

5.1 Workflow for the Implementation of
the Proposed Approach

Based on the algorithmic model represented by
expression (8), taking the collection of its compon-
ents defined by (9) – (14) into account, and using
the method for structural and functional DM com-
plexity evaluation, which was presented by (15)
– (22), it is possible to elaborate a procedure for
the determination of an effectiveness coefficient
of the DMM usage given in formula (7). This
procedure is presented in form of an UML activity
diagram in Figure 8.

Figure 8: Workflow for the proposed approach.

According to expression (7), for the definition
of (K)E f f it is necessary to calculate two variables:
CRE and DMC respectively. The activities needed
to calculate the DMC parameter is described in the
previous section. The activity «Obtaining gener-
ated code framework GCF» realizes the mapping
ϕ(see expression (5)), and it can be provided with

help of appropriate domain modelling tools (see
in Section 2.3). Further, the activity «Calculation
of code reusability extent CRE» (see expression
(6)) realizes the mapping σ, using the appropriate
metrics given in formula (21).

5.2 Use case Domain Models and
Experimental Results Discussion

To test the proposed approach, two use case DMs
were developed for the UoD «Students Personal
Data Processing in Education Management Sys-
tem» using two alternative DMMs: ODM (Or-
ganizational Domain Modeling) and JODA (Joint
integrated avionics Object oriented Domain Ana-
lysis), which can be implemented using CASE
- tools as EMF (Eclipse Modeling Framework)
and Actifsource (see sections 2.2 and 2.3). The
example of generated Java-source code in Figure
9, and the DM elaborated for JODA / Actifsource
technology is presented in Figure 10.

This Java - code contains two packages of
classes: student.javamodel (provides the imple-
mentation and interfaces) and student (realizes
the additional resource classes).

Figure 9: Generated code framework (GCF).

http://dx.doi.org/10.18417/emisa.si.hcm.14


Enterprise Modelling and Information Systems Architectures
February 2018. DOI:10.18417/emisa.si.hcm.14
Towards Effectiveness Assessment of Domain Modelling Methods and Tools in SPL Development 203
Special Issue on Conceptual Modelling in Honour of Heinrich C. Mayr

Figure 10: The example of JODA / Actifsource domain model

According to the proposed procedure for effi-
ciency coefficient calculation (see Figure 8), it
is necessary to get such DM characteristics as
DMC and CRE: see formulas (22) and (23). The
appropriate experimental data obtained based on
the elaborated DM using the JODA / Actifsource
tool are presented in Table 2 and Table 3, and for
the ODM / EMF tool in Table 4 and Table 5.

Table 2: DM classes complexity assessment for JODA
/Actifsource realization

Class #STP #CTP #FP
1 Student 6 2 2
2 StudentAddress 7 0 0
3 SturdentFeature 4 0 0
4 StudentCareer 6 0 1
5 StudentClass 5 0 1
6 CampusAsignement 5 0 1
7 Function 0 0 0
8 AbstractFunction 0 0 0
9 JavaFunction 0 0 0∑

33 2 5

Table 3: DM relationships complexity assessment for
JODA / Actifsource implementation

Association 8
Aggregation 1
Composition 1
Inheritance 2

Table 4: DM classes complexity assessment for ODM
/ EMF implementation

Class #STP #CTP #FP
1 Student 6 2 2
2 StudentAddress 7 0 0
3 SturdentFeature 4 0 0
4 StudentCareer 6 0 1
5 StudentClass 5 0 1
6 CampusAsignement 5 0 1∑

33 2 5

http://dx.doi.org/10.18417/emisa.si.hcm.14


International Journal of Conceptual Modeling
February 2018. DOI:10.18417/emisa.si.hcm.14

204 Mykola Tkachuk, Rustam Gamzayev, Iryna Martinkus, Volodymyr Sokol, Oleh Tovstokorenko
Special Issue on Conceptual Modelling in Honour of Heinrich C. Mayr

Table 5: DM relationships complexity assessment for
ODM / EMF implementation

Association 3
Aggregation 0
Composition 2
Inheritance 0

Based on the parameters presented in the Tables
2-5 and using the formulas (16) – (22) the follow-
ing values for the elaborated DM were obtained:

for JODA / Actifsource realization
PC(JODA/Acti f source) = 0.4 ∗ 33 + 0.6 ∗ 2 = 14.4
FPC(JODA/Acti f source) = 5.0
CC(JODA/Acti f source) = 0.3 ∗ 14.4 + 0.7 ∗ 5 = 7.82
RC(JODA/Acti f source) = 0, 1 ∗ 8 + 0.2 ∗ 1 + 0, 3 ∗ 1+
0, 4 ∗ 2 = 2, 1
DMC(JODA/Acti f source) = 0.7 ∗ 9 ∗ 7.82 + 0.3 ∗ 2.1
= 49, 9

for ODM/EMF realization
PC(ODM/EMF) = 0.4 ∗ 33 + 0.6 ∗ 2 = 13.2 + 1.2 = 14.4
FPC(ODM/EMF) = 5.0
CC(ODM/EMF) = 0.3 ∗ 14.4 + 0.7 ∗ 5 = 4.32 + 3.5 = 7.82
RC(ODM/EMF) = 0, 1 ∗ 3 + 0.2 ∗ 0 + 0, 3 ∗ 2 + 0, 4 ∗ 0 = 0, 9
DMC(ODM/EMF) = 0.7 ∗ 6 ∗ 7.82 + 0.3 ∗ 0.9 = 33.11

At the same time, it is necessary to get the values
of code reusability extent (CRE) for these two
alternative DMs. To calculate CRE, formula (23)
should be used after the appropriate OOP metrics
were defined (see Tkachuk et al. 2016a for more
details), and the following values of the CRE were
obtained:

CRE(JODA/Acti f source) = 7.78
CRE(ODM/E MF) = 16.67

Using expression (7), the final values of effi-
ciency coefficients for the tested DMs are calcu-
lated (see Table 6).

In graphical representation, these results are
shown in Figure 11.

Table 6: Efficiency coefficients values obtained

CRE DMC (K)e f f

JODA / Actifsource 7,78 49.90 0.156
ODM / EMF 16,67 33.11 0.503

Figure 11: Graphical interpretation of the results
obtained.

Based on this feasibility study we can conclude,
that domain modelling with usage of ODM / EMF
technology provides a higher rate of efficiency
in comparison with the JODA / Actifsource tool,
and these results should be taken into account for
domain-driven development of a target software
product line.

6 Conclusions and Future Work
In this paper we have considered essential aspects
of domain-driven development (DDD), and espe-
cially, the usage of domain modelling methods
(DMM) in modern software engineering with re-
spect to the improvement of software quality, and
as a way to develop software product lines (SPL).
To emphasize advantages of DDD and DMM us-
age, a 3-level design scheme is proposed, that
reflects variability issues in this framework. Ac-
cording to this metaphor, the main attention is
paid to the phases of logical domain modelling
level and to physical modelling, with usage of
two alternative DMM-methods: JODA and ODM
approaches. The algorithmic model for an effi-
ciency coefficient estimation of alternative DMM

http://dx.doi.org/10.18417/emisa.si.hcm.14


Enterprise Modelling and Information Systems Architectures
February 2018. DOI:10.18417/emisa.si.hcm.14
Towards Effectiveness Assessment of Domain Modelling Methods and Tools in SPL Development 205
Special Issue on Conceptual Modelling in Honour of Heinrich C. Mayr

usage is proposed, which utilizes structured data
resources, expert methods and metrics used in the
SPL development process. A feasibility study for
the proposed approach was performed, and the
obtained experimental results are shown, which
can be useful in the development of a target SPL.

In future, we are going to construct a more
sophisticated collection of software complexity
metrics, e. g. to take the metrics of relationships
between packages into account, and to improve
the prototype of our software tool to support the
proposed evaluation approach.

Acknowledgments
The authors, former visiting researchers and stu-
dents at Alpen-Adria Universität Klagenfurt in
Austria, would like to express their special grat-
itude to Prof. Dr. Dr. h.c. Heinrich C. Mayr for
stimulating discussions of problems related to the
topics presented in this paper.

We would like also to thank students of Na-
tional Technical University “Kharkiv Polytechnic
Institute” A. Tkachuk and M. Raldugyn for their
support in software implementation to test our
approach.

References
Batini C., Ceri S., Navathe S. (1992) Concep-
tual Database Design: An Entity-Relationship Ap-
proach. Benjamin Publishing Company

Bayer J., Kettemann S., Muthig D. (2004)
Principles of software product lines and pro-
cess variants. Process Family Engineering in
Service-Oriented Applications.BMBF-Project. In:
PESOA-Report No. 03/2004.

Capilla R., Bosch J., Kang K. (2013) Systems and
Software Variability Management. Springer

Evans E. (2004) Domain-Driven Design Tack-
ling Complexity in the Heart of Software, 1st ed.
Prentice Hall

Ferré X. (1999) An Evaluation of Domain Analysis
Methods. In: 4th CAiSE.IFIP8.1 International
Workshop in Evaluation of Modeling Methods in
Systems Analysis and Design, pp. 1–13

Greenfield J., Short K. (2004) Software Factories:
Assembling Application with Patterns, Models,
Frameworks and Tools. Wiley, Indianapolis

Guerrero J., Ramos P. (2015) Mind Mapping for
Reading and Understanding Scientific Literature.
In: International Journal of Current Advanced
Research. 4(11), pp. 485–487

Kang D., Xu B., Lu J. (2004) A Complexity Meas-
ure for Ontology based on UML // Distributed
Computing Systems. In: Proceedings of the 10th
IEEE International Workshop on Future Trends
of Distributed Computing Systems, pp. 222–228

Karagiannis D., Mayr H., Mylopoulos J. (2016)
Domain-Specific Conceptual Modeling: Concepts,
Methods and Tools. Springer

Kelly S., Tolvanen J. (2008) Domain-Specific
Modeling: Enabling Full Code Generation. Wiley
Computer Society Press

Kittlaus H.-B., Clough P. (2009) Software
Products: Terms and Characteristics. In: Software
Product Management and Pricing.. Springer

Klaus P. (2016) Learning and Evolution in Dy-
namic Software Product Lines. In: 11th Int’l Sym-
posium on Software Engineering for Adaptive and
Self-Managing Systems (SEAMS) Carlo Ghezzi,
Sam Malek (eds.)

Lee S. U.-J. (2015) An Effective Methodology
with Automated Product Configuration for Soft-
ware Product Line Development, Article ID
435316. In: Mathematical Problems in Engin-
eering 2015

Michael J., Mayr H. C. (2015) Creating a Domain
Specific Modelling Method for Ambient Assist-
ance. In: International Conference on Advances
in ICT for Emerging Regions (ICTer2015). IEEE,
pp. 119–124

Microsoft Corp Accessed on: 15.05.2017 https://
www.microsoft.com/uk-ua/download/office.aspx

http://dx.doi.org/10.18417/emisa.si.hcm.14
https://www.microsoft.com/uk-ua/download/office.aspx
https://www.microsoft.com/uk-ua/download/office.aspx


International Journal of Conceptual Modeling
February 2018. DOI:10.18417/emisa.si.hcm.14

206 Mykola Tkachuk, Rustam Gamzayev, Iryna Martinkus, Volodymyr Sokol, Oleh Tovstokorenko
Special Issue on Conceptual Modelling in Honour of Heinrich C. Mayr

Nagesh P., Vivek S. (2016) An Approach to Find
Reusability of Software Using Objet Oriented
Metrics. In: International Journal of Innovative
Research in Science, Engineering and Technology
3(3) Tiwari K. (ed.)

Nandakumar A. (2016) Constructing Relationship
between Software Metrics and Code Reusability in
Object Oriented Design. In: International Journal
of Advanced Computer Science and Applications
7(2)

OMG (2010) OMG Unified Modeling Language,
Superstructure. Version 2.3. OMG

Oracle Corp Accessed on: 15.05.2017 http://www.
oracle .com/ technetwork/ middleware/ soasuite /
overview/index.html

Paliwal N., Shrivastava V. (2014) An Approach to
Find Reusability of Software Using Objet Oriented
Metrics. In: International Journal of Innovative
Research in Science, Engineering and Technology
3 K. T. (ed.)

Patdar S. M. (2014) Literature Survey on Al-
gorithmic Methods for Software Development
Cost Estimation. In: Int. J. Computer Technology
& Applications 5(1), pp. 183–188

Perovich D., Rossel P., Bastarrica M. (2009) Fea-
ture model to product architectures: Applying
MDE to Software Product Lines. In: Joint Working
IEEE/IFIP Conference on Software Architecture &
European Conference on Software Architecture.,
pp. 201–210

Poels G., Dedene G., Viane S. (2001) A Quant-
itative Assessment of Complexity Of Static Con-
ceptual Schemata For Reference Types Of Front-
office. In: In Proceedings of the Fifth Interna-
tional ECOOP Workshop on Quantitative Ap-
proaches in Object-Oriented Software Engineer-
ing (QAOOSE2001)

Pohl K., Bockle G., Van Der Linden F. (2010)
Software product line engineering: Foundations,
Principles, and Techniques. Springer

Preschern C., Kajtazovic N., Kreiner C. (2014)
Evaluation of Domain Modeling Decisions for two
identical Domain Specific Languages. In: Lecture
Notes on Software Engineering 2(1), pp. 37–41

Reinhartz-Berger I. (2013) Domain Engineering:
Product Lines, Languages, and Conceptual Mod-
els. Springer

Saaty T. (2000) Fundamentals of the Analytic
Hierarchy Process. RWS Publishing

Software Product Line Conference Accessed on:
15.05.2016 http://splc.net/

Sommerville I. (2011) Software Engineering.
Addison-Wesley, Boston, MA

Tkachuk M., Martinkus I., Gamzayev R., Tkachuk
A. (2016a) An Integrated Approach to Evaluation
of Domain Modeling Methods and Tools for Im-
provement of Code Reusability in Software De-
velopment. In: Mayr H. C., Pinzger M. (eds.)
INFORMATIK 2016. Lecture Notes in Informat-
ics (LNI) Vol. P-259. Kollen Druck, Verlag GmbH,
pp. 143–156

Tkachuk M., Nagorniy K., Gamzayev R. (2016b)
Models, Methods and Tools for Effectiveness Es-
timation of Post Object-Oriented Technologies in
Software Maintenance. In: ICTERI 2015: Revised
Selected Papers, Series title: Communications in
Computer and Information Science. 594 Yakovyna
V. (ed.), pp. 20–37

Tune N., Millet S. (2015) Patterns, Principles And
Practices Of Domain-driven Design, 1st ed. John
Wiley & Sons

This work is licensed under
a Creative Commons
‘Attribution-ShareAlike 4.0
International’ licence.

http://dx.doi.org/10.18417/emisa.si.hcm.14
http://www.oracle.com/technetwork/middleware/soasuite/overview/index.html
http://www.oracle.com/technetwork/middleware/soasuite/overview/index.html
http://www.oracle.com/technetwork/middleware/soasuite/overview/index.html
http://splc.net/
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en

