Enterprise Modelling and Information Systems Architectures

Vol. 8, No. 2, December 2013

Bridging the Gap from a Multi-View Modelling Method

Domenik Bork and Elmar J. Sinz

Bridging the Gap from a Multi-View Modelling
Method to the Design of a Multi-View Modelling

Tool

Effectiveness of comprehensive modelling methods considerably benefits by the availability of appropriate tool
support. However, there is a significant semantic gap between a multi-view modelling method and the design of
a corresponding modelling tool. The paper at hand contributes to bridge that gap by means of explicitly
focusing the early steps in the design process of a modelling tool. The approach presented here comprises three
steps: Starting with (1) a modelling scenario, which centres the human modeller, (2) a multi-view modelling
principle and use cases of the tool are derived and (3) the conceptual design of a multi-view modelling tool is
specified. The approach is introduced in an abstract manner before it is applied to a concrete scenario. This
scenario is outlined for the Semantic Object Model (SOM) business process modelling method, depicting a
straight way to the design of an appropriate multi-view modelling tool.

1 Introduction

Creating a comprehensive and useful model is
rather art than handcraft. Like an artist, who is
going to paint a picture of a landscape, a modeller
perceives the real world, delimits the part of the
world which should be captured by the model,
determines an appropriate perspective on the
world, and finally reconstructs the selected part
of the world as an artefact.

However, unlike an artist, who may use oil paint,
brushes and canvas for making the artefact, a
modeller is subject to a more complex setting.
This setting is called a modelling method (Ferstl
and Sinz 2013) which comprises in particular the
following constituents:

« A metaphor which outlines the general way
of perceiving the real world and designing a
corresponding model,

+ a meta-model which defines the modelling
language, as well as associated rules and con-
straints,

« an architecture model which helps to cope with
complexity by structuring a model into sub-
models, views and layers, and

« a process model guiding the steps to be taken
while creating the model.

Effectiveness of modelling methods considerably
benefits by the availability of appropriate tool
support which assists the modeller to create and
manage the model, to visualise the model, to
share the model with a variety of model users,
as well as to utilise and process the model for
different purposes. However, there is a significant
semantic gap between a modelling method and
the design of a corresponding modelling tool.
This semantic gap lies in the abstract constituents
of the modelling method on the one side and the
tool functions on the other side. Its bridging is
guided by the goal of harmonising the two sides
in the mind of the modeller, i.e., providing the
modeller with tool functions that are intuitively
usable with respect to the modelling method.

This all the more takes place when a tool for a
multi-view modelling method has to be designed.
In multi-view modelling, each view represents

Enterprise Modelling and Information Systems Architectures

Vol. 8, No. 2, December 2013

Domenik Bork and Elmar J. Sinz

certain aspects of the system. The union of the
views gives the whole system. Here, it is advisable
to replace the conventional diagram-oriented
modelling approach by a system-oriented one
(see section 3.2.1):

+ In diagram-oriented modelling, editing of a
model is done by applying an operator to a
single diagram. The effects of the operator can
only be seen in the diagram.

« In system-oriented modelling, an operator is
applied to a specific diagram or to the model it-
self. Its effects can be seen in all corresponding
diagrams.

The object of research in this paper is the design
of the early steps in the development of a multi-
view modelling tool for a multi-view modelling
method. This ends up with the functional require-
ments for the tool implementation. The goal of
the paper is to break down the complexity of
developing system-oriented multi-view modelling
tools into several, manageable steps by explicitly
considering these early steps. Using a modelling
scenario as the starting point, the approach leads
to rich and well-defined functional requirements
(non-functional requirements are not regarded
here explicitly).

The paper aims at operationalizing these early
steps for the design of multi-view modelling tools.
The contribution of the paper is twofold: First, the
approach is delineated in general terms. Unlike
the artist introduced above, the modeller rather
acts like an engineer, generally taking several
views on the object under construction simul-
taneously (e.g., top view, front view, side view;
see section 3.2.1). Hence, the approach presented
here is explicitly directed towards multi-view
modelling. It is aimed at facilitating the concep-
tual design of a software tool for a given method
straightforward while considering the relevant
restrictions (e.g., consistency, modelling principle).
Second, the approach is applied to the Semantic
Object Model (SOM), a comprehensive method
for business systems modelling with an emphasis
on multi-view modelling of business processes.

SOM is chosen, because it brings challenging
requirements to multi-view modelling. Model-
ling scenario, multi-view modelling principle,
use cases and conceptual design of a software
tool for SOM business process modelling are
demonstrated.

The remainder of the paper is organised as follows:
Chapter 2 gives an overview on multi-view model-
ling and consistency of views. Chapter 3 outlines
the concepts of modelling scenario, multi-view
modelling principle, use cases and conceptual
design. The approach is applied to SOM business
process modelling in chapter 4, leading to the
conceptual design of a system-oriented multi-
view modelling tool. Finally, chapter 5 reports
on experience and gives an outlook on future
research and development.

2 Related Work on Multi-View
Modelling and Consistency of Views

Over the last decades, modelling of complex sys-
tems (e.g., enterprise architectures, software sys-
tems, business processes) has evolved from single-
view to multi-view modelling (MVM). Single-view
modelling is based on a selected modelling tech-
nique to capture a certain facet of the real world.
In MVM, each view can be based on a different
modelling technique, complementing each other
to a comprehensive and holistic model (Frank
2002; Kruchten 1995; Lopez-Herrejon and Egyed
2010; Nuseibeh et al. 1994).

Using multiple views, each focusing on a cer-
tain aspect of a system (e.g., behaviour, struc-
ture) allows more exhaustive modelling of the
system. Specialised modelling techniques (e.g.,
domain-specific languages) can improve the ex-
pressiveness and quality of the resulting model.
Separation of concerns (using specialised views)
also reduces the complexity of the single view,
making it easier for a modeller to build correct
models. On the other hand, multi-view modelling
implies the challenge of integrating views to a
comprehensive model and assuring consistency
between different views. Although there are meth-
odologies and process models, explicitly requiring

Enterprise Modelling and Information Systems Architectures

Vol. 8, No. 2, December 2013

Bridging the Gap from a Multi-View Modelling Method

27

Type of Consistency Syntactic

‘ Semantic

The class names used in a
sequence diagram should

The events produced in a sequence
diagram should not produce states in the

Horizontal appear in the associated state diagrams of the objects which
class diagram participate in the interaction
The methods definition of | When some child classes are created in a
a class should be consistent | refinement from a parent class, the traces
Vertical in all the abstraction levels | defined by the statemachine of the parent

could be defined

in which these methods

class should be supported by the lower-
level statemachines of the child classes

Table 1: Examples of UML consistency problem classification (Lucas et al. 2009)

or tolerating inconsistency (Balzer 1991; Nuseibeh
et al. 2001), the focus of the paper at hand is
on methodologies, which look upon consistency
between views as essential.

Therefore, a brief classification of consistency for
multi-view models is introduced. In the context
of a MVM method, inconsistency can be described
as ‘any situation in which two descriptions do
not obey some relationship that is prescribed to
hold between them’ (Nuseibeh et al. 1994, 2001).
Paige (Paige et al. 2007) describe multiview con-
sistency checking (MVCC) as the requirement,
that ‘two or more diagrams, each presenting
a different view, do not contradict each other
according to a set of (metalevel) rules’. The au-
thors distinguish between multiview consistency
checking and model conformance. Model con-
formance deals with the question, whether the
views correspond to their syntactic specification
(e.g., described in a meta-model). Meta-modelling
platforms can ensure model conformance in most
cases, as the meta-model itself is introduced to
the platform. As MVCC must be provided by the
tool developer, the presented approach has an
emphasis on MVCC aspects.

A popular language for MVM is the Unified Model-
ing Language (UML) (Object Management Group
(OMG), Unified Modeling Notation). The UML
provides different types of diagrams for mod-
elling views on structure (e.g., class diagrams)
and behaviour (e.g., activity diagrams) of a com-
plex (software-intensive) system. Although UML

is the de-facto industry standard for the design
of object-oriented software, there is a lack of
consistency-checking between diagrams (Engels
et al. 2001; Gomaa and Wijesekera 2003; Huzar
et al. 2005; Mens et al. 2005; Usman et al. 2008).

The paper at hand utilises the business process
modelling method of the Semantic Object Model
(Ferstl and Sinz 1990). SOM business process
models are specified using a multi-view approach
which comprises a structure view, a behaviour
view as well as views on the decomposition of
business transactions and business objects. These
views are specified as projections onto an in-
tegrated meta-model. Similar to the relational
algebra, the projection operator specifies a view
definition on the meta-model by selecting the
meta-model elements considered in the view.

A lot of research has been done on classifying and
dealing with consistency problems in multi-view
modelling (see workshop series (Huzar et al. 2005)
from 2003 to 2005, (Lopez-Herrejon and Egyed
2010; Mens et al. 2005; Usman et al. 2008). In the
following, the most relevant classes of consistency
are briefly outlined:

« Horizontal consistency, also called intra-model
consistency, refers to views representing the
same abstraction level. Using different views,
optionally built with respect to different model-
ling paradigms, is the basic concept of multi-
view modelling. Horizontal consistency prob-
lems therefore occur in any multi-view model.

Enterprise Modelling and Information Systems Architectures

Vol. 8, No. 2, December 2013

Domenik Bork and Elmar J. Sinz

o Vertical consistency, also called inter-model con-
sistency, refers to views representing different
levels of abstraction. When modelling com-
plex systems, model refinement is often used
to specify and to extend the model in a step-
wise and model-driven manner. Moreover,
consistency between models built in different
phases of software development (e.g., design,
analysis), representing different abstraction
levels, belongs to this category.

« Syntactic consistency guarantees, that a model
conforms to its language definition, usually
specified by the meta-model of the method.

« Semantic consistency requires the artefacts cap-
tured in different views to be semantically
consistent to each other. The semantic inform-
ation, which a modeller gains from different
views, must be coherent.

The consistency classes horizontal / vertical as
well as syntactic / semantic are assumed to be
disjoint in pairs and can be combined mutually.
Table 1 exemplifies concrete consistency problems
related to multi-view modelling with UML. The
consistency problems that come with the use of
SOM are intensively discussed in the application
scenario of the approach (see chapter 4).

Considering consistency problems in the tool
development process is substantial for the usabil-
ity of the tool and the correctness of the models
obtained. Whereas lots of literature can be found
on MVM (e.g., Nuseibeh et al. 1994, 2001), model
consistency (e.g., Lopez-Herrejon and Egyed 2010;
Paige et al. 2005, 2007; Usman et al. 2008), and
software development in general, no literature
has been found on the process of designing a
modelling tool according to a given MVM method
and considers the discussed problems in a formal
and comprehensive way. Most literature found
only deals with isolated solutions for a specific
problem-domain (e.g., support for multiple user
experience (Huang et al. 2011), multi-view model
evolution (Stolz 2010), collaborative modelling
tools (Gallardo et al. 2012)) or domain-specific
language (DSL) (Grundy et al. 2007; McIntosh

et al. 2008; Mens et al. 2005) built with a specific
development platform. In the following, an ap-
proach tackling this shortcoming is introduced in
an abstract manner before its concepts are applied
to practical tool design for a concrete method.

3 From a Multi-View Modelling Method
to the Conceptual Design of a
Multi-View Modelling Tool

The approach to bridge the gap from a multi-view
modelling method to the design of a multi-view
modelling tool comprises the following steps:

1. Characterisation of the modelling scenario,
specifying the situation in which a human
modeller acts to create a model of an existing or
postulated subarea of the real world. Thereby
the modeller is guided by the modelling method
and supported by the modelling tool.

2. Specification of the multi-view modelling prin-
ciple, defining the general way of carrying out
multi-view modelling, and use cases, identify-
ing the usage of the modelling tool by a human
modeller (actor).

3. Definition of the conceptual design of the mod-
elling tool, specifying the tool from a functional
perspective (model representation, modelling
operations) as well as the user interface used
for interaction with a human modeller.

The three steps are carried out with respect to
a given modelling method, i.e., they determine
an appropriate consideration of metaphor, meta-
model, architecture model and process model in
order to improve the usability and utility of the
tool. For this reason, these steps establish the
most important and critical phase in the process
of designing a modelling tool.

In order to reduce the complexity of specifying
a conceptual design for a multi-view modelling
method, it is advisable to perform the steps in a
sequential way. This means, that the different
views grounded in the modelling scenario serve
as an input for the use case definition. The use
cases then are elaborated by enhancing them with

Enterprise Modelling and Information Systems Architectures

Vol. 8, No. 2, December 2013

Bridging the Gap from a Multi-View Modelling Method

consistency issues, which result in the concep-
tual design of the modelling tool. This output
constitutes the input for the subsequent software
development.

3.1 Modelling Scenario

The characterisation of a modelling scenario as the
first step of the approach is depicted in Fig. 1. The
modelling scenario shows the modeller (or model
user) creating a model by means of a multi-view
modelling tool. This explication of the modeller’s
perspective helps to manage the complexity of
the modelling task.

The result of the modelling process is an artefact
which is perceived to be a model of a certain
subarea of the real world (object) according to
a mapping function. In contrast to a mathemat-
ical mapping, the object is not specified formally.
Instead, the model is established by a human
modeller (subject) with respect to his/her under-
standing of the real world and the delimitation of
the object within the real world (Wolf 2001). For
this reason, the resulting artefact always depends
on the modeller’s understanding of the real world
and the subarea to be modelled. Hence, the arte-
fact is a subjective reconstruction of a subarea of
the real world. Different modellers will in general
build different artefacts. A modelling tool which
is carefully designed to support the modelling
method will help to margin the subjective differ-
ences and foster an intersubjective understanding
of the model.

The role of the modeller within a modelling scen-
ario is as follows: The modeller pursues certain
goals which reflect the purpose of the model to
be built. The goals refer both to the purpose of
the model and the stakeholders to use the model.
The modeller is guided by a metaphor, giving
the general idea of understanding the modelling
language and reconstructing the relevant part
of the real world, e.g., the metaphor of a data
modelling approach is to model the static data
structure of a business system, upon which all
functions are defined. With this knowledge in

mind, the modeller perceives the real world and
delimits the subarea to be modelled. The modeller
then reconstructs the object in terms of the mod-
elling language (which in turn is inspired by the
metaphor), thereby building the model.

Because of the complexity of models, the modeller
may be not able to comprehend the artefact as
a whole. Instead, the modeller is provided with
several different views on the artefact, altogether
representing the model. This approach is covered
by the concept of multi-view modelling.

3.2 Multi-View Modelling Principles
and Use Cases

After clarifying the general way of carrying out
multi-view modelling (see section 3.2.1) use cases
depict the interaction of a human modeller and
a modelling tool (see section 3.2.2). Use cases
represent a delimited functionality of a system
which is used by a human or machine actor. The
use cases of a system can be described by a use
case diagram (e.g., UML use case diagram). Unfor-
tunately, UML use case diagrams do not relate
use cases to certain views of a method. The nota-
tion of the use cases together with the relevant
views in the presented approach is in tabular
manner. Non-functional requirements (e.g., per-
formance, stability) are not considered, because
they are normally not restricted to a certain set of
views. Nevertheless, non-functional requirements
should be specified as well in order to provide
the tool developer with a complete requirements
specification for a modelling tool.

3.2.1 Multi-View Modelling Principles

There are, in general, two different ways of carry-
ing out multi-view modelling: (1) Develop the
views separately and then combine them to an
integrated and consistent model, or (2) build the
integrated model as a whole and derive the views
as projections on the integrated model. Type (1)
is often performed using drag & drop modelling
which is well-known from many graphical edit-
ors. Type (2) follows the model-view-controller

Enterprise Modelling and Information Systems Architectures

Vol. 8, No. 2, December 2013

30

Domenik Bork and Elmar J. Sinz

pursues

A\

is_guided_by

Modeller
(Subject)

o
&
Real World %
w
Subarea of
Real World 1 Mappin.g

(Object)

| | =)
View 1 I View 2 I | View n I)
Model (Artefact)

Instance_of

Modelling Tool

Figure 1: Modelling Scenario

pattern (Reenskaug 1979) which considers several
views on a model. The model can be changed
directly or via a view. Any change affects the
model itself and becomes visible in all respective
views. Modelling principle (1) is referred to as
diagram-oriented, (2) as system-oriented mod-
elling. Table 2 characterises the two multi-view
modelling principles.

The principles of multi-view modelling are il-
lustrated in Fig. 2 using an example from the
engineering domain. An engineer is assumed to
model a spatial (3D) object, e.g., a simple cube
with a drill hole. The 3D object will usually be
represented by three 2D views (top view, front
view, and side view), each of them as a projec-
tion on the integrated 3D model. According to
diagram-oriented multi-view modelling, one view
is modelled after another and then consistency
is verified (see Tab. 2, Model editing). In the
example in Fig. 2, each view is consistent on its
own, top view and front view as well as top view
and side view are consistent in pairs. However,
front view and side view are contradictory. By
contrast, system-oriented multi-view modelling
causes the consequences of an editing operation
in one view become immediately visible in all
respective views (Tab. 2, Change propagation).
Specifying the depth of the drill hole in the front
view would cause a change of both the integ-
rated model and the side view. The inconsistency

shown in Fig. 2 cannot occur.

Front View Side View

= <o
S 3 db

== s ——
Inconsjistency
I

t
Top View

Mapping

Object -1

Model

Figure 2: Multi-view modelling of a geometrical object

3.2.2 Use Cases

The next step is to define the use cases for the
creation and editing of multi-view models with
an appropriate tool. The key concepts of conven-
tional use case diagrams are actors, use cases and
relationships between actors and use cases (Object
Management Group (OMG), Unified Modeling
Notation Superstructure). Include, extend and
generalisation relationships can be used to define
the relationship between use cases.

The conventional use case diagrams are enhanced
with specific information considering the views af-
fected by a use case. The views can be regarded as
an interface between an actor and corresponding
use cases and follow the model-view-controller
paradigm (MVC) (Reenskaug 1979). This means,
that a use case can be triggered directly or via

Enterprise Modelling and Information Systems Architectures

Vol. 8, No. 2, December 2013

Bridging the Gap from a Multi-View Modelling Method

31

Diagram-oriented

System-oriented

Model editing

One diagram (view) at a time

Model as a whole, visible
via different views

Model refinement

Each diagram represents a
view on the model with
respect to a certain level

of refinement

Refinement of model elements
is part of the model

Refinement levels

Fixed

Selective zoom-in and zoom-out

References between views

References between
selected model elements of
different diagrams

Views as projections
on the model

Model consistency

Inconsistencies must be
resolved by the modeller

Inconsistencies are prevented
by the integrated model

Change propagation

Limited or no propagation
of changes

Changes in one view are propagated to
all affected views immediately

Table 2: Classification of multi-view modelling principles

a certain view. The results can be seen in each
relevant view. Putting the MVC paradigm to
the tool development, conventional use cases are
enhanced with the information (1) in which view
or set of views a use case can be triggered and (2)
in which view or set of views the execution of an
use case has an effect on. The views itself have
been specified in the modelling scenario. In the
following, the notion of the enhanced use cases is
introduced (for an example see Tab. 3):

Use Case A unique identifier or a number fol-
lowed by a meaningful and short description
for the use case, specifying a set of actions
performed by the system.

Triggered in view A set of views (zero to many),
the use case can be triggered in. Zero, when
a use case can be triggered without being re-
stricted to a certain view (e.g., directly on the
model using the context menu of the modelling
tool). Many, when a use case may be triggered
in several views.

Effect on view For each view of the method, a
separate column is listed, depicting whether
the execution of a use case has always (value
‘Yes’), conditionally (value ‘Cond’) or never
(value ‘No’) an effect on the specific view. The

specification of the effect on a view is part
of the conceptual design in the next step. A
distinction between (1) a direct effect based on
the integrated model and (2) an indirect effect
because of the usability of the tool (e.g., visu-
alising some hints for the modeller or giving
some guidance during the modelling process)
is carried out. (1) is displayed in the ‘Effect’
column of the use case definition and must be
considered later on to ensure model conform-
ance, whereas (2) is not considered in the use
case. Effects not considered with the use cases
can serve as an input for the definition of the
non-functional requirements.

References Use Case A list of references to use
cases by means of the include, extend or gen-
eralisation relationship. The references are
defined by the relationship-type and the identi-
fier or number of the related use case.

3.3 Conceptual Design

The third step of the approach proposed here
is the conceptual design of a multi-view model-
ling tool to support a method. This is done in
the following by specifying the tool functions,
which are derived from the use cases referring to
the modelling scenario. The tool must provide

Enterprise Modelling and Information Systems Architectures

Vol. 8, No. 2, December 2013

Domenik Bork and Elmar J. Sinz

a set of functions, enabling a human modeller
to create a comprehensive model as well as to
capture the modelling steps and results via the
views on the model. Basic functions (e.g., create
model elements, connect model elements) should
be supported in an intuitive way. Modelling
transactions, representing a sequence of editing
operations which transform a consistent state of
the model into a new state, which again is consis-
tent with respect to syntax and semantics (Bork
and Sinz 2010), have to be defined (e.g., refinement
of models, model transformation).

The conceptual design gives a specification of
tool functions, particularly considering MVM and
view consistency. This provides the input for
the subsequent implementation of the tool. The
specification should include at least:

Function Denomination of the function.

Object Set of elements of the languages’ meta-
model on which an operation can be performed
(e.g., model element, view), elements of the
modelling tool itself (e.g., context menu, win-
dow) or the model as a whole.

Operator Signature of the operator.

Effect Consequences of executing the operation
on both the view from which the operation is
triggered as well as the integrated model and
affected views.

Consistency Consistency classes (see chapter 2)
concerned by the execution of the function.
Abstract and informal description of the consist-
ency problems occuring because of the use case
execution. Especially the use cases with con-
ditional effects on a view must be considered
extensively. The conditional aspects (i.e., under
which condition do which consistency issues
come up) have to be regarded in the consistency
column.

In contrast to the use cases (see section 3.2.2), an
emphasis of the conceptual design is the consid-
eration of the consistency issues coming with a
multi-view model. The conceptual design there-
fore adds the classes of consistency (see chapter 2)

concerned by the execution of a function together
with some brief information about how the tool
developer should ensure model consistency. De-
tailed consistency preserving mechanisms are
not part of the conceptual design, because their
implementation depends on the development
platform or programming language of the tool. A
focus of the conceptual design should be on the
conditional effects of the use cases, showing the
way the tool should consider them appropriately.

In addition to the definition of the multiple views,
the internal representation of the model must be
defined. Depending on the modelling principle
(see section 3.2.1) of the method, integration of
views has to be supported. If an integrated model
is used (alternative 2), the projections specifying
the views have to be defined, preferably by a
mapping between the meta-models (meta-model
of the integrated model and meta-model of the
view). Algorithms which detect changes on a
view and trigger corresponding modifications on
both the internal representation of the model and
all affected views have to be installed.

Whenever a method allows the definition of mod-
els on different abstraction levels, navigation
between those levels should also be supported.
Vertical consistency (see chapter 2) is concerned
about the consistency of models on different
abstraction levels. An intuitive and preferably
model-driven specification of those abstraction
levels has to be supported. Mutual navigation be-
tween the different levels seems to be a powerful
weapon to tackle model complexity, especially
in MVM. Furthermore, a clear separation of
functions for navigation (1) and functions for
model editing (2) is advisable. (1) has no effect on
the integrated model representation, whereas (2)
leads to an update on the integrated model and to
updates on affected views.

4 From the SOM Method to a SOM
Business Process Modelling Tool

In the following, the approach outlined in chapter 3
is applied to SOM business process modelling.

Enterprise Modelling and Information Systems Architectures

Vol. 8, No. 2, December 2013

Bridging the Gap from a Multi-View Modelling Method

Section 4.1 gives a brief overview on the SOM
method with an emphasis on SOM business pro-
cess modelling. Section 4.2 adopts the steps of
modelling scenario, multi-view modelling prin-
ciple, use cases and conceptual design to the SOM
business process modelling method, thus bridging
the gap to the specification of a SOM business
process modelling tool.

4.1 SOM Method for Business Process
Modelling

The Semantic Object Model (SOM) is a compre-
hensive method for enterprise modelling with
an emphasis on business process modelling and
application systems specification. The first ideas
of SOM have been published in 1990 (Ferstl and
Sinz 1990). Since then the method has emerged
steadily.

In the following, the focus is on the business
process modelling part of the SOM method (Ferstl
and Sinz 2005). According to chapter 1, the con-
stituents of the method are:

Metaphor SOM business process modelling fol-
lows the metaphor of a distributed system,
consisting of autonomous and loosely coupled
business objects. Business objects are coordin-
ated by means of business transactions towards
the fulfilment of common goals. Thus, the
metaphor combines the basic concept of object-
orientation with transaction-based coordina-
tion.

Meta-model The centre of the meta-model for
SOM business process models is built by the
concepts of business object and business trans-
action. A business transaction coordinates
two business objects. A business object can be
involved in several business transactions. A
business object comprises one or more busi-
ness tasks, which are assumed to operate on
the same object. A business transaction is
performed by two tasks belonging to differ-
ent business objects. Tasks belonging to the
same object can be connected by an internal
event. Moreover, the execution of a task can be

triggered by an external event. Each transac-
tion is involved in the coordination of at least
one good or service.

TES
External Internal
Event Event
0,*\ 0,*
P 2.2
Task
1,* m 2,2
1,1 1,* IAS
Business 29 1 Business EE Good /
Object : ~—Trans- - —Service
1O action —

Figure 3: Business process meta-model of the SOM
method (Ferstl and Sinz 2013)

A business process model according to the
meta-model in Fig. 3 is represented using a
structure view called interaction schema (IAS)
and a behaviour view called task-event schema
(TES). Both views can be derived by projections
onto the meta-model (see Fig. 3).
Business objects and business transactions can
be decomposed recursively. According to the
principle of non-hierarchical coordination, a
transaction can be decomposed into subsequent
initiating, contracting and enforcing transac-
tions (rule 1). Corresponding to the principle
of hierarchical coordination, an object can be
decomposed into sub-objects, connected by a
control transaction and a report transaction
(rule 2). The resulting business objects and
business transactions can be decomposed re-
cursively (rule 3 and 4) (see Ferstl and Sinz
(2013) for a complete list of the decomposition
rules specified in Backus-Naur-Form (BNF)).
(1) T(O,0") == [[Ti(O, O')seq]
Tc(O’, O)seq] Te(O, O")

(2) O:==1{0,0”,Tr(O’,0"), [Tf(O”,O0"]}
B) 010" =0
4) Ti|Tc|Te ==T

Architecture Model The overall enterprise ar-
chitecture of the SOM method comprises model

Enterprise Modelling and Information Systems Architectures

Vol. 8, No. 2, December 2013

Domenik Bork and Elmar J. Sinz

layers for (1) enterprise plan, (2) business pro-
cess model and (3) resources. A business pro-
cess model specifies a procedure to carry out a
given enterprise plan. Resources (especially
human actors and application systems) enable
the execution of business processes. Inside a
business process model, objects and transac-
tions can be decomposed according to the rules
explained above.

Process Model From a logical point of view, a
SOM enterprise architecture is assumed to be
developed top down, i.e., starting with an enter-
prise plan, then specifying the corresponding
business process model and finally providing
the resource models.

4.2 SOM Modelling Scenario

With respect to the modelling scenario introduced
in section 3.1, the subarea of the real world (object)
is a single business process (e.g., the procurement
process of a trading company) or a system of
interacting business processes. The resulting
artefact is a business process model according
to the SOM business process meta-model. The
modeller pursues certain goals which refer to the
purpose of the model (e.g., building a model to
support a redesign of the procurement process to
cut cost and throughput time) and the stakeholders
using the model (e.g., domain experts, managers).
Perception of the real world and delimitation of
the object as well as creation of the artefact are
guided by the SOM business process modelling
metaphor. Figure 4 illustrates the modelling
scenario of SOM business process modelling.

SOM multi-view business process modelling is
based on four views: interaction schema (IAS)
and task-event schema (TES) have been already
introduced in section 4.1 as structure view and
behaviour view respectively. As decomposition of
business objects and business transactions is an
integral part of the model, decomposition trees
serve as a third and fourth view of SOM business
processes models.

4.3 SOM Multi-View Modelling
Principle and Use Cases

SOM business process modelling generally utilises
the system-oriented principle (see section 3.2.1)
for multi-view modelling. This means in turn,
that the tool is directed towards consistency pre-
serving instead of consistency checking and re-
covery. All views are seen as projections on one
comprehensive and integrated model. Any model-
ling operation executed by the modeller is applied
to the internal model representation and then all
changes are triggered to the affected views. As
mentioned in section 3.3, the conceptual design
includes the information about the consistency
issues of a modelling operation but not the al-
gorithms for ensuring a consistent model. Model
refinement must be supported by realising the
decomposition rules, given by the method (Ferstl
and Sinz 2005). The decomposition itself is a
central part of SOM business process modelling.
Therefore, selective zooming in and out of the
business process model must be realised as mod-
elling operators on the decomposition trees of
business transactions and business objects. Apply-
ing the zoom operator results in the visualisation
of a more (zoom-in) or less (zoom-out) refined
business process model without performing any
changes on the integrated model. The model-
ler therefore has the ability, to switch between
already specified refinement levels.

Picking up the information gathered in the SOM
modelling scenario in the previous step, typical
use cases of a modeller can be defined in the
tabular manner introduced in section 3.2.2. For
each use case and each of the methods view must
be decided, whether the execution of a use case
has an effect on a view or not. As mentioned
before, SOM utilises a system-oriented approach,
therefore the integrated model must also be con-
sidered during the use case definition. Table 3
illustrates a selection of modelling operations
needed to build and refine SOM business process
models and their effect on the different views and
the integrated model.

Enterprise Modelling and Information Systems Architectures

Vol. 8, No. 2, December 2013

Bridging the Gap from a Multi-View Modelling Method

35

pursues

I3

Investigate
Business
Process

Modeller
(Subject)

is_guided_by

looks_at

S

Real World

v

Schema

Mapping

Business
Process

SOM Business Process Model

Instance_of

SOM Business Process Modelling Tool

Figure 4: SOM business process modelling scenario

Table 3 shows, that e.g., the decomposition of
a business transaction can be triggered within
three views (IAS, TES and within the transaction
decomposition view) and has an effect on the in-
tegrated model and the transaction decomposition
view. The use case of increasing the visualised
business process level (zooming) can be triggered
within transaction decomposition and object de-
composition view. Its execution affects only IAS
and TES, not the integrated model. Whenever
several views are affected, the tool developer has
to ensure that all changes are propagated and the
considered views are updated accordingly. Simple
changes (e.g., the change of an elements name)
may be transported through changes on a central
repository. If the development platform does not
support a repository or the changes are more
complex, additional consistency logic hast to be
implemented on the platform, e.g., using a pro-
gramming or scripting language. In the latter case,
the conceptual design gives some guidance for the
developer by briefly describing the consistency
issues of executing a modelling operation.

The table also shows, that the use case of adding
a business object (use case 6) is related to the use
case 7 (add business transaction) and 11 (Smooth
Edges of Transactions) by an include relationship.
This is caused by the fact, that any additional
business object has to be connected with one
existing business object by an additional enforcing
transaction. After the new business object and

business transaction are introduced to the IAS and
TES, the adjustment of the transaction must be
performed in order to provide a good visualisation
of the business process model for the modeller.
The information summarised in Tab. 3 serves as a
starting point for the conceptual design of the
functional requirements for a multi-view SOM
modelling tool in the next step.

4.4 SOM Conceptual Design

In the following, the conceptual design (see sec-
tion 3.3) of a SOM business process modelling
tool is outlined. This section will concentrate
on tool functions, modelling transactions and
consistency between views. As mentioned before,
SOM business process modelling is characterised
as a comprehensive system-oriented modelling
method. Utilising the method requires complex
modelling transactions for model creation, model
editing, and model refinement. A modelling trans-
action is the refinement of the business process
model. First, the modeller selects a transaction
and triggers the ‘Decompose Business Transac-
tion’ function in its context menu. After that, the
tool provides the modeller with a list of all ap-
plicable SOM decomposition rules. The modeller
chooses one rule and applies it to the selected
transaction. The decomposition trees are updated
and enhanced with the new child nodes. The IAS
and TES are still on the previous decomposition
level. This is an intermediate inconsistency the

Enterprise Modelling and Information Systems Architectures

Vol. 8, No. 2, December 2013

Domenik Bork and Elmar J. Sinz

36

suorjoesueI],

ON ON ON ON ON SoK BURYDS UONORIUL 70 $98pq YIoOWS T
BUIAYDSS JUIAT-YSE], [2A9T $S2001J
(11)opnpug 9Kk ON °N Sk Sk BUWIAYDG UOTIORIANU] SSQUISI 9SBIIOUT O]
uonoesueI],
(11)opnpur sax ON sax sax sax MITA dTds ON SSOUISNY SAOWDY-6
¢ 192[q0
(11°6)9pnyoug S9x S9X ON BN SIX Mara dyroads oN SSOUISTIE FAOWIY'S
uonoesuelI],
(11)opnpou sax ON S9K S 9K Ma1A ogroads ON ssoursng ppy-L
, 102[q0
(11°L)opnpouy sax Sax ON sax sax Ma1A dYds oN ssouISng PPY-9
dwoda 193[qQ .
(11)9pnyoug ON ON ON sax sax N ——— Surwooyz g
uonyisodurodap
(6)opnpoug sax sax puo) puo) puo) dwoda 1[40 13[qO MordTy
uonrsodwodap
ON sax ON sax puod puoD ‘dwroda(] uorjoesURI] UOMOESUBL] MOARYE
-dwod9(392[q0 109040
(L)opnpou] RN RN ON °N °N PHIDUDS JULATSPL ssoursng umOQEoowQ.m
BUWAYDS UOTJORIIU] .
*duwods(uorjoesueIy, wonoesUeI]
ON $9K ON S ON °N PHIDIOS JAIISEL | o oursng umomEoouQ.H
BUWIAYDS UOTJORIIU] .
uonisod BUIAYDS
ase) as() [PPOIN -woddq ‘dwodsqg JuaAq BUIAYOS
SOOUQIRJOY parerdojuy 102(qO uomndesueI] -)Se], UONORINU] | MIIA Ul pard3SLiy ase)) as()

uo 10959

Table 3: SOM business process modelling use cases

Enterprise Modelling and Information Systems Architectures

Vol. 8, No. 2, December 2013

Bridging the Gap from a Multi-View Modelling Method

tool allows in order to give the modeller more
flexibility. Second, the modeller has the possibility
to manually trigger the function ‘Increase Busi-
ness Process Level” in order to connect the newly
created transactions with the business objects,
therefore producing a new consistent state of
the business process model and finalising the
modelling transaction.

Table 4 specifies SOM modelling functions, using
the criteria introduced in section 3.3 and based
on the information already gathered during the
use case definition in the previous step. The con-
ceptual design includes a complete specification
of any use case depicted in the earlier step with
an emphasis on consistency of the model. The
modelling functions are restricted to a certain
object of the method or the tool itself and en-
larged with a brief description of their effect and
consistency issues that have to be considered
during tool development.

Although all the features mentioned above are
important for the quality of the tool, the internal
representation of the model and the consistency
between the views deserve some closer atten-
tion. Initialisation of the integrated model and
verification of consistency between views are
more or less complex, depending on the proper-
ties of the selected development platform. Some
platforms support the utilisation of the model-
view-controller pattern (Reenskaug 1979) by a
repository approach, which is very helpful for
system-oriented methods (see section 3.2.1) with
an integrated meta-model. In this case, the in-
tegrated model is realised by a repository, all
view elements are implemented as references to
repository items. Changes on a view (e.g., chan-
ging the name of an element) are automatically
pushed into the repository and therefore become
immediately visible in all affected views.

Besides the discussed conceptual design, the tool
developer should have a specification of non-
functional requirements as well. As those require-
ments are not handled significantly different in
multi-view modelling, they should be specified
additionally to the conceptual design.

5 Lessons Learned and Outlook to
Future Research

The approach presented here contributes to bridge
the gap from a multi-view modelling method to
the conceptual design of a multi-view modelling
tool. The constituents of a modelling method
are a metaphor, a meta-model, an architecture
model, and a process model. The conceptual
design of a corresponding modelling tool consists
of specifications of the tool functions with an
emphasis on multi-view consistency.

What makes this a challenge is the multi-view
aspect, i.e., when the starting point is a multi-view
modelling method and the end point is a system-
oriented multi-view modelling tool. Here, the
handling of the multiple views by the modeller has
to be adjusted with his/her way of reconstructing
the subarea of the real world to be modelled in
several views. The cornerstones of the approach
are

1. a modelling scenario (the overall perspective—
a specification of the modelling method, applied
to a real world problem by the modeller),

2. a modelling scenario and use cases (the model-
ler’s perspective—the use cases performed by
the modeller and their effect), and

3. tool functions (the tool perspective—modelling
functions provided by the tool).

These cornerstones should help to break the se-
mantic gap down to manageable steps and thus
gain a better tool support.

The motivation for the presented approach here is
the experience gathered with the development of
several SOM tools over the last decades. Indeed,
the tools were oriented at the modelling method,
but they were disregarding the modelling scenario
and the use cases. Experience with the new tool,
designed according to the approach presented
here, includes:

+ The documentation of a modelling scenario
helps the users to learn about the usage of the
tool. Misunderstandings on the usage of the
tool can be avoided.

Enterprise Modelling and Information Systems Architectures

Vol. 8, No. 2, December 2013

Domenik Bork and Elmar J. Sinz

38

Function Object Operator Effect Consistency
Horizontal & Vertical.
The selected object is decomposed If the negotiation principle for
. Business according to a selected decomposition object decomposition is applied,
Decomposition . Decompose »
Object rule. Object decomposition view and the modeller might create additional
the integrated model must be updated. transactions which must be visible in
the transaction decomposition tree.
Horizontal&Vertical
The selected object and its sibling nodes If the modeller created additional
, in the object decomposition tree transactions during the prior decom-
. Business Revoke . . . o .
Decomposition . L are deleted. Object decomposition view position of the selected objects,
Object Decomposition . ,
and the integrated model must be updated. these transactions have to be deleted.
If IAS and TES had showed the selected
elements, they must be updated.
Horizontal
. . IAS and TES are updated to a more Attribute values of the created
Business Object/ . iy .
, , Zoom on or less detailed decomposition level. elements must be consistent
Zooming Business Trans- i . . .
. selected level No changes on the integrated in all views. The connection of
action i . .
model and the decomposition trees. the transactions and objects must
be consistent in IAS and TES.
An additional environmental object Horizontal & Vertical
. is created and added to the model. The new elements must be shown
Add Business Add . .) .
) It must be connected with a new in all four views with the
Model Process Business .) . .
Element Model Obiect enforcing transaction to an existing correct attribute values. It
) object. The decomposition trees, IAS, TES must be connected to the newly
and the integrated model must be updated. created transaction in IAS and TES.
The selected business object Horizontal & Vertical
Remove Business Object/ Remove is removed together with its If transactions hang loose after the object
Model Business Business child elements from the object deletion, the modeller must connect them
Element Process Model Object decomposition tree, IAS and TES. The again, using the parent nodes of the deleted

integrated model must be updated.

objects in the object decomposition tree.

Table 4: Specification of SOM business process modelling functions

Enterprise Modelling and Information Systems Architectures

Vol. 8, No. 2, December 2013

Bridging the Gap from a Multi-View Modelling Method

39

a Diskurswet Di‘
E prole I: infromation
;Q delivery
> =
B :
= C: order :
R: delivery order
h:d
—>
E: delivery F- deiivery report
i
) de)

= (@[5] | =] demo (Task-Event Scheme) [E=S 808~

<t——order————

: order

= 58 a‘r
=88
== =

Figure 5: Screenshot of the SOM multi-view business process modelling tool

+ The early phases of the design process of the
tool are broken down into comprehensible
steps. This leads to tool functions balanced
with the modelling scenario.

+ The consideration of multi-view aspects in
the early phases sharpens the requirements
and therefore results in a more comprehensive
functional specification.

« Allin all, the approach appears to be a contribu-
tion to requirements engineering of modelling
tools.

The approach was applied to SOM business pro-
cess modelling. SOM brings manifold require-
ments to multi-view modelling (see Tab. 3 and
Tab. 4), e.g., the decomposition of model elements
is part of the model itself. An approach working
for SOM should work for modelling methods with
equal or fewer requirements as well. This is a
hypothesis to further research.

The tool is based on the ADOxx meta-modelling
platform. Bork and Sinz (2010) report on the
design and the implementation of the SOM busi-
ness process modelling tool on the ADOxx meta-

modelling platform in more detail, focussing on
the subsequent phases of tool development. A
prototype of the tool is available within the Open
Model Initiative’.

Future research will concentrate on generalising
the presented approach. It is assumed to be a
universal idea, helping to better design model-
ling tools and thus supporting the proliferation
of modelling methods. Therefore, we plan on
applying the approach to a completely different
multi-view modelling method. Additionally, we
think about realising the approach on a meta-
modelling platform, therefore guiding method
experts in the process of specifying the functional
requirements for a modelling tool.

Additional research has to capture some facets of
a modelling method which are disregarded up to
now, particularly architecture model and process
model. All in all, the presented approach should
be further investigated as a contribution to re-
quirements engineering for multi-view modelling

The Open Model Initiative,
openmodels. at, last visit: 12-02-2013

http://www.

http://www.openmodels.at
http://www.openmodels.at

Enterprise Modelling and Information Systems Architectures

Vol. 8, No. 2, December 2013

Domenik Bork and Elmar J. Sinz

tools on the one hand and knowledge engineering
for multi-view modelling methods on the other.

References

Balzer R. (1991) Tolerating Inconsistency. In:
Belady L., Barstow D. R., Torii K. (eds.) Pro-
ceedings of the 13th international Conference
on Software Engineering. ICSE ’91. IEEE
Computer Society Press, Los Alamitos, CA,
USA, pp. 158-165

Bork D, Sinz E. J. (2010) Design of a SOM
Business Process Modelling Tool based on
the ADOxx meta-modelling Platform. In: de
Lara J., Varro D. (eds.) Pre-Proceedings of
the 4th international Workshop on Graph-
Based Tools. GraBaTs 2010. Enschede, The
Netherlands, pp. 90-101

Engels G., Kiister J. M., Heckel R., Groenewegen
L. (2001) A methodology for specifying and
analyzing consistency of object-oriented beha-
vioral models. In: Gruhn V. (ed.) Proceedings
of the 8th European Software Engineering
Conference. ESEC. ACM, Vienna, Austria,
pp. 186—195

Ferstl O. K., Sinz E. J. (1990) Objektmodel-
lierung betrieblicher Informationssysteme
im Semantischen Objektmodell (SOM). In:
Wirtschaftsinformatik 32(6), pp. 566—581

Ferstl O. K., Sinz E.]. (2005) Modeling of Business
Systems Using SOM. In: Bernus P., Mertins
K., Schmidt G. (eds.) Handbook on Architec-
tures of Information Systems. International
Handbooks on Information Systems. Springer,
Berlin, pp. 347-367

Ferstl O. K., Sinz E. J. (2013) Grundlagen der
Wirtschaftsinformatik, 7th ed. Oldenbourg,
Miinchen

Frank U. (2002) Multi-perspective Enterprise
Modeling (MEMO) - Conceptual Framework
and Modeling Languages. In: Proceedings of
the 35th Annual Hawaii International Confer-
ence on System Sciences. HICSS, p. 72

Gallardo J., Bravo C., Redondo M. A. (2012) A
model-driven development method for collab-
orative modeling tools. In: Journal of Network
and Computer Applications 35(3), pp. 1086
-1105

Gomaa H., Wijesekera D. (2003) Consistency in
Multiple-View UML Models: A Case Study.
In: Kuzniarz L., Huzar Z., Reggio G., Sour-
rouille J. L., Staron M. (eds.) Workshop on
Consistency Problems in UML-based Software
Development, International Conference on
the Unified Modeling Language-the Language
and its applications. UML, pp. 1-8

Grundy]., Hosking J., Cao S., Zhao D., Zhu N,
Tempero E., Stoeckle H. (2007) Experiences
developing architectures for realizing thin-
client diagram editing tools. In: Software:
Practice and Experience 37(12), pp. 1245-1283

Huang K.-H., Nunes N., Nobrega L., Constantine
L., Chen M. (2011) Hammering Models:
Designing Usable Modeling Tools. In: Campos
P., Graham N, Jorge]J., Nunes N., Palanque P.,
Winckler M. (eds.) Human-Computer Inter-
action INTERACT 2011. Lecture Notes in
Computer Science Vol. 6948. Springer Berlin
Heidelberg, pp. 537-554

Huzar Z., Kuzniarz L., Reggio G., Sourrouille J.
(2005) Consistency Problems in UML-Based
Software Development. In: Jardim Nunes
N., Selic B., Rodrigues da Silva A., Toval Al-
varez A. (eds.) UML Modeling Languages and
Applications. Lecture Notes in Computer Sci-
ence Vol. 3297. Springer Berlin / Heidelberg,
pp- 1-12

Kruchten P. (1995) The 4+1 View Model of
Architecture. In: IEEE Software 12, pp. 42-50

Lopez-Herrejon R. E., Egyed A. (2010) Detecting
inconsistencies in multi-view models with
variability. In: Kithne T., Selic B., Gervais
M.-P., Terrier F. (eds.) Proceedings of the 6th
European conference on Modelling Founda-
tions and Applications. ECMFA’10. Springer-
Verlag, Paris, France, pp. 217-232

Lucas F. J., Molina F., Toval A. (Dec. 2009) A
systematic review of UML model consistency
management. In: Information and Software

Enterprise Modelling and Information Systems Architectures

Vol. 8, No. 2, December 2013

Bridging the Gap from a Multi-View Modelling Method

Technology 51(12), pp. 1631-1645

Mclntosh B., Giupponi C., Voinov A., Smith
C., Matthews K., Monticino M., Kolkman
M., Crossman N., van Ittersum M., Haase D.,
Haase A., Mysiak J., Groot J., Sieber S., Verweij
P., Quinn N., Waeger P., Gaber N., Hepting D.,
Scholten H., Sulis A., van Delden H., Gad-
dis E., Assaf H. (2008) Bridging the Gaps
Between Design and Use: Developing Tools
to Support Environmental Management and
Policy. In: Jakeman A., Voinov A., Rizzoli A.,
Chen S. (eds.) Environmental Modelling, Soft-
ware and Decision Support. Developments in
Integrated Environmental Assessment Vol. 3.
Elsevier, pp. 33 —48

Mens T., Van Der Straeten R., Simmonds J. (2005)
A Framework for Managing Consistency of
Evolving UML Models. In: Yang H. (ed.)
Software Evolution with UML and XML. Idea
Group Publishing, pp. 1-31

Nuseibeh B., Kramer J., Finkelstein A. (1994) A
Framework for Expressing the Relationships
Between Multiple Views in Requirements
Specification. In: IEEE Transactions on Soft-
ware Engineering 20(10), pp. 760-773

Nuseibeh B., Easterbrook S., Russo A. (2001)
Making inconsistency respectable in software
development. In: Journal of Systems and
Software 58(2), pp. 171-180

OMG Object Management Group (OMG), Uni-
fied Modeling Notation. http://www.uml.org/.
Last Access: (2012-06-14)

OMG Object Management Group (OMG),
Unified Modeling Notation Superstructure.
http://www.omg.org/spec/UML/2.4.1/
Superstructure/PDF/. Last Access: (2012-06-
14)

Paige R. F., Kolovos D. S., Polack F. A. C. (2005)
Refinement via Consistency Checking in
MDA. In: Electronic Notes in Theoretical
Computer Science 137(2), pp. 151-161

Paige R. F., Brooke P. J., Ostroff J. S. (July 2007)
Metamodel-based model conformance and
multiview consistency checking. In: ACM
Trans. Softw. Eng. Methodol. 16(3)

Reenskaug T. (1979) Thing-Model-View-Editor

— an Example from a planningsystem. http:
//heim.ifi.uio.no/~trygver/1979/mvc-1/1979-
05-MVC.pdf. Last Access: (2012-06-14)

Stolz V. (2010) An Integrated Multi-View Model
Evolution Framework. In: Innovations in
Systems and Software Engineering 6 (1-2),
pp. 13-20

Usman M., Nadeem A., Kim T.-h., Cho E.-s.
(2008) A Survey of Consistency Checking
Techniques for UML Models. In: Advanced
Software Engineering and Its Applications,
pp. 57-62

Wolf S. (2001) Wissenschaftstheoretische und
fachmethodische Grundlagen der Konstruk-
tion von generischen Referenzmodellen be-
trieblicher Systeme. PhD thesis, University of
Bamberg, Shaker Verlag

Domenik Bork, Elmar J. Sinz

University of Bamberg

Department of Information Systems — Systems
Engineering

An der Weberei 5

96047 Bamberg

Germany

{domenik.bork | elmar.sinz}@uni-bamberg.de

http://www.uml.org/
http://www.omg.org/spec/UML/2.4.1/Superstructure/PDF/
http://www.omg.org/spec/UML/2.4.1/Superstructure/PDF/
http://heim.ifi.uio.no/~trygver/1979/mvc-1/1979-05-MVC.pdf
http://heim.ifi.uio.no/~trygver/1979/mvc-1/1979-05-MVC.pdf
http://heim.ifi.uio.no/~trygver/1979/mvc-1/1979-05-MVC.pdf

